
INTRODUCTION TO
DIGITAL AUDIO CODING

AND STANDARDS

THE KLUWER INTERNATIONAL SERIES
IN ENGINEERING AND COMPUTER SCIENCE

INTRODUCTION TO
DIGITAL AUDIO CODING

AND STANDARDS

Marina Bosi
Stanford University

Richard E. Goldberg
The Brattle Group

SPRINGER SCIENCE+BUSINESS MEDIA, L L C

Library of Congress Cataloging-in-Publication Data

Bosi, Marina
Introduction to Digital Audio Coding and Standards/by Marina Bosi, Richard E. Goldberg,
p. cm. -(The Kluwer international series in engineering and computer science; SECS 721
Includes bibliographical references and index.
ISBN 978-1-4613-5022-4 ISBN 978-1-4615-0327-9 (eBook)
DOI 10.1007/978-1-4615-0327-9

1. Sound—Recording and reproducing—Digital techniques—Standards. 2. Data
compression (Computer science) I. Goldberg, Richard E. II. Title. III. Series.

TK7881.4 .B59 2002
621.38932—<Jc21

2002040686

Copyright © 2003 by Springer Science+Business Media New York
Originally published by Kluwer Academic Publishers in 2003
Softcover reprint of the hardcover 1st edition 2003

A l l rights reserved. No part of this work may be reproduced, stored in a
retrieval system, or transmitted in any form or by any means, electronic,
mechanical, photocopying, microfilming, recording, or otherwise, without the
written permission from the Publisher, with the exception of any material
supplied specifically for the purpose of being entered and executed on a
computer system, for exclusive use by the purchaser of the work.

Printed on acid-free paper.

Contents

FOREWORD .. xiii

PREFACE .. xvii

PART I: AUDIO CODING METHODS

Chapter I. INTRODUCTION
1. Representation of Audio Signals .. 3
2. Whatis a Digital Audio Coder? ... 4
3. Audio Coding Goals ... 5
4. The Simplest Coder - PCM ... 7
5. The Compact Disk ... 8
6. Potential Coding Errors .. 9
7. A More Complex Coder. .. 10
8. References .. 12
9. Exercises .. 12

Chapter 2. QUANTIZATION
I. Introduction .. 13
2. Binary Numbers ... 14
3. Quantization ... 20
4. Quantization Errors .. 34
5. Entropy Coding .. 38
6. Summary .. 43
7. References .. 44
8. Exercises .. 44

Chapter 3. REPRESENTATION OF AUDIO SIGNALS
1. Introduction .. 47
2. Notation .. 48
3. Dirac Delta ... 49

. 4. The Fourier Transform ... 51
5. Summary Properties of Audio Signals 53
6. The Fourier Series .. 59
7. The Sampling Theorem .. 61
8. Prediction ... 63
9. Summary .. 68
10. Appendix - Exact Reconstruction of a Band-Limited,

Periodic Signal from Samples within One Period 68
11. References .. 69
12. Exercises .. 70

Chapter 4. TIME TO FREQUENCY MAPPING PART I: THE PQMF
1. Introduction .. 75
2. The Z Transform .. 77
3. Two-Channel Perfect Reconstruction Filter Banks 84
4. The Pseudo-QMF Filter Bank, PQMF 90
5. Summary .. 99
6. References .. 100
7. Exercises .. 101

Chapter 5. TIME TO FREQUENCY MAPPING PART II: THE MDCT
1. Introduction .. 103
2. The Discrete Fourier Transform ... 104
3. The Overlap-and-Add Technique .. 113
4. The Modified Discrete Cosine Transform, MDCT 124
5. Summary .. 143
6. References .. 144
7. Exercises .. 146

Chapter 6. INTRODUCTION TO PSYCHOACOUSTICS
1. Introduction .. 149
2. Sound Pressure Levels ... 150
3. Loudness .. 150
4. Hearing Range .. 151
5. Hearing Threshold .. 153
6. The Masking Phenomenon ... 156
7. Measuring Masking Curves ... 160
8. Critical Bandwidths .. 164
9. How Hearing Works .. 168

vi

10. Summary .. 174
11. References .. 175
12. Exercises .. 177

Chapter 7. PSYCHOACOUSTIC MODELS FOR AUDIO CODING
1. Introduction .. 179
2. Excitation Patterns and Masking Models 180
3. The Bark Scale ... 182
4. Models for the Spreading of Masking 183
5. Masking Curves ... 190
6. "Addition" of Masking ... 192
7. Modeling the Effects of Non-Simultaneous (Temporal)

Masking .. 195
8. Perceptual Entropy ... 196
9. Masked Thresholds and Allocation of the Bit Pool 197
10. Summary .. 198
11. References .. 198
12. Exercises .. 200

Chapter 8. BIT ALLOCATION STRATEGIES
1. Introduction .. 201
2. Coding Data Rates ... 202
3. A Simple Allocation of the Bit Pool 204
4. Optimal Bit Allocation ... 205
5. Time-Domain Distortion .. 214
6. Optimal Bit Allocation and Perceptual Models 216
7. Summary .. 218
8. References .. 219
9. Exercises .. 219

Chapter 9. BUILDING A PERCEPTUAL AUDIO CODER
1. Introduction .. 221
2. Overview of the Coder Building Blocks 221
3. Computing Masking Curves .. 223
4. Bitstream Format. ... 230
5. Business Models and Coding Secrets 233
6. References .. 235
7. Exercises .. 235

Chapter 10. QUALITY MEASUREMENT OF PERCEPTUAL AUDIO CODECS
1. Introduction .. 237
2. Audio Quality ... 239
3. Systems with Small Impairments ... 240
4. Objective Perceptual Measurements of Audio Quality 251

vii

5. What Are We Listening For? ... 255
6. Summary .. 257
7. References .. 257
8. Exercises .. 261

PART II: AUDIO CODING STANDARDS

Chapter 11. MPEG-l AUDIO
1. Introduction .. 265
2. Brief History of MPEG Standards ... 266
3. MPEG-l Audio .. 268
4. Time to Frequency Mapping .. 273
5. MPEG Audio Psychoacoustic Models : 278
6. MPEG-l Audio Syntax .. 296
7. Stereo Coding ... 307
8. Summary .. 310
9. References .. 310

Chapter 12. MPEG-2 AUDIO
1. Introduction .. 315
2. MPEG-2 LSF, "MPEG-2.5" and MP3 315
3. Introduction to Multichannel Audio 318
4. MPEG-2 Multichannel BC. .. 321
5. Summary .. 330
6. References .. 330

Chapter 13. MPEG-2 AAC
1. Introduction .. 333
2. Overview .. 333
3. Gain Control ... 338
4. Filter Bank .. 340
5. Prediction ... 343
6. Quantization and Coding .. 346
7. Noiseless Coding .. 350
8. Bitstream Multiplexing .. 353
9. Temporal Noise Shaping .. 355
10. Joint Stereo Coding .. 358
11. Test Results .. 359
12. Decoder Complexity Evaluation .. 363
13. Summary .. 367
14. References .. 367

viii

Chapter 14. DOLBY AC-3
1. Introduction .. 371
2. Main Features ... 372
3. Overview of the Encoding process .. 374
4. Filter Bank .. 377
5. Spectral Envelope Coding .. 382
6. Multichannel Coding .. 385
7. Bit Allocation ... 390
8. Quantization ... 394
9. Bitstream Syntax .. 395
10. Performance ... 396
1 1. Summary .. 397
12. References .. 398

Chapter 15. MPEG-4 AUDIO
1. Introduction .. 401
2. MPEG-4: What is it? .. 402
3. MPEG-4 Audio Goals and Functionalities 405
4. MPEG-4 Audio Tools and Profiles .. 408
5. MPEG-1 and 2 Versus MPEG-4 Audio 422
6. The Performance of the MPEG-4 Audio Coding Tools 424
7. Intellectual Property and MPEG-4 ... 425
8. Summary .. 426
9. References .. 426

INDEX ... 431

ix

About the Authors

Marina Bosi is a Consulting Professor at Stanford University's Computer
Center for Research in Music and Acoustics (CCRMA) and Chief
Technology Officer of MPEG LA ®, a firm specializing in the licensing of
multimedia technology. Past president of the Audio Engineering Society,
Dr. Bosi is the author of numerous articles and the holder of several patents
in audio technology. Dr. Bosi has been involved in the development of
MPEG, Dolby, and DTS audio coders.

Richard E. Goldberg is a Partner at The Brattle Group, a management
consulting firm specializing in economics and finance issues. Dr.
Goldberg's practice focuses on business valuation and risk management. Dr.
Goldberg has a Ph.D. in Physics from Stanford University and an A.B. in
Astrophysics from Princeton University. Audio coding technology and
related business applications have long been areas of interest for him.

Foreword

THE RISE OF DIGITAL AUDIO

Leonardo Chiariglione - Telecom [talia Lab, Italy

Analogue speech in electrical form has a history going back more than a
century and a quarter to the early days of the telephone. However, interest in
digital speech only gathered momentum so.me 40 years ago when the
telecommunications industry started a global project to digitize the telephone
network. The technology trade-off of the time in this infrastructure-driven
project led to a preference for adding transmission capacity over finding
methods to reduce the bitrate of the speech signal so the use of compression
technology for speech remained largely dormant. When in the late 1980s the
ITU-T standard for visual telephony became available enabling compression
of video by a factor of 3,000, the only audio format in use to accompany this
highly compressed video was standard telephone quality 64 kb/s PCM. It
was only where transmission capacity was a scarce asset, like in the access
portion of radiotelephony, that speech compression became a useful tool.

Analogue sound in electrical form has a history going back only slightly
more than a century ago when a recording industry began to spring up
around the gramophone and other early phonographs. The older among us
fondly remember collections of long playing records (LPs) which later gave
way to cassette tapes as the primary media for analogue consumer audio.
Interest in digital audio received a boost some 20 years ago when the

Consumer Electronics (CE) industry developed a new digital audio recording
medium: a 12 cm platter - the compact disc (CD) - carrying the equivalent
of 70 minutes of uncompressed stereo digital audio. This equivalent of one
long playing (LP) record was all that the CE industry needed at the time and
compression was disregarded as the audio industry digitized.

Setting aside some company and consortium initiatives, it was only with
the MPEG-l project in the late 1980s that compressed digital audio came to
the stage. MPEG-l had the ambitious target of developing a single standard
addressing multiple application domains: the digital version of the old
compact cassette, digital audio broadcasting, audio accompanying digital
video in interactive applications, the audio component of digital television
and professional applications were listed as the most important.

The complexity of the task was augmented by the fact that each of these
applications was targeted to specific industries and sectors of those
industries, each with their own concerns when it comes to converting a
technology into a product. The digital version of the old compact cassette
was the most demanding: quality of compressed audio had to be good, but
the device had to be cheap; in digital audio broadcasting quality was at
premium, but the device had to have an affordable price; audio in interactive
audio-visual applications could rely on an anticipated mass market where a
high level of silicon integration of all decompression functionalities could be
achieved; a similar target existed for audio in digital television; lastly, many
professional applications required the best quality possible at the lowest
possible bitrates.

It could be anticipated that these conflicting requirements would make
the task arduous, and indeed the task turned out to be so. But the Audio
group of MPEG, in addition to being highly competitive, was also inventive.
Without calling them so, the Audio group was the first to define what are
now known as "profiles" under the name of "layers". And quite good
profiles they turned out to be because a Layer I bitstream could be decoded
by a Layer II and a Layer III decoder in addition to its own decoder, and a
Layer II bitstream could be decoded by a Layer III decoder in addition to its
own decoder.

The MPEG-2 Audio project later targeted multichannel audio, but the
story was a complicated one. With MPEG-l Audio providing transparent
quality at 256 kb/s for a stereo signal with Layer II coding and the same
quality at 192 kb/s with Layer III coding, it looked like a natural choice that
MPEG-2 Audio should be backwards compatible, in the sense that an
MPEG-I Audio decoder of a given layer should be able to decode the stereo
component of an MPEG-2 Audio bitstream. But it is a well-known fact that
backwards compatible coding provides substantially lower quality compared
to unconstrained coding. This was the origin of the bifurcation of the

xiv

multichannel audio coding work: Part 3 of MPEG-2 specifies a backward
compatible multichannel audio coding and Part 7 of MPEG-2 (called
Advanced Audio Coding - AAC) a non backward compatible or
unconstrained multichannel audio coding standard.

AAC has been a major achievement. In less than 5 years after approving
MPEG-1 Audio layer III, the MPEG Audio group produced an audio
compression standard that offered transparency of stereo audio down to 128
kb/s.

This book has been written by the very person who led the MPEG-2
AAC development. It covers a gap that existed so far by offering both
precious information on digital audio in general and in-depth information on
the principles and practice of the 3 audio coding standards MPEG-1, MPEG-
2 and MPEG-4. Its reading is a must for all those who want to know more,
for curiosity or professional needs, about audio compression, a technology
that has led mankind to a new relationship with the media.

xv

Preface

The idea of this book came from creating and teaching a class for
graduate students on Audio Coding at Stanford University's Computer
Center for Research in Music and Acoustics (CCRMA). The subject of
audio coding is a "hot topic" with students wanting to better understand the
technology behind the MP3 files they are downloading over the internet,
their audio choices on their DVDs, the digital radio proposals in the news,
and the digital television offered by cable and satellite providers. Now in its
sixth year, the class attracts a wide range of participants including music
students, engineering students, and industrial professionals working in
telecommunications, hardware design, and software product development.

In designing a course for such a diverse group, it is important to develop a
shared vocabulary and understanding of the basic building blocks of a digital
audio coder so that the choices made in any particular coder can be discussed
using a commonly understood language. In the course, we first address the
theory and implementation of each of the basic coder building blocks. We
then show how the building blocks fit together into a full coder and how to
judge the performance of such a coder. Finally, we discuss the features,
choices, and performance of the main state-of-the-art coders in commercial
use today.

The ultimate goal of the class, and now of this book, is to present the
student and the reader with a solid enough understanding of the major issues
in the theory and implementation of perceptual audio coders that they are

able to build their own simple audio codec. MB is always very pleasantly
surprised to hear the results of her student's work. As a final project for the
class, they are able to design and implement perceptual audio coding
schemes equivalent to audio coding schemes that were state-of-the-art only a
few years ago. It is our hope that this book will allow advanced readers to
achieve similar goals.

The book is organized in two parts: The first part consists of Chapters 1
through 10 which present the student with the theory of the major building
blocks needed to understand the workings of a perceptual audio coder. The
second part consists of Chapters II through 15 in which the most widely
used perceptual audio coders are presented and their major features
discussed. Typically, the students start their final project (building their own
perceptual audio coder) at the transition from the first part to the second. In
this manner, they are confronting their own trade-offs in coder design while
hearing how these very same trade-offs are handled in state-of-the-art
commercial coders. The particular chapter contents are as follows:

Chapter 1 serves as an introductory chapter in which the goals and high
level structure of audio coders are discussed.

Chapter 2 discusses how to quantize sampled data so that it can be
represented with a finite number of bits for storage or transmission. Errors
introduced in the quantization process are discussed and compared for
uniform and floating point quantization schemes. The ideas of noiseless
(entropy) coding and Huffman coding are introduced as means for further
reducing the bit requirement for quantized data.

Chapter 3 addresses sampling in the time domain and how to later recover
the original continuous time input signal. The basics of representing audio
signals in the frequency domain via Fourier Transforms are also introduced.

Chapters 4 and 5 present the main filter banks used for implementing the
time to frequency mapping of audio signals. Quadrature Mirror filters and
their generalizations, Discrete Fourier Transforms, and transforms based on
Time Domain Aliasing Cancellation are all analyzed. In addition, methods
for designing time variant filter banks are illustrated.

Chapters 6 addresses the fundamentals of psychoacoustics and human
hearing. Chapter 7 then discusses applications of frequency and temporal
masking effects to develop masking curves for use in audio coding.

Chapter 8 presents methods for allocating bits to differing frequency
components so as to maximize audio quality at a given bitrate. This chapter

xviii

shows how the masking curves discussed in the previous chapter can be
exploited to reduce audio coding bitrate.

Chapter 9 discusses how the pieces described in the previous chapters fit
together to create a perceptual audio coding system. The standardization
process for audio coders is also discussed.

Chapter lOis devoted to the understanding of methods for evaluating the
quality of audio coders.

Chapter 11 gives an overview MPEG-l Audio. The different audio layers
are discussed as well implementation and performance issues. MPEG Layer
III is the coding scheme used to create the well-known MP3 files.

Chapters 12 and 13 present the second phase of MPEG Audio, MPEG-2,
extending the MPEG-l functionality to multichannel coding, to lower
sampling frequencies, and to higher quality audio. MPEG-2 LSF, MPEG-2
BC, and MPEG-2 AAC are described. The basics of multichannel and
binaural coding are also introduced in these chapters.

Chapter 14 is devoted to Dolby AC-3, the audio coder used in digital
television standards and in DVDs.

Chapter 15 introduces the latest MPEG family of audio coding standards,
MPEG-4, which allows for audio coding at very low bit rates and other
advanced functionalities. MPEG-4 looks to be the coding candidate of
choice for deployment in emerging wireless and wired network applications.

xix

Acknowledgements

Audio coding is an area full of lore where you mostly learn via shared
exploration with colleagues and the generous sharing of experience by
previous explorers. This book is our attempt to pass on what we've learned
to future trekkers. Some of the individuals we have been lucky enough to
learn from and with during our personal explorations include: Louis Fielder
and Grant Davidson from Dolby Laboratories; Karlheinz Brandenburg,
Martin Dietz, and Jtirgen Herre from the Fraunhofer Gesellschaft; Jim
Johnston and Schulyer Quackenbush from AT&T; Leonardo Chariglione the
esteemed MPEG Convener; Gerhard Stoll from IRT; and David Mears from
the BBC. To all of the above (and the many others we've had the privilege
to work with), we offer heartfelt thanks for their generosity of spirit and
shared good times.

The course this book is based upon came into being due to the
encouragement of John Chowning, Max Mathews, Chris Chafe, and Julius
Smith at Stanford University. It was greatly improved by the nurturing
efforts of its iiber-TA Craig Sapp (whose contributions permeate the course,
especially the problem sets) and the feedback and good sportsmanship of its
many students over the last 6 years. Thanks to Louis Fielder, Dan Slusser of
DTS, and Baryn Futa of MPEG LA ® for allowing MB to fit teaching into a
full-time work schedule. Thanks also to Karlheinz Brandenburg and Louis
Fielder for their guest lectures on MP3 and the Dolby coders, respectively,

and to Louis for hosting the class at the Dolby facilities to carry out listening
tests.

Not being able to find an appropriate textbook, the course made due for
several years with extensive lecture notes. That would probably still be the
case were it not for the intervention and encouragement of Joan L. Mitchell,
IBM Fellow. Joan made the writing of a book seem possible and shared her
hard-won insight into the process. You would not be holding this book in
your hands were it not for Joan's kind but forceful encouragement.

Thanks to Joan Mitchell, Bernd Edler from Universitat Hannover,
Leonardo Chariglione, Louis Fielder, and Karlheinz Brandenburg for their
careful review of early drafts of this book - their comments and feedback
helped the clarity of presentation immensely. Thanks to Sarah Kane of the
Brattle Group for her tireless yet cheerful administrative support during the
writing process. Thanks also to Baryn Futa and Jamie Read from the Brattle
Group for their support in ensuring that work demands didn't prevent finding
the time for writing.

In spite of the generous help and support of many individuals, there are
surely still some murky passages and possibly errors in the text. For any
such blemishes, the authors accept full responsibility. We do sincerely hope,
however, that you find enough things of novelty and beauty in the text that
any such findings seem minor in comparison.

xxii

To Alex

PART I: AUDIO CODING METHODS

Chapter 1

Introduction

1. REPRESENTATION OF AUDIO SIGNALS

We hear a sound and we want to store it for later replay - what
information do we need to capture? Physicists tell us that sound is a
pressure wave (i.e., vibration) in the air so we can measure this pressure
wave with a mechanical device and then mechanically reproduce the
pressure wave later. This is the principle used by Thomas Edison and other
manufacturers of early gramophones (precursors to phonographs) in which a
large cone concentrated the vibrations to a point where a needle scratched its
vibrating path onto a spinning cylinder or disk. Later, a hand-cranked or
other form of motor would turn the spinning cylinder or disk and the
needle's forced movement along its prior path would cause the cone to
recreate the pressure wave. The advent of electronic technology has allowed
us to convert the pressure wave into a voltage reading that can be transferred
onto a variety of storage media, for example as a changing degree of
magnetization along a cassette tape. The basic idea in analogue technology,
however, is still the same - to represent sound by the amplitude of its
vibration over time. This tells us that one basic representation of sound is as
a changing function of time t, which we denote x(t) as shown in Figure 1.

M. Bosi et al., Introduction to Digital Audio Coding and Standards
© Kluwer Academic Publishers 2003

4 Introduction to Digital Audio Coding and Standards

x(t)

t

Figure 1. Time-domain representation of a sound tone

When we listen to sound, however, we hear clear distinctions between
tonal content that tells us something about the sound. For example, some
sounds seem high pitched like the squeaking of a sticky door while others
are low pitched like the boom of a kettledrum. Tonal content is naturally
described in terms of the frequencies contained in the sound. Since we
perceive sounds in terms of their tonal content, in many instances it is more
appropriate to describe audio signals as some function X(f) that shows how
much of the frequency f is present in the signal (see Figure 2).

t A/2 N2

x(t) X(f)

Figure 2. Time-domain versus frequency representation of a sound tone of amplitude A at
frequency fo

Audio coding, the main subject of this book, allows for the representation
of sound in a very compact way without losing its perceptual characteristics.

2. WHAT IS A DIGITAL AUDIO CODER?

What exactly is a digital audio coder? Any sound in nature has analogue
characteristics. Since we live in a computer era, we would like to have this
information in a digital form so that we can record, process, transmit and
play it digitally. A typical digital audio coder, or codec for encoder-decoder,
is a device that takes analogue audio signals as input and transforms them
temporarily into a convenient digital representation. This transformation
process takes place in the encoder stage of the coder. Once we have the

Chapter 1: Introduction 5

signal represented as a series of numbers then we can store it, process it, or
transmit it. At some point, we would like to be able to listen again to the
sound. To do so we need to transform the signal from its digital
representation back to an analogue signal so that the human ear can detect
and enjoy it. This inverse transformation from digital back to analogue takes
place in the decoder stage of the coder.

~~illl))) [10010101] 'Ill)))~

Figure 3. Digital audio coding chain

In general, an audio coder or codec is an apparatus which has as input an
audio signal and as output a perceptually identical (or very close) delayed
copy of the input signal. In Figure 3, the typical digital audio coding chain
is shown. It is very important to emphasize that the very first stage of the
audio coding chain is the source of the sound and the very last stage of the
audio coding chain is the human ear. These two parts of the coding chain
are important because they can play an important role in the design of the
audio coder. If we can somehow develop a good understanding of the sound
source then we can optimize the way we represent the audio signal, i.e. we
can use a more compact description of the sound. Taking into consideration
that the last stage is the human ear and applying models of the ear and its
processing of acoustical stimuli, we can also reduce the amount of
information contained in our representation of the audio signal that is
irrelevant to our perception.

3. AUDIO CODING GOALS

Once we decide that we would like to obtain a digital representation of
the audio signal, a number of trade-offs come into play in order to carry out
this transformation. In general, we would like to maximize the perceived
quality but we also would like to minimize the amount of information
needed to represent the signal. The challenge in designing an audio coding

6 Introduction to Digital Audio Coding and Standards

system is to balance these two conflicting goals while maintaining an
acceptably low cost system.

Some of the most important factors we need to take into consideration
when we are designing or assessing an audio coder are:

• Fidelity
• Data rate
• Complexity
• Delay

The balance between these factors will be determined by the application the
technology is meant to support.

Fidelity addresses how perceptually equivalent the output of a codec is to
the original input signal. The overall system quality is the most important
attribute of any coding system. Depending on the application, however, we
may have differing requirements for acceptable quality. So-called
"telephony quality" is considered acceptable for applications that require
intelligibility of the spoken words but not adequate for applications
involving electronic distribution of music in which we would like to have
"CD-like" quality audio signals, for example. Unfortunately, higher fidelity
usually requires higher data rates, greater system complexity, and higher
system delays.

The data rate of the audio coding system is linked to the throughput, the
storage, and the bandwidth capacity of the overall system. Typically, we
know the restrictions of the medium we are using for storage, transmission
and playback of the audio signals under consideration. These restrictions,
combined with the target quality of our application, are the parameters that
determine our system data rate. Higher data rates typically imply higher
costs in transmission and storage of the digital audio signals.

The complexity of carrying out the encode/decode process in a system
translates into hardware and software costs in the encoder and decoder.
Again, the target application will give guidance as to what trade-offs are
acceptable here. For example, in a point-to-multipoint broadcast application,
low cost and widely disseminated decoders are usually desired. In this case,
we usually try to keep as much of the required processing complexity in the
encoder to decrease the cost of the decoders. Moreover, by appropriately
designing the encoder/decoder system, one can also maintain the ability to
make some improvements to the coding process without having to alter (or
replace) the installed base of decoders in the marketplace. In contrast, when
we need to be able to encode/decode audio signals in real-time, like for
example in desktop video-conferencing over the internet, then keeping the
complexity low in both encoder and decoder is important. It should be noted
that, with the current trend of decreasing memory costs and increasing
computer horsepower, what was prohibitive in terms of complexity a few

Chapter 1: Introduction 7

years ago, is currently considered acceptable. Some may even argue that
complexity will soon become a non-issue. Implementation cost, however, is
still a very important factor in the design of a coder.

Other important factors in the design of audio coders include coding
delay (for example in telephony and teleconferencing), scalability (for
example in internet broadcasts to users with very different connection
speeds), and error robustness (for example in wireless transmission).

In general, we will assume that the design goal of any audio coding
system is to provide high fidelity with low data rates, while maintaining the
complexity of the system as low as possible.

4. THE SIMPLEST CODER - PCM

The simplest, best-understood, and most established audio coder is based
on pulse code modulation, peM. Block diagrams of the peM encoder and
decoder are shown in Figure 4. In the peM encoder, the analogue audio
signal is sampled at regular time intervals and then the signal amplitude of
each sample is quantized into one of a limited set of digital codes, each
representing a range of signal amplitude. While during the sampling process
we don't lose any information if we sample often enough, the quantization
process is inherently a lossy process and some of the information contained
in the original signal is irrevocably lost.

In the decoder stage of the peM scheme, the quantized codes are
decoded and then the discrete time samples are interpolated to create an
output analogue signal. The higher the number of discrete values employed
in the quantization process, the more accurately the output signal will
approximate the input signal.

PCM Encoder:

C\ C\
CJ

PCM Decoder:

[001011100101]

iii II I JIll
11\\1 10010111001011

Figure 4. The PCM coder

8 Introduction to Digital Audio Coding and Standards

5. THE COMPACT DISK

One widely employed application of the audio PCM scheme is the
compact disk (CD) format. Introduced in the mid-eighties by Sony and
Philips, the CD was the result of many years of research in storage, laser
reader technology, and error correction. Its popularity exponentially
increased over the years to the point where we now find millions of units in
homes entertainment systems, cars, "boom boxes", and computer systems.
The CD today has become a consumer standard for audio quality in the
marketplace against which other audio coding systems are often compared.

In the CD format the audio signal is digitally represented as a stereo
signal (i.e. two channel audio signal) sampled at time intervals of 0.023 ms
or equivalently with a sampling frequency, Fs, of

Fseo = 44.1 kHz.

where the time interval between adjacent time samples equals the reciprocal
of the sampling frequency. This sampling frequency is adequate to preserve
frequency content up to 22.05 kHz. From the psychoacoustics point of view,
the CD sampling frequency is well selected since the average upper
frequency limit for human hearing is around 20 kHz [Zwicker and Fastl 90].
It should be noted that the CD preserves a much wider range of frequency
content than previously established analogue systems. For example, LPs
typically only allow for frequency content below 10 kHz.

Some of you may wonder why such an "odd" number is employed rather
than, for example, using a sampling rate of 40 kHz or 48 kHz which seem
more natural choices. In fact, the 44.1 kHz sample rate is merely a historical
artifact arising from the fact that VCR technology was used to store audio
data in the early days of CD development [Watkinson 89].

The audio sample precision depends on the number of bits, R, employed
to represent a sample. In the CD format R equals:

Reo = 16 bits per sample.

This precision allows for up to i 6 = 65536 discrete levels to represent the
audio sample amplitudes and it can cover a nominal dynamic range of over
90 dB, which again widely exceeds the dynamic range of LPs which is
typically less than 50 dB.

In the case of a digital system like the CD, one measure of its quality is
given by the signal to noise ratio (SNR) measured in decibel, dB. Typical
values for SNRco approach 90 dB. While in general this signal to noise ratio
is quite good, psychoacoustics studies show that in the mid-range

Chapter 1: Introduction 9

frequencies (between 2 and 5 kHz) it is not sufficient for all listeners. In this
frequency range the human ear is very sensitive and more bits per sample are
needed to transparently reproduce sounds. Ideally, 18-20 bits per sample are
needed for describing audio samples in this frequency content.

The data rate or bitrate of a system, I, in bits per second, (or kb/s kilo,
thousands, bits per second or Mb/s Mega, Millions, bits per second) per
channel is given by the sampling frequency times the audio sample
precision. In the case of the CD we have:

ICD = FseD * Reo = 705.6 kb/s per audio channel

or

IcDTotal = 706.5 * 2 = 1.4112 Mb/s.

The maximum length of music that can be stored on the CD is about 75
minutes. The total amount of storage devoted to audio on the CD is less than
800 MBytes. The maximum CD duration again comes from the historical
development of the CD and the fact that some of the storage area in the CD
is devoted to error correction codes and control data [Immink 98].

6. POTENTIAL CODING ERRORS

Several types of errors can be introduced into the signal during any
coding scheme, even one as simple as PCM. Errors can be introduced from
inadequate sampling, poorly designed quantization, and from corruption
during transmission or storage. The following are the main types of
potential errors that can occur in an audio coder:

Sampling Errors - What happens if we sample the audio signal at time
intervals too widely spaced? In doing so we irrevocably shift some of the
signal's frequency content to where it doesn't belong. The signal
frequencies above half the sampling frequency are mirrored to lower
frequencies giving rise to a noticeable distortion called "aliasing". Aliasing
can be avoided by either s~lecting an adequate sampling frequency or by
passing the signal through a low-pass filter that eliminates the frequency
content that would be aliased. (Although low-pass filtering can cause
audible changes in a signal, the resulting changes are far less annoying than
aliasing errors are.)

Quantization Errors - We encounter two types of quantization errors:
overload errors and round-off errors. Overload errors occur when the input
signal range exceeds the maximum value of the quantizer. This type of error

10 Introduction to Digital Audio Coding and Standards

is very annoying and needs to be carefully avoided. In contrast, round-off
error is always present in the quantization process and the goal in audio
coding is to reduce it to inaudible levels. A good portion of this book is
devoted to understanding how to design coders that minimize the audible
effects of round-off error.

Storage and transmission errors - Storage media and transmission
channels can introduce errors in stored or transmitted signals. Additional
bits can be included in a stored/transmitted signal to detect and even correct
limited numbers of errors. Although error detection and correction is a very
important topic in developing data systems to support audio coding, we
consider it beyond the scope of this book. For the sake of simplicity, we will
in general assume ideal transmission channels and storage media for the rest
of this book.

7. A MORE COMPLEX CODER

We noted while examining the CD format that, even at its high data rates,
potentially audible round-off errors may be introduced in the mid-range
frequencies of sound. If the application goal is to produce a perceptually
transparent sound while operating at CD data rates or lower, "smarter" audio
coding schemes are needed.

As an example of a smarter approach, consider an encoder that employs a
transformation of the signal representation from the time domain (like in
PCM) to the frequency domain so that it can dynamically allocate bits
through the frequency spectrum based on the frequency content of the signal.
In this manner, the coder can try to take bits from frequencies where our
ear's dynamic range is lower and move them to the mid-range frequencies
where the ear is very sensitive. In the decoder, the inverse bit allocation and
transformation from the frequency to the time domain is applied. In Figure
5 a block diagram of such a transform coder is shown.

Chapter I: Introduction

»)))])]1, [0101]
:";,

[010101001]

[010101001]

[0101]

RAAAAAAfiAAA
VII iJ 111)\(11 V V\J\i

Figure 5. An example of a more complex coder than PCM

11

One may ask: "Do we really need such complex coders?" If we examine
the CD representation of the audio signals we soon realize that a lot of
repetitive information is stored when representing the signal. In other words,
information that is not necessarily needed to uniquely reconstruct the signal
is accumulated. For example, the PCM representation of a sine wave is a
long series of time sampled values. If we were to instead describe the sine
wave in the frequency domain, we would need only to store its frequency,
amplitude and phase to completely characterize the signal (see also Figure
2). By doing so we greatly reduce the amount of data needed to represent
the signal while not losing any information.

In general, although pure deterministic waves such as sine waves are
improbable for sound, the statistical nature of audio signals is quasi-periodic.
This important characteristic of sound implies that more often than not the
PCM representation of sound contains a significant amount of redundant
information. This redundancy can be reduced by simply applying a
frequency transformation to the signal and appropriately allocating bits to
the populated region of the spectrum. Other methods for reducing
redundancies in the signal can also be used such as prediction methods and
entropy coding (e.g., Huffman coding) that exploit symbol likelihood
statistics.

The PCM representation of a signal often also contains a significant
amount of irrelevant information, i.e. signal content which is inaudible. For
example, information about sounds in the low frequency range which are too
soft to be heard or normally audible sounds that are masked by louder
sounds. This information does not need to be included in the coded signal.
Perceptual audio coders reduce signal bit rate by reducing both redundancy
and irrelevancy in the audio signal representation. In the next chapters of
this book we will examine the basic principles and implementation choices
used by state-of-the-art audio coders to carry out this bit rate reduction.

12 Introduction to Digital Audio Coding and Standards

8. REFERENCES

[Immink 98]: K. Immink, "The Compact Disc Story, " JAES vol. 46, number 5, pp.
458-462, May 1998.

[Watkinson 89]: J. Watkinson, The Art of Digital Audio, Focal Press, London, 1989.

[Zwicker and Fast! 90]: E. Zwicker and H. Fast!, Psychoacoustics: Facts and
Models, Springer-Verlag, Berlin Heidelberg 1990.

9. EXERCISES

a) Data rates:
Compute the data rates for the following audio signals:
1. A mono signal (i.e. single channel signal) sampled at 8 kHz using 8

bits per sample
2. A stereo signal sampled at 44.1 kHz using 16 bits per sample
3. Five channel (L, C, R, LS, RS) audio sampled at 44.1 kHz using 16

bits per sample
4. Five channel (L, C, R, LS, RS) audio sampled at 96 kHz using 24 bits

per sample

b) The need for compression:
There has been recent discussion in the audio market about the need to
move to higher sample representation precision and greater sample rates.
In particular, a format using 24 bits per sample and a sample rate of 96
kHz has been discussed. Let's look at some implications for using such a
format for passing 5-channel audio.
1. How much storage is needed for 2 hours of this type of audio signal?
2. If the CD format throughput for audio is equal to 1.411 Mb/s (Mega

or Millions bits per second), what compression ratio is needed to pass
this type of signal through a CD system?

3. If the DVD Video format throughput for audio is equal to 6.144 Mb/s,
what compression ratio is needed to pass this type of signal through a
DVD Video system?

Chapter 2

Quantization

1. INTRODUCTION

As we saw in the previous chapter, sound can be represented as a
function of time, where both the sound amplitude and the time values are
continuous in nature. Unfortunately, before we can represent an audio signal
in digital format we need to convert continuous signal amplitude values into
a discrete representation that is storable by a computer - an action which
does cause loss of information. The reason for this conversion is that
computers store numbers using finite numbers of bits so amplitude values
can be stored with only finite precision. In this chapter, we address the
quantization of continuous signal amplitudes into discrete amplitudes and
determine how much distortion is caused by the process. Typically,
quantization noise is the major cause of distortion in the coding process of
audio signals. In later chapters, we address the perceptual impacts of this
signal distortion and discuss the design trade-off between signal distortion
and coder data rate. In this chapter, however, we focus on the basics of
quantization.

In the following sections, we first review the binary representation of
numbers. Computers store information in terms of binary digits ("bits") so
an understanding of binary numbers is essential background to the
quantization process. We also discuss some ways to manipulate the
individual bits in a binary number. Next, we discuss different approaches to
quantizing continuous signal amplitudes onto discrete values storable in a
fixed number of bits. We look in detail at uniform and floating point
quantization methods. Then we quantify the level of distortion introduced
into the audio signal by quantizing signals to different numbers of bits for

M. Bosi et al., Introduction to Digital Audio Coding and Standards
© Kluwer Academic Publishers 2003

14 Introduction to Digital Audio Coding and Standards

the different quantization approaches. Finally, we discuss how entropy
coding methods can be used to further reduce the bits needed to store the
quantized signal amplitudes.

2. BINARY NUMBERS

We normally work with numbers in what is called "decimal" or "base
10" notation. In this notation, we write out numbers using 10 symbols

(0,1, ... ,9)

and we use the symbols to describe how we can group the number in groups
of up to 9 of each possible power of ten. In decimal notation the right-most
digit tells us how many ones (10°) there are in the number, the next digit to
the left tells us how many tens (101), the next one how many hundreds (102),

etc. For example, when we write out the number 1776 we are describing a
number that is equal to

Computers and other digital technology physically store numbers using
binary notation rather than decimal notation. This reflects the underlying
physical process of storing numbers by the physical presence or absence of a
"mark" (e.g., voltage, magnetization, reflection of laser light) at a specific
location. Since the underlying physical process deals with presence or
absence, we really have only two states to work with at a given storage
point.

"Binary" or "base 2" notation is defined analogously to decimal notation
but now we only work with 2 symbols (0,1) and we describe the number
based on grouping it into groups of up to 1 of each possible power of 2. In
binary notation, the rightmost column is the number of ones (2°) in the
number, the next column to the left is the number of twos (i), the next to the
left the number of fours (22), etc. For example, the binary number

[01100100]

represents

Chapter 2: Quantization 15

Note that to minimize the confusion between which numbers are written in
binary and which are in decimal, we try to always write binary numbers in
square brackets. Therefore, the number 101 will have the normal decimal
interpretation while the number [101] will be the binary number equal to five
in decimal notation.

If we had to write down a decimal number and could only store two
digits then we are limited to represent numbers only from 0 to 99. If we had
three digits we could go all the way up to 999, etc. In other words, the
number of digits we allow ourselves will determine how big a number we
can represent and store. Similarly, the number of binary digits ("bits") limits
how high we can count in binary notation. For example, Table 1 shows all
of the binary numbers that can be stored in only four bits counting up from
[0000], 0, all the way to [l111], 15. Notice that each number is one higher
than the one before it and, when we get to two in any column we need to
carry it to the next column to the left just like we carry tens to the next
column in normal decimal addition. In general, we can store numbers from
o to 2R_l when we have R bits available. For example, with four bits we see
in the table that we can store numbers from 0 to 24_1 = 16-1 = 15. If binary
numbers are new to you, we recommend that you spend a little time studying
this table before reading further in this section.

Table 1. Decimal numbers from 0 to 15 represented in 4-bit binary notation
Decimal Binary (four bits)

o [0000)

1 (0001)

2 [0010)

3 [0011]

4 [0100)

5 [0101)

6 [0110)

7 (0111)

8 [1000)

9 (1001)

10 (1010)

11 [1011)

12 [1100]

13 (1101)

14 [1110)
15 [1111)

16 Introduction to Digital Audio Coding and Standards

2.1 Signed Binary Numbers

We sometimes want to write both positive and negative numbers in
binary notation and so need to augment our definition to do this. Recall that
in decimal notation we just add an additional symbol, the minus sign, to
show what is negative. The whole point of binary notation is to get as far as
we can keeping ourselves limited to just the two symbols 0, 1. There are two
commonly used ways of expressing negative numbers in binary notation:

I) "folded binary" notation or "sign plus magnitude" notation
2) "two's complement" notation.

In either case, we end up using one bit's worth of information keeping track
of the sign and so can only store numbers with absolute values up to roughly
half as big as we can store when only positive numbers are considered.

In folded binary notation, we use the highest order bit (i.e., left-most bit)
to keep track of the sign. You can consider this bit to be equivalent to a
minus sign in decimal, in that the number is negative when it is set to 1 and
positive when it is set to O. For example, with four bits we would use the
first bit as a sign bit and be able to store absolute values from 0 to 7 using
the remaining three bits. In this notation, [1011] would now signify -3
rather than 11.

Two's complement notation stores the positive numbers the same as
folded binary but, rather than being symmetric around zero (other than the
sign bit), it starts counting the lowest negative number after the highest
positive one, ending at -1 with all bits set to 1. For example, with four bits,
we would interpret binary numbers [0000] up to [0111] as 0 to 7 as usual,
but now [1000] would be -8 instead of the usual +8 and we would count up
to [1111] being -1. In other words, we would be able to write out numbers
from -8 to +7 using 4-bit two's complement notation. In contrast, folded
binary only allows us to write out numbers from -7 to +7 and leaves us with
an extra possible number of -0 being unused.

Computers typically work with two's complement notation in their
internal systems but folded binary is easiest for humans to keep straight.
Since we are more concerned with writing our own code to translate
numbers to and from bits, we adopt the easier to understand notation and use
folded binary notation whenever we need to represent negative numbers in
this book.

2.2 Arithmetic Operations and Bit Manipulations

Binary numbers can be used to carry out normal arithmetic operations
just as we do with normal decimal arithmetic, we just have to remember to
carry twos rather than tens. As a few examples:

Chapter 2: Quantization 17

3 + 4 = [II] + [100] = [Ill] = 7

5 + I = [101] + [l] = [l1O] = 6

where in the last expression we carried the 2 to the next column,

In addition, most computer programming languages provide support for
some special binary operations that work bit by bit in binary numbers.
These operators are the NOT, AND, OR, and XOR operators. The NOT
operator flips each bit in a binary number so that all Is become Os and vice
versa. For example:

NOT[lIOO] = [0011]

The AND operator takes two binary numbers and returns a new number
which has its bits set to 1 if both numbers had a 1 in that bit and sets them to
o otherwise. For example:

[1100] AND [1010] = [1000]

Notice that only the left-most or "highest order" bit position had a one in
both input numbers.

The OR operator also has two binary numbers as input but it returns a
one in any bit where either number had a one. For example:

[1100] OR [1010] = [1110]

Notice that only the right-most or "lowest order" bit didn't have a one in
either number.

Finally, the XOR (exclusive OR) function differs from the OR function
in that it only returns 1 when one of the bits is one but not when both are
one. For example:

[1100] XOR [1010] = [0110]

Notice that the highest order bit is now zero.
Having defined binary numbers, we would like to be able to manipulate

them. The basic idea is to define storage locations as variables in a computer
program, for example an array of integers or other data types, and to read
and write coder bits to and from these variables. Then we can use standard

18 Introduction to Digital Audio Coding and Standards

programming (binary) read/write routines to transfer these variables, their
values being equal to our stored bits, to and from data files or other output
media. The binary digits themselves represent various pieces of data we
need to store or transmit in our audio coder.

Suppose we have a chunk of bits that we want to read from or write to.
For example, we could be writing a computer program and using 2-byte
integer variables to store 16 bits in. Remember that a byte is equal to 8 bits
so that a 2-byte integer variable gives us 16 bits with which to work. To read
and write bits from this variable we need to know how to test and set
individual bits. Our knowledge of binary notation provides us with the tools
to do this. We can test and set bits using bit masks and the AND and XOR
operations. Let's talk about some ways to do this.

A bit mask is a series of bits where specific bits are set to determined
values. We know from binary notation that the number 2° is represented in
binary with the nth bit to the left of the right-most bit set equal to 1 and all
others zero. For example:

23 = [1000], 22 = [0100], 2' = [0010], and 2° = [0001]

Therefore we can easily create variables that have single bits set to one by
using the programming language to set integer variables equal to powers of
two. We call such a variable a "bit mask" and we will use it for setting and
testing bits.

The AND operator lets us use a bit mask to read off single bits in a
number. Remember that the AND operator only returns a one when both
bits are equal to one and zero otherwise. If we AND together a bit mask
with a number, the only possible bits that could be one in the result are the
ones the bit mask has set to one. If the number has ones in those positions,
the result will be exactly equal to the bit mask; if the number has zeros in
those positions then the result will be zero. For example:

[0100] AND [abed]

equals

[0100] for b = 1

or

[0000] for b =0

Chapter 2: Quantization 19

The XOR operator lets us use a bit mask to write a sequence of bits into a
bit storage location. When we XOR a bit mask with a number, the bit values
that are masked are flipped from one to zero and vice-versa. For example:

[0100] XOR [abed]

equals

[aOed] for b = I

or

[alcd] for b = 0

This means that we can take a number with zeros in a set of bit locations and
use the XOR to flip specific bits to one.

If we aren't sure that the bit storage location was already set to all zeros,
we can erase the values in that location before writing in new values. We
can do this by first creating a number that has all ones in its bit location, for
example 2R -1 for unsigned variables and -1 for signed ones - remember
computers use two's complement arithmetic. We then flip all the bits in the
region we want to erase to zero by using XOR and bit masks. Finally, we
AND this number with our bit storage location to erase the values. For
example, to clear the right-most 2 bits in the 4-bit location [abcd], we create
the number [1111], we flip the last 2 bits to get [1100], and then we AND
this with the bit storage location to get [abcd] AND [1100] = [abOO]. Now
we are ready to write bits into that location by using XOR to flip the bits we
want equal to one.

Another set of operations that we sometimes find useful are shift
operations. Shift operations move all bit values to the right or to the left a
given number of columns. Some computer programs provide support for the
bit-shift operators, denoted « n here for a left shift by n and denoted » n
for a right shift by n, but you can use integer mUltiplication and division to
create the same effect. Basically, a multiplication by two is equivalent to a
left bit-shift with n = 1; multiplying by 2" is equivalent to a left shift by n,
etc. Remember that when bits are left shifted any new position to the right is
filled in with zeros. For example:

3 * 2 = [0011] « I = [0110] = 6

and

20 Introduction to Digital Audio Coding and Standards

3 * 22= [0011]« 2 = [1100] =12

Similarly, a division by two is equivalent to a right bit shift by one; dividing
by 2" is equivalent to a right shift by n, etc. Remember that when bits are
right shifted any new position to the left is filled in with zeros. For example:

12 + 2 = [1100] » 1= [0110] = 6 and 12 + 22 = [1100] » 2 = [0011] =3

If we have a set of eight 4-bit numbers that we want to write into a 32-bit
storage location, we can choose to write all eight into their correct locations.
An alternative is to write the first (i.e., left-most) one into the first four bits
and left-shift the storage location by four, write in the next one and left shift
by four, etc. Likewise, we could read off the first four bits, right shift by
four, etc. to extract the stored 4-bit numbers.

Computers store data with finite word lengths that also allow us to use
shift operators to clear bits off the ends of data. Character variables are
typically eight bits, short integers are usually 16 bits, and long integers are
usually 32 bits in size. We clear off n left bits by shifting left by n and then
shifting right by n. The way zeros are filled in on shifts means that we don't
get back to our original number. For example:

([11111111]«2)»2=[11111100]>>2=[00111111]

Note that this is very different from normal arithmetic where multiplying and
then dividing by four would get us back to the starting number. To clear off
n right bits we shift right by n and then shift left by n. For example:

([1111 1111] »2)« 2 = [0011 1111] «2 = [1111 1100]

Having learned how to work with binary numbers and bits, we now turn
to the subject of translating audio signals into series of binary numbers,
namely to quantization.

3. QUANTIZATION

Quantization is the mapping of continuous amplitude values into codes
that can be represented with a finite number of bits. In this section, we
discuss the basics of quantization technology. In particular, we focus on
instantaneous or scalar quantization, where the mapping of an amplitude
value is not largely influenced by previous or following amplitude values.
This is not the case, for example, in "vector quantization" systems. In vector

Chapter 2: Quantization 21

quantization a group of consecutive amplitude values are quantized into a
single code. As we shall see later in this chapter when we discuss Huffman
coding, this can give coding gain when there are strong temporal correlations
between consecutive amplitude values. For example, in speech coding
certain phonemes follow other phonemes with high probability. If the reader
is interested in this subject, good references are [Gray 84, Gersho and Gray
92]. While vector quantization is in general a highly efficient technique at
very low data rates, i.e. much less than one bit per audio sample, it makes
perceptual control of distortion difficult. In audio coding, vector
quantization is employed for intermediate quality, very low data rates (see
for example MPEG-4 Audio [ISo/lEe 14496-3]).

As we saw in the last section, R bits allow us to represent a maximum of
2R different codes per sample, where each of these codes can represent a
different signal amplitude. Dequantization is the mapping of the discrete R
bit codes onto a signal amplitude. The mapping from continuous input
signal amplitudes onto quantized-dequantized output signal amplitudes
depends on the characteristics of the quantizer used in the process.

Signal amplitudes can have both positive and negative values and so we
have to define codes to describe both positive and negative amplitudes. We
typically choose quantizers that are symmetric in that there are an equal
number of levels (codes) for positive and negative numbers. In doing so, we
can choose between using quantizers that are "midrise" (i.e., do not have a
zero output level) or "midtread" (i.e., do pass a zero output). Figure 1
illustrates the difference between these two choices. Notice that midrise has
no zero level and quantizes the input signal into an even number of output
steps. In contrast, midtread quantizers are able to pass a zero output and, due
to the symmetry between how positive and negative signals are quantized,
necessarily have an odd number of output steps. With R number of bits the
midtread quantizer allows for 2R -1 different codes versus the 2R codes
allowed by the midrise quantizer. In spite of the smaller number of codes
allowed, in general, given the distribution of audio signal amplitudes,
midtread quantizers yield better results.

ootl~

7fin
Midtread

""tv
~
Midrise

Figure 1. Midtread versus midrise quantization

22 Introduction to Digital Audio Coding and Standards

3.1 Uniform Quantization

We first examine the simplest type of quantizer: a uniform quantizer.
Uniform quantization implies that equally sized ranges of input amplitude
are mapped onto each code. In such a quantizer, the input ranges are
numbered in binary notation and the code for an input signal is just the
binary number of the range that the input falls into. To define the input
ranges and hence the quantizer itself we need three pieces of information:

1) whether the quantizer is midtread or midrise,
2) the maximum non-overload input value Xmax (i .. e. a decision as to

what range of input signals wilI be handled gracefulIy by the
quantizer), and

3) the size of the input range per code ~ (which is equivalent
information to the number of input ranges Nonce Xmax is selected
since N = 2 * xmaxl~).

The third data item defines the number of bits needed to describe the code
since, as we learned in the last section, R bits alIow us to represent 2R
different codes.

For a midrise quantizer, R bits allow us to set the input range equal to:

Midtread quantizers, in contrast, require an {)dd number of steps so R bits are
used to describe only 2R -1 codes, and so a midtread uniform quantizer with
R bits has the slightly larger input range size of:

Since the input ranges collectively only span the overalI input range from
-Xmax to Xmax, the question arises as what to do if the signal amplitude is
outside of this range. This event is handled by mapping all input signals
with amplitude higher than the highest range into the highest range, and
mapping alI input signals with amplitude lower (i.e., more negative) than the
lowest range into that range. The term for this event is "clipping" or
"overload", and it typically causes very audible artifacts. In this book we
adopt the convention of defining units of amplitude such that Xmax = 1 for our
quantizers. In other words, we describe quantizers in terms of how they
assign codes for input amplitudes between -1 and 1.

Chapter 2: Quantization 23

3.2 Midrise Quantizers

Figure 2 illustrates a two-bit uniform midrise quantizer. The left hand
side of the figure represents the range of input amplitudes from -1 to 1.
Since it is a 2-bit midrise quantizer, we can split the input range into 4 bins.
Because we are discussing a uniform quantizer, these 4 bins are equally
sized and divide the input range as shown in Figure 2. The bins are
numbered using "folded binary" notation (recall from last section that this
uses the first bit as a sign bit) and the middle of the figure shows codes for
each bin: they are numbered consecutively from the bottom as [11], [10],
[00], [01], literally, -1, -0, +0, +1.

Having quantized the input signal into 2-bit codes, we have to address
how to convert the codes back into output signal amplitudes. We would like
to do this in a manner that introduces the least possible error on average.
Take, for example, bin [00] that spans input amplitudes from 0.0 up to 0.5.
Assuming that the amplitude values are uniformly distributed within the
intervals, the choice of output level that has the lowest expected error power
would be to pick the exact center of the bin, namely 0.25. Analogously, the
best output level for the other bins will be their centers, and so the quantizer
maps codes [tl], [10], [00], [01] onto output values of -0.75, -0.25, 0.25,
0.75, respectively.

1.0 -- La
01 3/4

00 .. 1/4

0.0 --

10 ·114

11 .. ·3/4

-1.0 _'- -1.0

Figure 2. A two-bit unifonn midrise quantizer

Uniform midrise quantizers with more than two bits can be described in
similar terms. Figure 3 describes a general procedure for mapping input
signals onto R-bit uniform midrise quantizer codes and also for dequantizing

24 Introduction to Digital Audio Coding and Standards

these codes back onto signal amplitudes. To better understand this process,
let's apply it to the two-bit quantizer we just described.

Consider an input amplitude equal to 0.6 which we can see from Figure 2
should be quantized with code [01] and dequantized onto output amplitude
0.75. According to the procedure in Figure 3, the first bit of the code should
represent the sign of the input amplitude leading to a zero. The second bit
should be equal to

INT(2*0.6) = INTO.2) = I

leading to the correct code of [01] for an input of 0.6, where INT(x) returns
the integer portion of the number x .

In dequantizing the code [01] the procedure of Figure 3 tells us that the
leading zero implies a positive number and second bit corresponds to an
absolute value of

(l + 0.5)/2 = 1.5/2 = 0.75

Putting together the sign and the absolute value gives us the correct output
value of 0.75 for an input value of 0.6.

We recommend that you spend a little time trying to quantize and then
dequantize other input values so you have a good feel for how the procedure
works before continuing further in this chapter.

Quantize:

code(number; R) = [s][lcodelJ

where

s = {O number ~ 0
1 number < 0

I d I {
2R-l -1 when Inumberl~ 1

co e=
INT(2R- 1 Inumberi) elsewhere

Dequantize:

number(code; R) = sign*1 numberl

where

. {I if s = 0
sign =

-1 if s = 1

Inumberl= (Icodel + 0.5)/ 2R - 1

Figure 3. Quantization/dequantization procedure for an R-bit uniform midrise quantizer

Chapter 2: Quantization 25

3.3 Midtread Quantizers

Figure 4 illustrates a two-bit midtread uniform quantizer. Notice how the
two bits are only used to describe three input amplitude bins. This means
that we have divided the input range into thirds rather than quarters leading
to a larger bin-size than in the midrise case. We have numbered the bins
consecutively [11], [00], [01], literally, -1, 0, 1, and have chosen not to use
the [10] code. The dequantized values are still the centers of the bins which
are -2/3,0, and +2/3, respectively, in this case. Notice that the zero value is
passed. Audio signals often have quiet portions so quantizers that can
represent a signal as having zero amplitude tend to sound better. For this
reason, it is usually worth the cost of throwing away one possible code value
and using mid tread quantizers for audio coding.

1.0

01 213

0.0 00/10 o

11 ------I .. ~I -2/3

-1.0 -'---", -1.0

Figure 4. A two-bit unifonn midtread quantizer

Figure 5 describes a procedure for implementing an R-bit uniform
midtread quantizer. Let's again see how a value of 0.6 is quantized using
this procedure. As before, the first bit is the sign bit, which should be zero
for this input. The second bit should be equal to

INT«3*0.6+1)12) = INT(2.812) = INT(1.4) = 1

leading to a code of [01]. In dequantizing we see that the first bit gives us a
positive amplitude and the second bit gives an absolute value of 2 * 113 =
2/3. In other words, the procedure agrees with Figure 4 and says the 0.6
should be mapped onto an output amplitude of +2/3. Again, we recommend
that you try out a few more input amplitudes before moving on in this
section.

26 Introduction to Digital Audio Coding and Standards

Quantize:

code(number; R) = [sJUcodell

where

s = {O number:?: 0
1 number <0

Icodel= {2R - 1 -I when Inumberl:?: 1
INT(((2R -1)lnumberl+I)/2) elsewhere

Dequantize:

number(code; R) = sign*1 numberl

where

. {I if s = 0
sign =

-I if s = 1

Inumberl=2.lcodel/(2 R -I)

Figure 5. Quantization/dequantization procedure for an R-bit uniform midtread quantizer

The uniform quantizer has a maximum round-off error equal to half of
the bin width (i.e., ,1.12) at any, non-overload input level. However, this error
level could be huge relative to a very low amplitude signal. Since the
perception of round-off distortion is more related to the relative error in
amplitude than to the absolute size of the error, this means that uniform
quantizers perform significantly worse on low power input signals than they
do on higher power signals. This observation is the inspiration behind non
uniform quantization, which is described in the next sections.

3.4 Non-Uniform Quantization

In general, there is no requirement that the step sizes of a quantizer be of
uniform size. Quantizers with step sizes that vary with input amplitude are
called "non-uniform" quantizers. Although non-uniform quantization can be
implemented using table lookups for the step sizes, it is more often
implemented using the "companding" method, which we briefly discuss
here.

In the companding method, an input x is passed through a monotonically
increasing function

y= c(x)

prior to being uniformly quantized. Dequantization then is carried out by
first dequantizing the uniformly quantized code into a value y' and then
passing that value through the inverse function

Chapter 2: Quantization 27

The function c(x) is normally anti-symmetric around x=O so that it maps
negative values of x onto negative values. This implies that we can fully
define c(x) if we specify c(ixl). If we consider both our input signal and our
uniform quantizer to be normalized so that they run from -1.0 to 1.0, then
the companding function c(lxl) should map inputs from 0 to 1.0 onto the
range from 0 to 1.0. The requirement that c(x) be monotonically increasing
is so that c(x) is easily invertible.

To get a feel for how companding affects quantization, let's see how the
size of the quantizer bins varies with input level x. We know that the
quantizer bins are uniformly sized with regard to the level of y since y is
uniformly quantized. If we do our quantization using a large number of bits
so that the bins are small, then, over the size of a bin, the mapping y = c(x) is
approximately linear and we have that

y(x) '" c(xo) + dc/dx (x-xo)

for some fixed Xo in the bin. This tells us that the width in x of a quantizer
bin is scaled down by a factor of dc/dx from the width in y (see Figure 6).
For example, if we pick a function c(x) that has a high slope for small values
of x, then we have lower quantization noise in that region as compared to
uniform quantization. However, since the function c(lx/) must run
monotonically from 0 to 1.0, a high slope for low values of x implies a lower
slope and hence more quantization noise for higher values of x. Thus, we
can use the companding function to move quantization noise from low
amplitude inputs to higher amplitude inputs. Non-uniform quantization can
be used to slow down the drop-off in signal to noise ratio as the signal
amplitude decreases at the cost of lowering the peak signal to noise ratio of
the quantizer.

28 Introduction to Digital Audio Coding and Standards

1.0 r--------------:~

y

0.0 OL.L.'-'-......L.._.L..-_----"'--____ -!

0.0 1.0

x

Figure 6. Effect of companding on quantizer bin widths for a four-bit midtread quantizer

3.4.1 Power-Law Companding

There are two common functional types used in companding: power law
companding and logarithmic companding. In power law companding we use
a function of the form:

where choosing the parameter p so that it lies between 0 and 1.0 makes sure
that the slope of c(x) is high for low values of x. We will see in Chapters 11
and 13 that power law companding is used in MPEG Layer III and MPEG
AAC where p = 0.75.

3.4.2 Logarithmic Companding

In logarithmic companding we use a companding function based on the
function log(x). Unfortunately, log(O) is equal to -00 so this function cannot
be used without adjustment. One common form of logarithmic companding
is the so-called "Illaw" (or "mu law") companding, which uses a function of
the form:

Chapter 2: Quantization 29

where the base of the logarithm b doesn't affect the function (since a change
of base would just multiply both numerator and denominator by a fixed
factor) and the parameter Il determines the slope of dc/dx near zero. The
slope of c(x) near x=O is equal to j..L/ln(I +Il) and so values of Jl» 1 are
typically used. Notice how the I inside the logarithm avoids problems at
x=O.

Another common form of logarithmic companding is the so-called "A
law" companding which uses a function of the form:

C A (I x I) = 1 ~In(A) 1
1+ln(A1x 1) forlxl>lIA

---I x I fori x I~ I1A
1 + In(A)

Notice how the problem at small x is explicitly addressed by changing the
functional form to linear for Ixl smaller than lIA. Again, having a high slope
near x=O implies that values of A» 1 are typically used.

Both Illaw and A law companding have found significant application in
the telecommunications industry and have been standardized by the CCITT
(Telephone and Telegraph Consultative Committee, now known as the ITU
T, International Telecommunication Union Telecommunications Sector).
The particular values of Il and A selected in the standards, j..l=255 and
A=87.56, were so chosen so that the quantization characteristics, when used
with an 8 bit uniform quantizer, can be reproduced digitally by manipUlating
the results of a longer uniform quantizer. In fact, the floating point
quantization scheme that is presented in the next section is a variant of the
digitally-companded A law scheme. The main difference is that the
standardized 87.56 A law compander is carried out with a midrise quantizer
rather than midtread. Nowadays, almost all logarithmic companding is
carried out digitally through the use of various floating point quantizers. For
more information on non-uniform quantization methods, the reader is
encouraged to consult [Jayant and Noll 84].

3.5 Floating Point Quantization

The basic idea of floating point quantization is to scale the quantizer bin
size to the size of the input signal: low input signals would use very small
quantizer bins and high input signals will have larger bins. To implement

30 Introduction to Digital Audio Coding and Standards

this approach in a coder requires, however, that we know how big the bin
sizes are when we dequantize the signal. This requires passing bits that
describe the bin size. In other words, we split the bits in the code into two
sets. Some bits are used to describe the bin size, where this set of bits
represents the "scale factor" or "exponent" of the amplitude value. The rest
of the bits are used to uniformly quantize the signal with those size bins,
where this set of bits represents the "mantissa" of the amplitude value.
Floating point quantization will give up accuracy for high-level signals since
the scale factor bits that could have described bins are now used to tell the
coder when the bins are smaller, but gains significant accuracy for low level
signals, since the bins are now better sized for the signal. In general, the
signal to noise ratio, SNR, will depend on the number of mantissa bits and
will stay roughly constant over the whole range of input signal powers. This
contrasts with uniform quantization where the SNR is highest at high powers
(but low enough to avoid clipping) and decreases as the signal power
decreases. We see examples of this in the next section. You can peek ahead
to Figure /0 to see a graph of this behavior.

We describe here a particular implementation of floating point
quantization that is very similar to linearized A-law companding as was
specified by the CCITT based on [Jayant and Noll 84]. The performance of
the method depends on the number of scale factor bits Rs and mantissa bits
Rm. Note that the total bits per sample R equals

At high level inputs this method is roughly equivalent to a uniform
quantizer with

In contrast, however, this quantizer performance will not degrade as the
signal power is lowered until it reaches a level determined by the number of
scale bits Rs. Once below this lower limit, the performance of this quantizer
will also degrade but it will be comparable to how a uniform quantizer with

performs for such input signals. For example, eight bits divided into three
scale bits and five mantissa bits perform for medium to high level signals
about equivalently to a six-bit uniform quantizer sized to the signal power,
and perform for low level signals like a 12-bit uniform quantizer.

Chapter 2: Quantization

To convert from a number into a scale-mantissa floating point code with
Rs scale bits and Rm mantissa bits:

I. Quantize the number as an R bit code where R=2Rs-l+Rm.
II. Count the number of leading zeros in Icodel. If the number of leading

zeros is less than 2Rs_l then set the scale equal to 2Rs_I minus the
number of leading zeros; otherwise set the scale equal to zero.

III. If scale equals zero then set the first mantissa bit equal to s and set the
remaining Rm-l bits equal to the bits following the 2Rs_I leading zeros
in Icodel; otherwise set the first mantissa bit equal to s and set the
remaining Rm-l bits equal to the bits following the leading zeros_
omitting the leading one.

To convert from scale-mantissa floating point code with Rs scale bits and
Rm mantissa bits into a number:

I. Create an R bit code where R=2RS -I +Rm from the mantissa and scale
factor where s is the first mantissa bit and Icodel
A. has 2Rs -I-scale leading zeros
B. followed by the remaining Rm-I mantissa bits if scale is zero,

otherwise followed by a one and then the remaining mantissa
bits

C. followed by a one and as many trailing zeros as will fit if scale is
greater than one.

II. Dequantize the R bit code into the number.

Figure 7. Procedure for quantizingldequantizing using a floating point quantizer

31

Figure 7 describes the floating point quantization and dequantization
procedures. The basic idea is to first uniformly quantize the input signal
using the highest number of bits for which the floating point quantizer is
comparable. Then the scale bits are used to keep track of the number of
leading zeros in the uniformly quantized code so one can strip them off the
code. Finally, the mantissa bits are used to store the highest order bits in the
remaining code, taking advantage of the fact that you know that the leading
zeros were followed by a one. In order to dequantize, we apply the
procedure in reverse. The scale factor tells us how many zeros to add to the
front of the stripped off code (and leading 1, when appropriate) while we use
the mantissa bits to recreate the rest of the code as accurately as possible.
For code bits beyond what we stored in the last mantissa bit we pick the
middle of the unknown range by following the last mantissa bit with a 1 and
then zeros. For example, if we had three unknown trailing bits we would not
know what they were ranging from [000] = 0 up to [111] = 7. We split the

32 Introduction to Digital Audio Coding and Standards

difference and use [100] = 4. Finally, we dequantize this code to get our
output amplitude.

Figure 8 shows how floating point quantization is carried out for the case
of Rs = 3 scale bits and Rm = 5 mantissa bits. This eight bit total floating
point quantizer reaches an accuracy at low signal levels comparable to a 12-
bit uniform quantizer so we first quantize our input signals using a 12-bit
uniform quantizer. We use one of the five mantissa-bits to store the sign bit,
using the remaining four mantissa-bits and the three scale-bits for storing the
code. Notice that three scale bits can count up to seven leading zeros. We
get to the 12-bit accuracy at low signal levels when one mantissa bit is the
sign, the three scale bits tell us that the next seven bits are zero, and we use
the remaining four mantissa bits to capture the next highest order bits in the
code (12 = I + 7 + 4). Note that by convention the scale factor is set equal to
zero when there are the maximum allowed seven leading zeros and the scale
factor then counts up to seven as the number of leading zeros drops to none.
The convention arises from the scale factor being equal to the number of left
shifts that need be applied to the stripped off code (and leading one, when
appropriate) described by the mantissa bits. This choice has no impact on
accuracy of the coder and you could just as easily do it in the more natural
approach where the scale factor is the number of leading zeros. We use this
representation until the signal power reaches a level where the 12-bit
quantization has less than seven leading zeros. In this case, we know that
the first bit following those zeros is a one and does not need to be stored so
we use the four mantissa-bits to store the four bits after the leading one.
From this point all the way up to overload levels the quantization acts like a
uniform quantizer with six bits corresponding to the sign bit, plus the leading
one, plus the four other mantissa bits. As we see in the last line of the
example, for the lower order bits beyond what we stored in the mantissa bits
we split the difference and use a I followed by zeros when we recreate the
12-bit code. Once the 12-bit code is created we dequantize it back onto
output signals as described in the previous section for uniform quantizers.

Chapter 2: Quantization 33

[sOOOOOOOabcd] - scale = [000] [sOOOOOOOabcd]
maRt = [sabcd] -

[sOOOOOOlabcd - scale = [001] [sOOOOOOlabcd]
maRt = [sabcd] -

[sOOOOOlabcde] - scale = [010] _ [sOOOOOlabcdl]
maRt = [sabcd]

•
•
•

[slabcdefghij] - scale = [111]
[slabcdlOOOOO]

maRt = [sabcd] -

Figure 8. Applying floating point quantization with Rs=3 scale bits, Rm=5 mantissa bits

3.5.1 Block Floating Point

In building coders, we often use a variant of floating point quantization
referred to as "block floating point" quantization or "block companding".
Block floating point shares the bit-cost of the scale bits across several
mantissa values. In other words, several floating point numbers are encoded
using the same value of the scale factor. This cuts down on the number of
scale bits used per number but, if the numbers are of different sizes, limits
the ability of floating point quantization to adjust its bin sizes to the numbers
being quantized. In this case, the signal SNR decreases for those values that
are lower than the one used to set the exponent for the block. In general, to
implement block floating point quantization, the scale factor for the group of
numbers is set to the scale factor of the number with the largest absolute
value. That single scale factor is then used to floating point quantize and
dequantize all of the numbers in the group using floating point quantization
but without assuming that there is a leading 1 in any mantissas. The reason
that you cannot assume a leading 1 is that you won't know at dequantization
time which number was the one that was used to set the scale factor. For
example, any number with a magnitude more than a factor of two smaller
than the magnitude of the number that set the scale factor will have a leading
zero in t)1e mantissa.

In summary, quantization is a critical step in the digitization process and
in the design of audio coders. We can choose between midtread and midrise
quantizers where midrise quantizers have slightly smaller round-off error but
midtread quantizers accurately pass zero values. In general, we recommend

34 Introduction to Digital Audio Coding and Standards

the use of midtread quantizers for audio coders. Floating point quantizers
allow you to allocate bits to match the quantizer bins to the size of the signal
being quantized. Floating point quantization gives up some accuracy for
high power signals but gains both much better accuracy for low power
signals and a more consistent performance over a wide range of input signal
powers. Block floating point quantization is a useful compromise method
that uses fewer bits per number for scale factor storage by sharing scale
factors across multiple signal values.

4. QUANTIZATION ERRORS

In the previous sections, we described how to implement quantizers and
qualitatively discussed their performance. In this section, we take a more
quantitative approach in describing quantization errors. Quantization errors
are important because they are typically the major source of distortion in the
audio coding process. Coder design requires trading off the bitrate of the
coder against the fidelity of the decoded signal - more bits increases bitrate
load but reduces the quantization error. Using some form of bit allocation to
control the level of quantization error is a key feature of audio coders. We
will discuss in later chapters how to optimize this trade-off; our goal for this
section is the simpler task of describing the quantization error that results
from using a given number of bits.

One way to characterize the quantization error is to compare the input
signal, Xin(t), with the output signal, Xout(t), and measure the power in the
difference or "error" signal q(t), where

get) = xout(t) - Xin(t)

However, a more perceptually relevant measure would be to scale the error
signal by the input signal to get the relative power of the error signal. We
use this approach and describe quantization error in terms of its SNR
measured in decibels (dB). The SNR in dB is defined as:

Notice that in these units a low quantization error corresponds to a high
SNR.

The SNR is certainly not a perfect(perceptual) measure of quality. In
fact, many would say that it is a terrible one since it ignores many important
perceptual effects including signal masking, different noise sensitivity at
different frequencies, etc. SNR, however, is the general-purpose quality

Chapter 2: Quantization 35

measurement most widely adopted. The reason is that it is objectively
measurable and easily understood. Other objective measurements like, for
example, perceptual objective measurements, rely on parameterized models
of human perception and only in recent years have successfully addressed
audio quality measurements (see also Chapter 10). In any event, for this
section we stick with the SNR and return to the issue of human perception
and perceptual measures of coder quality in later chapters.

4.1 Round-off Error

There are two types of quantization error and they sound very different:
round-off error and overload or clipping error.

Round-off error comes from mapping ranges of input signal amplitudes
onto a single code (and hence output level); the wider the range of input
amplitude that maps onto a single code, the worse is the round-off error. We
can estimate the relationship between round-off error and the number of bits
in a uniform quantizer by assuming that the amplitude falls randomly into
each quantization bin.

With such an assumption, the round-off error is equally likely to be any
value between -M2 and M2. In other words the probability density of the
error signal q(t) at any time is approximately equal to 1I~ in the range
between -M2 and M2 and zero elsewhere. Note that this assumption is well
approximated when the quantizer has a large number of levels, but it is not
true for quantizers with only a small number of levels, an extreme example
being delta modulators.

Given the error probability distribution, we can calculate the expected
error power for the quantizer:

In the case of a uniform quantizer with R bits we have that ~ "" 2 *xmaxl2R

leading to

2
2 X max <q >""---

3*22R

If we feed this quantizer a signal with an input power equal to <Xin 2> then we
can expect the SNR (in dB) from the quantizer to be roughly equal to

36 Introduction to Digital Audio Coding and Standards

SNR = 10 loglO« Xin 2> / < q2 »

[
2 3*22R) '" 10 loglO < X in > --2-

X max

[
<X.2»

",lOlog lO 10 2 +20* R * log 10(2) + 10 * log 10 (3)
X max

[
<x.2»

'" 10 loglO 10 2 + 6.021 * R + 4.771
X max

From this equation, we can see that the SNR increases as the signal
power increases, at least until we start hitting overload, and that we improve
the SNR by about 6 dB for every bit we add. The first term in this equation
is the input signal power measured in dB relative to the quantizer xmax. This
relative measure is the relevant measure of signal power for a uniform
quantizer, which is why we can choose to set our quantizer Xmax equal to 1
without any loss of generality. Figure 9 shows both of these effects for a
uniform quantizer that is fed a sine wave input signal with amplitude A less
than Xmax• In this case, the expected power of the input signal is <Xin2> =
A2/2. Notice that the curve for 16 bits is roughly 50 dB higher than the 8-bit
curve in agreement with the 6-bit rule of thumb (8 * 6 '" 50). Also, notice
how the SNR increases with signal power.

SNR for Sine Wave Input

120~--------------------~-----,

100

80
1D'60 -t
~ _

............

: 40
i

·20- o·······.:.fO· -30 ·20

-40~----~----~--------~-----J
Input Level (dB)

--16 bits
• • •• 8 bits
. 4blts

Figure 9. SNR for a sine wave input as a function of input level and number of bits

Chapter 2: Quantization 37

4.2 Overload error

Overload error comes from signal amplitudes that are too high in level
for the quantizer. As we discussed in the previous section, these amplitudes
are clipped to the highest and lowest quantizer steps. When the signal is
well-sampled, overload error tends to present itself in bursts with quite
audible effects. This error comes from input amplitudes IX;n(t)1 greater than
the quantizer's maximum amplitude Xmax (usually defined to be 1 in this
book). If we can describe the probability distribution (or frequency
distribution for known signals) of input signal amplitudes we can
characterize the amount of overload error for a given quantizer xmax . We
would like to set the quantizer's Xmax high enough so that clipping doesn't
occur, however, high Xmax implies wide levels and hence large round-off
error. Quantizer design requires a balance between the need to reduce both
types of errors.

4.3 Error Effects

Figure 10 gives an example showing the effects of both types of
quantization error for an input signal whose amplitude is random and
uniformly distributed over an amplitude range between zero and A. In this
case the expected power is related to the maximum amplitude A by

This figure shows the SNR of midtread uniform quantizers with various bit
resolutions as well as showing the SNR of a 3-scale-bit, 5-mantissa-bit
floating point quantizer. Notice that such a signal begins to overload the
quantizer at input levels equal to -4.771 dB rather than at 0 dB. This is
because 0 dB says that on average the signal has power equal to xma/, but by
this point the highest amplitudes seen may be much larger than xmax. The
maximum amplitude is just equal to Xmax for uniformly distributed
amplitudes when the input level is -4.771 dB (= 10*loglO(1/3». Notice again
the improvement in SNR with signal power for the uniform quantizers and
the roughly 6 dBlbit improvement as R increases. Also notice how the 3-5
floating point quantizer is equal to the 6-bit uniform quantizer at high signal
powers, holds on to its high SNR as the signal power drops, and finally
drops just like the 12-bit uniform quantizer at very low level signals.

38 Introduction to Digital Audio Coding and Standards

SNR vs Input Level for Uniform Distribution

80

70

60

50

a: 40
z
III 30

SJ······MT12
--MIll
•••• MIll

-FP36

20

10

0
·0

·10

Input Level (dB)

Figure 10. SNR for an input signal with random, uniformly distributed amplitudes for
different types of quantizers (MT=midtread uniform quantization, FP = floating point) with R

=12,8,6

5. ENTROPY CODING

At this point in the book, we have learned how to represent amplitudes
relative to an analogue audio signal with discrete codes that represent the
quantized signal amplitudes. The codes we have discussed to this point have
all been the result of scalar quantization with equal numbers of bits. We can
often lower the data rate, however, by translating from these codes to a
different symbol representation that uses a variable number of bits per code.
The idea is to make common codes shorter so that the average bit rate will
go down. Implementing this idea requires us to decide what codes are more
common or, in other words, to estimate the probability of each possible code
that might be seen. This requires us to describe something about the source
of the signal. Having developed such probabilities, we can use "entropy
coding" or "noiseless coding" methods to design variable bit length codes
that reduce the overall number of bits needed to transmit the coded signal.

As an example, consider a 2-bit quantized signal that has the codes [00],
[01], [10], [11]. Suppose we had a signal that we wanted to encode, whose
frequency counts for each of these codes was 70%, 15%, 10%, 5%,
respectively. Consider using the following code mapping instead: [OO]~[O],
[01]~[1O], [IO]~[IIO], and [ll]~[lll]. Notice that this new mapping is a
"comma code" in that the zero symbol tells the decoder when the code
terminates with less than 3 bits. This new code mapping has a lower bit rate

Chapter 2: Quantization 39

on average for the signal since now the average bits per code has been
reduced from two bits per code down to

<R> = 70% * I + 15% * 2 + 15% * 3 = 1.45 bits!code

We can translate our signal into the new mapping before storing or
transmitting it and then translate back only when we are ready to decode the
signal. Over a long signal, we will have managed to store or transmit the
signal with less than % of the bits needed for the original coding scheme.
This example should make clear that exploiting information about code
probabilities could allow us to squeeze bits out of a signal without any loss
of information. Of course, to capture these savings we need to know how to
decode the signal, which requires us to pass information. Any information
we need to pass eats up some of the bit savings and needs to be taken into
account when assessing the data rate of the system.

How might we develop code probabilities? First of all, some codes may
be more common than others in certain classes of audio signals. If we knew
that our coder was going to be passed a signal from that class, we would
have some information about the code probabilities. Secondly, we could
study the specific signal we wanted to encode and develop the probabilities
from that analysis. In batch mode, we could study the whole signal before
encoding it or, in streaming mode, we could run statistics on recent signal
data that has gone by. Of course, this type of analysis would have
implications as to the complexity and delay of the coder. In some cases, the
bit reduction benefits might not be worth the complexity cost. Finally, we
could exploit some type of prediction routine to predict the next code symbol
and use codes to characterize the difference between the predicted value and
the actual value - for such a system we would expect small values to be
more common than large ones and could develop estimates of the
probabilities of the difference codes.

Having developed code probabilities, we next should ask ourselves if the
savings we can get from employing entropy coding is worth the time and
effort of implementing it. "Entropy" is the measure that can answer this
question for us. The entropy is a function of the probabilities Pn of the next
code symbol being the nth code and is defined as

codes

Entropy == I Pn log2 (1/ Pn)
n

When we are pretty sure what code will come out next, the entropy will be
very low and when we have little idea as to which code will come out next,

40 Introduction to Digital Audio Coding and Standards

the entropy will be high. Shannon [Shannon 48] proved that the entropy as
defined here exactly equals the lowest possible number of bits per sample
any coder could produce for this signal.

To get a better feel for this measure calIed entropy, let's look at the case
with only 2-code symbols. If the probability of the first symbol is equal to p
then the probability of the other symbol is equal to I-p and the entropy is
equal to

Entropy = p !og2(l/p)+ (l-p))og2(I/(l-p))

Figure 11 shows a graph of the 2-code entropy as a function of p. When p =
o or p = I we know for sure what the next code will be and we find that the
entropy is equal to zero. Since we know what the next symbol will be, we
don't need to send any bits. Maximum lack of knowledge about the next
symbol is when p = 50%. The entropy is equal to one for this value and we
find that one bit is required to distinguish between the two outcomes. The
interesting case is when p « 0.5 but not equal to zero (or p » 0.5 but not
equal to 1). Here Shannon's theorem teIls us that there exist coding schemes
that can encode a single-bit code using less than 1 bit per code symbol on
average.

0.8

t 0.6

j 0.4

0.2

o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

p

Figure 11. Entropy with 2-code symbols as a function of code probability p

Going back to the general definition of entropy for arbitrarily many code
symbols

codes

Entropy == LPn !og2(IIPn)

Chapter 2: Quantization 41

we can see that there will not be any contribution to entropy for any symbol
with probability zero (if it isn't going to show up, there is not need to
allocate bits to it). Likewise, the overall entropy will be zero if anyone
symbol has probability I and all other symbols correspondingly have
probability zero. In this case, we know what is coming beforehand so there
is no need to send any information at all.

The maximum value of the entropy comes when all code symbols are
equally likely. In this case, we won't get any savings from employing
entropy coding methods. For example, consider the entropy of 2R equally
probable code symbols. Since they are equally probable, the probability of
each symbol is 1I2R and the entropy is equal to:

In other words, using R bits for each of the 2R equally probable codes is the
best one can do. What we learn is that optimal coders only allocate bits to
differentiate between symbols with near equal probabilities.

5.1 Huffman Coding

Huffman coding is a method for creating code symbols based on the
probabilities of each symbol's occurrence. Huffman coding is a variable
length code in that different symbols are given different length codes. In
specific, Huffman coding gives short codes to more common symbols and
longer codes to rarer ones. Shannon proved that the average number of bits
per sample <R>Huffman in a Huffman code is within one bit of the entropy:

Entropy ~ < R >Huffman ~ Entropy + I

Huffman coding can reduce bits over fixed bit coding if the symbols are not
evenly distributed.

It should also be noted that additional coding gain could often be
achieved, at the cost of additional delay and complexity, by grouping
consecutive symbols into a new set of longer symbols before creating the
Huffman code. This additional coding gain from vector quantization comes
about from two reasons: I) it allows the Huffman code to exploit
correlations between consecutive symbols in developing the codes, and 2) it
allows the maximum difference from optimal coding of 1 bit per symbol to
be spread out over more symbols. We will see examples of using vector
Huffman coding in MPEG Layer III and in MPEG AAC (see also Chapters
11 and 13).

42 Introduction to Digital Audio Coding and Standards

The Huffman code depends on the probabilities of each symbol. One
creates Huffman codes by recursively allocating bits to distinguish between
the lowest probability symbols until all codes are accounted for. To decode
the Huffman code you need to know how the bits were allocated. Either you
can recreate the allocation given the probabilities or you can pass the
allocation with the data. The encoding algorithm goes as follows: Find the
2 lowest probability symbols and allocate a bit to distinguish between them.
Consider the pair of symbols that you just distinguished as a single symbol
with their combined probability and repeat the previous step until all
symbols have been distinguished.

Figure 12 shows the development of a Huffman code for a case with 4
symbols with quite unequal probabilities. Notice that this is the example we
examined at the very start of this section. Notice also that the two lowest
probability symbols [10] and [11] get allocated a bit and then combined into
a symbol with 15% probability. Now the two lowest probabilities are [01]
and the combined [10]/[11] symbol and another bit is allocated to distinguish
this pair. Finally, one last bit is needed to distinguish [00] from the
combined [10]/[10]/[11] symbol. The final result is that [00], [01], [10], [11]
get replaced with [0], [10], [110], [Ill], respectively. As we saw before,
this new coding scheme reduces the average bit rate from 2 bits per sample
down to 1.45 bits per sample.

Code:

Probability:

Original:

HutTman:

00

70%

00

o

01

15%

01

10

10 11

10% 5% V Alloc,te bit

15%

10

110

11

111

Figure 12. Huffman coding for four symbols with very unequal probabilities

Figure 13 shows the development of a Huffman code for the case with
four symbols with equal probabilities. Since all four symbols have the same

Chapter 2: Quantization 43

probability, we arbitrarily decide to first allocate a bit to the last two and
combine them. Now the first two symbols are the lowest probability pair
and so we allocate a bit and combine them. Finally, we need another bit to
distinguish between the combined [00]1[01] and the combined [10]/[11]
symbols. The result is that Huffman coding has just reproduced the initial
coding scheme with no net gain. Again, we emphasize that Huffman coding
only gives you gains when the symbols you are encoding have very different
probabilities.

Code:

Probability:

Original:

Huffman:

00 01 10 11

25V% 0 25% 2v5% 0 25% .

Allocate bit Allocate bIt

00

00

50% 50%

~/AlIoca" b;,

01

01

10

10

11

11

Figure 13. Huffman coding for four symbols with equal probabilities

In summary, we have learned that entropy is a measure of the minimum
number of bits needed to represent a given signal. Entropy coding allows us
to exploit redundancies in the signal representation in order to develop a new
representation that requires fewer bits for the same information. These
redundancies are identified and reduced based on the symbol probabilities of
the various codes - if some symbols occur with much greater likelihood than
others we can represent them with fewer bits. Huffman coding was
presented as one commonly used implementation of these ideas.

6. SUMMARY

In summary for this chapter, we have shown that quantization can turn
continuous amplitudes into discrete codes. We have seen that quantization
produces errors and that different quantization schemes have different error

44 Introduction to Digital Audio Coding and Standards

effects. We have discussed how quantization error is the primary source of
coding error in most perceptual coders and have analyzed the SNR produced
using different numbers of bits in both uniform and floating point
quantization. Finally, we have discussed how entropy coding techniques can
be used to reduce the number of bits necessary to transmit or store quantized
data. In the next chapters, we turn to the issues of frequency representation
of audio signals and what types of errors can be heard by the human ear so
that we will be in a position to decide what trade-offs should be made
between fidelity and bit rate reduction.

7. REFERENCES

[Gersho and Gray 92]: A. Gersho and R. M. Gray, Vector Quantization and Signal
Compression, Kluwer Academic Press, 1992.

[Gray 84]: R. M. Gray, "Vector Quantization", IEEE ASSP Magazine, ppA-29,
April 1984.

[Jayant and Noll 84]: N. Jayant, P. Noll, Digital Coding of Waveforms: Principles
and Applications to Speech and Video, Prentice-Hall, Englewood Cliffs, 1984.

[Shannon 48]: C. E. Shannon, "A Mathematical Theory of Communications", Bell
Sys. Tech. 1., Vol. 27, pp. 379-423, July 1948.

[ISO/IEC 14496-3]: ISO/IEC 14496-3, Information Technology, "Coding of audio
visual objects, Part 3: Audio", 1999-2001.

8. EXERCISES

a) Working with bits:
Text is normally stored as 8 bit ASCII codes (of which only the lowest
seven bits are used to store the basic character set). For this exercise, you
will create a lossy text codec that stores text using only five bits per
character. In doing so, you will gain experience in dealing with
reading/writing binary coded files.
1. Write a function that takes the M lowest bits from an unsigned integer

and writes them starting at the Nth bit location in an array of BYTES
(unsigned character variables).

2. Define a mapping from the basic ASCII character set onto only five
bits. (Obviously, you will need to sometimes map multiple ASCII

Chapter 2: Quantization 45

characters onto the same five-bit code. For example, you will need to
map both capital and small letters onto the same code.)

3. Write a text encoder/decoder that allows you to read in ASCII text
files (e.g., .txt files from Notepad), map the text into five bit codes,
pack the coded text into arrays of BYTES, write the packed arrays
into a coded file, read in your coded files, decode your coded files
back into ASCII codes, and write out your decoded text file.

4. Test your five-bit text codec on several sample text files. Check file
sizes to see what compression ratio you achieved. How readable is
your decoded file?

5. Change your mapping to use two of your codes as control characters.
Let one code signify that the next character is capitalized. Let the
other code signify that the next character comes from a different set of
mappings onto five-bit codes (i.e. include some important characters
that weren't included in the basic mapping). How does this change
impact compression ratio? How does this change impact readability?

b) Quantization and quantization noise:
In this exercise you will develop quantization routines that you will use
when developing audio coders in later exercises.
1. Write functions that quantize floating point numbers from -1.0 up to

1.0 using R-bit midtread uniform quantization; R-bit midrise uniform
quantization; and Rs scale factor bits, Rm mantissa bits midtread
floating point quantization.

2. Create a version of Figure 10 using 1.1 kHz sine waves sampled at 8
kHz as input.

c) A first audio coder:
In this exercise you will build a simple audio coder that allows you to test
the effects of different quantization routines. You will also put in place
the basic routines for reading and writing audio files that will be useful in
later exercises.
1. Find a 16-bit PCM audio file format that 1) is well documented, 2)

you can play on your computer, and 3) has sound samples you can
find. (For example, information about the WA V file format is readily
available on the internet. The Sound Recorder utility can be used to
record and play PCM wave files.) Describe the file format. Get
yourself a few good quality sound samples for testing codecs. Make
sure you can play your samples.

2. Write an audio encoder/decoder that reads in 16 bit PCM audio files,
dequantizes the audio samples to floating point values from -1.0 to
1.0, quantizes the samples using the quantization functions you

46 Introduction to Digital Audio Coding and Standards

prepared for the prior exercise, packs the quantized samples into
arrays of BYTES, writes the results into a coded file format you
define, reads in your coded file, converts your data back into 16 bit
PCM codes, and writes out your decoded audio data into an audio file
you can play. Verify that your coder is bug-free by making sure that
files coded using 16-bit midtread uniform quantization do not sound
degraded when decoded.

3. Test your codec on some sound samples using 1) four-bit midtread
uniform quantization, 2) four-bit midrise uniform quantization, 3)
eight-bit midtread uniform quantization, and 4) three scale bits, five
mantissa bits midtread floating point quantization. What compression
ratios do you get? Describe the quantization noise you hear.

4. Estimate symbol probabilities for each of the 15 codes used in four-bit
midtread uniform quantization using your sound samples. Use these
probabilities to define a set of Huffman codes for your four-bit
quantization codes. Modify your codec to read/write the coded file
format using these Huffman codes when encoding using four-bit
midtread uniform quantization. How much do the Huffman codes
improve the compression on your sound samples?

Chapter 3

Representation of Audio Signals

1. INTRODUCTION

In many instances it is more appropriate to describe audio signals as
some function of frequency rather than time, since we perceive sounds in
terms of their tonal content and their frequency representation often offers a
more compact representation. The Fourier Transform is the basic tool that
allows us to transform from functions of time like x(t) into corresponding
functions of frequency like X(f). In this chapter, we first review some basic
math notation and the "Dirac delta function", since we will make use of its
properties in many derivations. We then describe the Fourier Transform and
its inverse to see how signals can be translated between their frequency and
time domain representations. We also describe summary characteristics of
signals and show how they can be calculated from either the time or the
frequency-domain information. We discuss the Fourier series, which is a
variation of the Fourier Transform that applies to periodic signals. In
particular, we show how the Fourier series provides a more parsimonious
description of time-limited signals than the full Fourier Transform without
any loss of information. We show how we can apply the same insight in the
frequency domain to prove the Sampling Theorem, which tells us that band
limited signals can be fully represented using only discrete time samples of
the signal. Sampling allows us to convert continuous-time signals x(t) into
discrete-time samples x[n] without loss of information if the sampling rate is
high enough. Finally, we introduce prediction principles to represent a time
series of audio samples in a more compact way than its peM representation.

M. Bosi et al., Introduction to Digital Audio Coding and Standards
© Kluwer Academic Publishers 2003

48 Introduction to Digital Audio Coding and Standards

2. NOTATION

Before jumping straight into the Fourier Transform equations, we need to
review some basic math notation and the "Dirac delta function", since we
will make use of its properties in many derivations. In this book we try to
use math notation symbols such as

x, y, t, f, e, <P E 9\

for variables that vary continuously over their allowed range (i.e. real
numbers). In contrast, we try to use symbols such as

i, k, I, m, n, M, NEg

for variables that are discrete over their allowed range (i.e. integers).
The Fourier Transform involves complex numbers and we use the

symbol j to denote the square root of -I. Complex numbers can be
represented as

z= x + jy

where x is called the "real part" of the complex number z and y is called the
"imaginary part"l. Audio signals are usually real-valued, but it is sometimes
convenient to consider complex-valued signals as well.

If z(t) is a complex-valued signal and x(t) and y(t) are real-valued signals
that represent its real and imaginary parts, respectively, then we can also
write

x(t) = Re { z(t)} and yet) = 1m { z(t) }

The "complex conjugate" of z is denoted as z* and is equal to

* . z = x - JY

The "magnitude" (or "norm" or "modulus") of z is denoted as Izl and is equal
to

1 Sometimes the letter i is utilized instead of j to indicate the imaginary part of a complex
number. In this book we adopt the "engineering notation" and employ j.

Chapter 3: Representation of Audio Signals 49

We can also write out the magnitude of z as

I I (*)y, (*)Y' z=zz =zz

We often work with sinusoidal signals and make heavy use of the "Euler
Identity" which defines an exponential of pure imaginary argument as a
complex sum of a cosine and a sine:

e j9 = cos(S) + j sineS)

We can use the definition of the magnitude to check that an exponential of
pure imaginary argument has magnitude equal to I. We call such a complex
exponential a "pure phase" since the magnitude is I but there is still a phase
angle e that is specified. The "argument" (or "phase angle") of any complex
number can be defined in terms of such an exponential by dividing the
complex number by its magnitude and defining the argument as the angle e
in the expression ei9 that has the same real and imaginary parts.

The Euler identity can also be used to convert sine and cosine into sums
of complex exponentials:

cos(S) = ± (e j9 + e -j9)

sineS) = L (e j9 - e -j9)

The reason for wanting to do this is that analytical calculations are
typically much easier with exponentials than with sines and cosines.

3. DIRAC DELTA

The Dirac delta function oCt) is actually a "distribution", which is a
generalized kind of a function, equal to zero everywhere except for at one
point where its value is infinite:

{
oo t = 0

OCt) == o elsewhere

This would be a useless function were it not for a property of the function
that it has finite integral equal to 1.

50 Introduction to Digital Audio Coding and Standards

~

fO(t) dt = I

Since O(t) is zero everywhere except for at t = 0, an integral over a delta
function only gets weight at t = ° and we can pick off values of functions
using the following:

~

ff(t)O(t - to)dt = f(t o)

One way to derive the Dirac delta function is as the limit of a simple
rectangular function:

o(t) = lim fA(t) where fA(t)==jl~1
A->O

o elsewhere

which is useful in trying to understand how the delta function behaves. For
example, we can use this definition to derive how to rescale the argument of
a Dirac delta function:

o(at)= lim fA(at)= lim -,I,fA/u(t)=-,I, lim fB(t)=-,I,O(t)
A->O A->O a a B=A/u->O a

The limit of a rectangular function is not the only way to derive the Dirac
delta function. Another derivation is as the limit of the sinc function as
follows

I':() I· {A· (A)} I· sin(1tAt) u t = 1m SIne t = 1m --'----'-
A->~ A->~ m

where the sinc function is defined as

sine(x) == sin(1tx)/1tx

We can use the second definition of the Dirac delta function to derive a
critical relationship that allows us to invert the Fourier Transform (see
below):

Chapter 3: Representation of Audio Signals 51

= {FI2} { . } fe±j21tftdf = lim fe±j21tftdf = lim sm(1tFt) = 8(t)
F = F = 1tt

-= -F/2

The final property of the Dirac delta function that we find useful is the
Poisson sum rule that relates an infinite sum of delta functions with a sum of
discrete sinusoids:

= =
~)(a-n)= ~>j2mna

n=--<>o 01=-00

We can see that the right hand side is infinite (each term in the sum is equal
to 1) when a is integer and it averages to zero for non-integer values -
exactly the behavior described by the sum of Dirac delta functions on the left
hand side. This relationship will be useful to us when we discuss the Fourier
Transform of periodic or time-limited functions below.

4. THE FOURIER TRANSFORM

The Fourier Transform is the basic tool for converting a signal from its
representation in time x(t) into a corresponding representation in frequency
X(f). The Fourier Transform is defined as:

=

X(f) == f x(t} e - j21tftdt

and the inverse Fourier Transform which goes back from X(f) to x(t) is equal
to:

=

x(t} = fX(f) e j21tftdf

We can check that the inverse Fourier Transform applied to X(f) does
indeed reconstruct the signal x(t):

52 Introduction to Digital Audio Coding and Standards

fX(f) ej'''''df " I [1*)"j'''''d, 1 ej'''''df

,1[}-~"'{H)df 1 *)d,

~

= foes - t) x(s)ds

= x(t)

The inverse transform shows us that knowledge of X(f) allows us to build
x(t) as a sum of terms, each of which is a complex sinusoid with frequency f.
When we derive Parseval's theorem later in this chapter, we will see that
X(f) represents strength of the signal at frequency f. The Fourier Transform
therefore is a way to pick off a specific frequency component of x(t) and to
calculate the coefficient describing the strength of the signal at that
frequency. The Fourier Transform allows us to analyze a time signal x(t) in
terms of its frequency content X(f).

Note that, although we deal with real-valued audio signals, the Fourier
Transform is calculated using complex exponentials and so is complex
valued. In fact, for real valued signals we have that

X(f)*=X(-f)

which implies that the real part of X(f) is equal to the average of X(f) and
X(-f), and the imaginary part is equal to their difference divided by 2j. The
Euler identity tells us that cos(21tft) has real-valued, equal coefficients at
positive and negative frequencies while sin(21tft) has purely imaginary
coefficients that differ in sign. Likewise, any sinusoidal signal components
differing in phase from a pure cosine will end up with imaginary
components in their Fourier Transforms. We are stuck with working with
complex numbers when we work with Fourier Transforms!

We can get some experience with the Fourier Transform and verify our
intuition as to how it behaves by looking at the Fourier Transform of a pure
sinusoid. Consider the Fourier Transform of the following time-varying
signal:

x(t) = A cos(2nfot + <1»

Chapter 3: Representation of Audio Signals 53

Notice that this signal is just a pure sinusoid with frequency fo and is
identical to a pure cosine when the phase term equals zero, 4> = 0, and
identical to a pure sine when 4> = -rrJ2.

We can calculate the Fourier Transform of this function to find that:

~

X(f) = fx(t)e-i2rrftdt

~

= fACOS(21tfot+$)e-i2rrftdt

~ ~

=1ei<j> f e-i21t(f-fo)tdt+1e-i<j> f e-i21t(f+fo)tdt

Notice that the Fourier Transform has components only at frequencies equal
to positive and negative fa. The period of this time-varying signal is To= lifo
and we can see that it only has frequency components at frequencies equal to
integer multiples of liTo. We shall see shortly that this is a general property
of periodic functions. Due to the presence of the phase terms e±i<j> - these
phase terms come from the phase of the sinusoid- we can see that the Fourier
Transform is in general complex valued. By inspection one can also see that
X(f)*=X(-f) as required for real signals x(t). Finally, notice the great deal of
data reduction associated with representing this signal with the three
parameters: A, fo, and 4>, as opposed to having to store its value at every
point in time x(t). The fact that most audio signals are highly tonal makes
the Fourier Transform an important part of the audio coder's toolkit! For
further reading on the Fourier Transform and its properties, we recommend
[Brigham 74].

5. SUMMARY PROPERTIES OF AUDIO SIGNALS

We often wish to summarize the general properties of an audio signal so
that we can define coders that work well for broad classes of similar signals.
Some of the most important properties include the bias <X>, the energy E,
the average power P, and the standard deviation cr. In defining these
quantities, we consider a finite-extent signal that is non-zero only between

54 Introduction to Digital Audio Coding and Standards

times -T/2 and T/2 for some time scale T. You may often see these
definitions written taking the limit as T ~ 00, but, in reality, we always do
our calculations over some finite time scale T.

The mean or bias of a signal is a measure of the average signal amplitude
and is typically equal to zero for audio signals:

T/2

<x>=+ fx(t)dt
-T/2

The average power of the signal is a measure of the rate of energy in the
acoustic wave and is defined as

T/2

P =+ Jx(t)2 dt
-T/2

Notice that power is defined as an average over time of the instantaneous
power pet) = X(t)2. If we think of x(t) as a voltage, this should hearken back
to the electrical definition of power as Voltage2/Resistance.

The energy of a signal is the integral of the instantaneous power over
time and is equal to

T/2

E= fx(t)2dt=PT
-T/2

The standard deviation (J is a measure of the average power in the signal
after any bias has been removed, and is defined by:

TI2

(j2 = + J(x(t)- < x »2dt = p_ < X >2

-T/2

Notice that the power and the square of the standard deviation are equal
when there is no bias, as is usually the case for audio signals.

To get a feel for these signal properties let's calculate them for a pure
sinusoid with frequency fo. We look over a time interval T much longer than
the period of the sinusoid To. Since the average of a sinusoid over an
integral number of periods is equal to zero, we can see that the bias of this
function is approximately equal to zero and we have that

<x> ",0

Chapter 3: Representation of Audio Signals 55

We know that the average of cosine squared over an integral number of
periods is equal to h, so we can see that

Since the bias is about zero we can then write that

Finally, we can use the relationship between energy and average power to
see that

E=PT

Notice that all of these properties are well-behaved in the limit as T ~oo
except for the signal energy which becomes infinite for the sinusoid. In
contrast, the bias, power, and standard deviation are all driven to zero for a
finite extent signal as T ~oo since all the zero signal values outside the signal
extent dominate the time averages. Again, in practice, all of these properties
are usually calculated over a finite extent and taking the limit as T ~oo is an
unnecessary but surprisingly common operation.

The Fourier Transform of a signal can also be used to calculate the above
signal properties. For example, the bias is related to the Fourier Transform
with frequency equal to zero:

< x >= +X(O)

where, if the true signal is not time limited, we limit the signal to the time
window from -T/2 to T/2 consistently with our definitions of the signal
summary properties before taking the Fourier Transform. In other words, we
calculate the Fourier Transform using the time-limited signal:

X(t),={X(t) T/2<t:<;;T/2
o elsewhere

instead of the true signal x(t). The statement that audio signals tend to have
zero bias is equivalent to the statement that the Fourier component at zero
frequency is usually extremely small.

As another example, Parseval's theorem tells us that the energy in a
signal can be written as an integral over the square of the frequency domain
signal XC£):

56 Introduction to Digital Audio Coding and Standards

~

E == II X(f) 12 df

This theorem shows us that we can consider X(t) to be a measure of the
contribution to the signal energy from a particular location in the frequency
domain. We often call the quantity IX(t)12 the "power spectral density", psd,
in recognition of this fact.

We can prove Parseval's theorem as follows:

lOX(f)",..ndf 1 x(t) dt

_1 X(f) [_1 x(t)eJ21tftdt}f

~

== I X(f)X(f) * df

~

== II X(f) 12 df

Given the energy and the bias, the other signal properties can be quickly
derived.

Let's now calculate the signal properties for our sinusoidal example using
the frequency domain information in the Fourier Transform instead of the
time domain information. If we take the Fourier Transform of the time
limited sinusoid (see Figure 1), we find the following Fourier Transform:

Chapter 3: Representation of Audio Signals

~

X(f) = jx(t)e-j21tftdt

where

T/2

= fA cos(27tfot + <1» e- j2![ft dt
-T/2
TI2

fA1(ej21tfot+j<P + e-j21tfot-i<P)e-j21tftdt

-T/2

T/2 T/2
=1-e j<p j e-j2![(f-fo)tdt +1- e- j<P J e-j2![(f+fo)tdt

-T/2 -T/2

= 1-ei<PoT (f - fo) + 1-e -i<P0T (f + fo)

0T(f)::: sin(1tTf)
1tf

57

which, we can recall from our definition of the Dirac delta function,
approaches a Dirac delta function for large T. We find that the Fourier
Transform of this time-limited sinusoid looks like the Fourier Transform of
the infinite sinusoid other than the replacement of Dirac delta functions with
similar functions of finite frequency width.

Fourter Transform of O.o5s of x(t)=cos(21I; 1000Hz t)

f(Hz)

Figure 1. Fourier Transform of a time-limited sinusoid

58 Introduction to Digital Audio Coding and Standards

To the degree that T » To, neither term will give much contribution to
the Fourier Transform at f = 0 (since they are centered at f = fa and f = -fo)
so we again have that

<x> = F(O)rr "" 0

To the degree that the Mf ± fo) functions are narrow enough to not overlap
significantly, we can approximate the energy as:

~ ~ ~

E = fl X(f) 12 df "" ~2 fST(f _fO)2df + ~' fST(f + fo)2df

where the integrals over the squared &ref ± fo) functions can be integrated to
find that they are each equal to T. This result also leads to estimates of
average power and standard deviation that agree with our direct calculation
in the time domain. In summary, one can see that the Fourier Transform
information can also be used to describe the signal properties.

When we used the Fourier Transform to calculate the signal properties in
the time interval from -T/2 to T/2, we time-limited the signal. One way to
look at this time-limiting is to say that we multiplied the original signal x(t)
by a window function wTCt) equal to 1 in the time interval from -T/2 to T/2,
and equal to zero elsewhere:

wT(t) = {
I T/2<t~T/2

o elsewhere

When we looked at the resulting signal in the frequency domain, we found
that it looked like the Fourier Transform of the original signal other than the
fact that the Dirac delta functions were spread out a bit. This result is a
specific example of the convolution theorem of the Fourier Transform.

The convolution theorem states that multiplication by a function in the
time domain (e.g., windowing) corresponds to convolution (i.e. spreading)
by that function in the frequency domain. In addition, the convolution
theorem also states that convolution in the time domain corresponds to
multiplication in the frequency domain. Defining the convolution of two
functions Xl(t) and X2(t) as follows:

~

y(t)= fXl('t)X2(t-'t)d't=x1(t)OX2(t)

Chapter 3: Representation of Audio Signals

we can then prove the convolution theorem:

X(t)WT(t) = (I x(f)ej21tf'df)(I WT(g)eJ2ng'dg J = I x(f)eJ2nr'(I WT(g)eJ2ng'dg}f

= I x(flei2rrft(IwT(g - f)ej2n(g-- rHdg}f = I X(f{I WT(g - f)ei2ng'dg}f

= 1(1 X(f)WT(g - f)df }i2ng'dg = I(X(gl 0 WT(gl)e]2ng'dg

59

where the last expression represents the inverse Fourier Transform of the
convolution of X(f) and WT(f). Notice how the Fourier Transform of the
product is equal to the convolution of the Fourier Transforms. The reverse
can also be proven as follows:

~

= JX(f)H(f)e i2rrft df

where x(t) represents the audio signal convolved with a filter having impulse
response h(t). Notice how this form of the theorem shows that filtering
multiplies the frequency content of a signal with the frequency content of the
filter. In Chapters 4 and 5 when we discuss filter banks, we will make
frequent use of this result for discrete-time functions.

6. THE FOURIER SERIES

Suppose we only care about a signal over a finite time interval of time T
which we define as being from time -T/2 up to time T/2. We saw in the
previous section that the summary properties of the signal can be calculated
either from the signal values in that time interval or from the Fourier
Transform of the signal windowed to that time interval. In fact, the Fourier
Transform of the windowed signal

~ T/2

X(f) = fX(t)WT(t) e-j2trftdt = fx(t)e-j2trftdt

-T/2

60 Introduction to Digital Audio Coding and Standards

has enough information to perfectly reconstruct the signal in the time
interval since the Fourier Transform can be inverted to recover the
windowed signal.

We shall see in this section that we do not even need all of the Fourier
Transform data to fully reconstruct the signal in the time interval. Rather,
we can fully reconstruct the time-limited signal using only the values of X(D
at discrete frequency points f = kiT where k is an integer. We carry out this
data reduction by replacing the windowed signal with a signal equal to it in
the time interval from - T/2 to T/2 but repeated periodically outside of that
interval. As long as we only care about signal values in the time interval
from -T/2 to T/2, making this change will not affect the results.

Let's calculate the Fourier Transform of such a signal that is periodic
with period T so that x(t + nT) = x(t) for all t and any integer n. In this case,
we have that:

~ TI2

X(f)= fx(t)e-i2Itftdt= I f x(t+nT)e-i21tf(t+nT)dt
n=~ -T/2

~ T/2 T/2 ()
= I fx(t)e-i21tf<t+nT)dt=_TfI2x(t)e-i2Itft nte-i21lDIT dt
n=~ -T/2

= f x(t)e-i2Itft ~ Io(f-k/T) dt
T/2 (~)

-T/2 k=~

1 ~ T/2

=T Io(f-k/T) fx(t)e-i2ltkt/Tdt
k=~ -T/2

=~ IO(f-k/T)X[kl
T k=~

where we have used the Poisson sum rule that relates an infinite sum of
Dirac delta functions to an infinite sum of complex exponentials and have
defined the quantities X[k] as

T/2

X[k] == fx(t)e-i2ltktlTdt

-T/2

Notice that the Fourier Transform of this period signal is non-zero only at
the discrete set of frequencies f = kiT. The inverse Fourier Transform for
this periodic signal then becomes

Chapter 3: Representation of Audio Signals 61

x(t) = fX(f)ei2nftdf = ~ fX[k]ei27tktlT
-= k~-=

Noting that X[k] is just the Fourier Transform of our time-limited signal,
this result shows us that a periodic version of our time-limited signal can be
exactly recovered using only the Fourier Transform values at the discrete
frequency points f = kiT where k is integer. This transformation of a periodic
signal x(t) to and from the discrete frequency values X[k] is known as the
"Fourier Series", which we have just seen is a special case of the Fourier
Transform.

We can apply the Fourier Series to non-periodic signals if we are only
interested in the signal values in a limited time interval. If we window our
signal to the time interval of interest then we can fuIIy represent the signal in
that interval by its content at only the set of discrete frequencies. However,
as we saw from the convolution theorem, the windowed signal has frequency
content that is a blurred version of the original signal. Moreover, we find
that many frequency components are needed to accurately reproduce the
signal if there is too sharp a discontinuity in the windowed signal at the edge
of the time interval. For this reason, we typically use smooth windows to
transition the signal to zero near the edges of the time interval before taking
transforms. In Chapter 5 we will discuss how careful selection of window
shape and length can keep the frequency domain blurring to a minimum
while also limiting the creation of high frequency content from edge effects.

7. THE SAMPLING THEOREM

The Sampling Theorem [Shannon 48] teIIs us that continuous-time
signals can be fully represented with discrete-time samples of the signal if
we sample the signal often enough. Moreover, the theorem specifies exactly
what sample rate is needed for a signal.

Suppose we have a signal whose frequency content is entirely contained
in the frequency range from -Fmax to Fmax. Since the frequency content is
zero outside of this frequency range, the signal can be fully recovered given
only the frequency content in this region by taking the appropriate inverse
Fourier Transform. If we choose some frequency interval F, > 2*Fmax. we
can periodically continue the signal's frequency spectrum outside of the
range from -FJ2 to FJ2 without corrupting any of the frequency content
needed to recover the original signal. The same reasoning that tells us that a
time-periodic function only has discrete frequency components can be

62 Introduction to Digital Audio Coding and Standards

employed to show that a frequency-periodic function only has discrete-time
components.

Repeating the line of reasoning used formerly to derive the Fourier Series
leads us to the following representation of the spectrum that has been
periodically continued in frequency with "period" Fs:

I ~ F,/2

X(f) =F L x[n]e-j21t1lflF, where x[n] == fX(f)ej21tnflF'df

s n=- -F,/2

We can draw several immediate conclusions from this result.
Firstly, if we define T == IlFs then we find that x[n] is exactly equal to

x(nT). They are equal because the true Fourier Transform of the frequency
limited signal is equal to its periodically-continued version in the frequency
range from -Fsl2 to F/2 and zero elsewhere. This implies that the inverse
Fourier Transform of the real X(f) at time t = nT is exactly what we defined
x[n] to be. In other words, the periodic X(f) is fully defined in terms of the
true signal x(t) sampled with sample time T (i.e. sample rate Fs).

Secondly, since the periodic X(f) is fully defined from the signal samples
then the continuous-time signal x(t) must also be fully defined by the
samples. This can be shown by throwing out the frequency content of the
periodic X(f) outside of the frequency range from -FJ2 to FJ2 to recover the
signal's true Fourier Transform X(f). We can then take the inverse Fourier
Transform of the true X(f) to recover the full signal:

~ F,/2

x(t) = f X(f)e j21tftdf = f X(f)e j21tftdf
-F,/2

F,/2 (~)
-)2 ~s n~x[n]e-j21tnff e j21tftdf

,

~ (1 F,/2 1 = L x[n] F f ej21tf(t-nT)df
n=- s -F,/2

= f x[n](Sin(1tF:< (t - nT»)
n=- 1tFs (t - nT)

= f x[n](Sin(1t(Fst-n»)
n=- 1t(Fst - n)
~

= L x[n] sinc(Fs t - n)
n=--oo

Chapter 3: Representation of Audio Signals 63

In other words, the signal x(t) can be fully recreated from only the samples
x(nT) by sinc function interpolation, where sinc (x) = [sin(ltx)]/ltx.

Having drawn the conclusion that the signal x(t) can be fully represented
by its samples x(nT), we need to remember the assumptions leading to that
result. The critical assumption was that the periodicity frequency Fs was
greater than twice the highest frequency component in the signal, i.e. Fs ~ 2
Fmax. Without this assumption, we would not have been able to recover the
true spectrum from the periodically continued one. This constraint relates
the sampling rate Fs (T = 11 Fs) to the frequency content of the signal. We
call this minimum sample rate 2 Fmax the "Nyquist frequency" of the signal.
The Sampling Theorem tells us that we can do all our work with discrete
time samples of a signal without losing any information if the sampling rate
is larger than the Nyquist frequency.

In addition, the Sampling Theorem tells us that the frequency spectrum of
sampled data is periodic with period Fs. If we sample a signal with
frequency components greater than FJ2 (i.e. Fs is smaller than the Nyquist
frequency) then the Sampling Theorem tells us that the frequency spectrum
will be corrupted. In particular, high frequency content will be irretrievably
mixed in with the frequency content from lower than FJ2. This frequency
mix up is called "aliasing" and it produces a very unpleasant distortion in the
original signal. Normally, we low-pass filter any input signal that might
have frequency components above FJ2 before we sample it to prevent
aliasing from occurring. For example, telephone service is typically sampled
at 8 kHz so it is low-pass filtered down to below 4 kHz before sampling.
(Yes, you do sound different on the phone!)

In the next section we discuss how prediction can be used to represent a
time series of audio samples while reducing the number of bits needed to
encode the sample.

8. PREDICTION

We often find that we can predict a quantized audio sample with
reasonable accuracy based on the values of prior samples. The basic idea is
that, if the difference between the actual quantized sample and the predicted
sample is typically much smaller in magnitude than the range of sample
values, we should be able to quantize the differences using fewer bits than
were needed to quantize the actual samples without increasing the
quantization noise present.

What do we mean by prediction? Prediction means recognizing a pattern
in the input data and exploiting that pattern to make a reasonably accurate
guess as to the next data sample prior to seeing that sample. For example, if

64 Introduction to Digital Audio Coding and Standards

we were trying to quantize a slowly varying parameter describing our sound
signal, we might be able to predict the next value based on simple linear
extrapolation of the two prior samples:

Y pred [n] = y[n -1] + (y[n -1]- y[n - 2]) = 2y[n -1]- y[n - 2]

As another example, sound in an excited resonant cavity, for example, a
struck bell, decays away at a predictable rate given the resonance frequency
and decay time:

where fo is the resonance frequency, 't is the decay time, and Fs is the sample
rate. Notice how both of these examples predict the next value as a weighted
sum of the prior values:

N

Y pred [n] = :2>k y[n - k]
k=l

where N is known as the "order" of the prediction. (In the two examples
presented N was equal to 2 so they would be known as second order
predictions.) Such a weighted sum of prior values is known as an "all-poles
filter" and is a common method of prediction in low bit rate speech coding.

Suppose we had a way to predict samples with reasonable accuracy, how
would we use it to save bits? One way to do this is to quantize the
prediction error rather than the signal itself. If the prediction works
reasonably well then the error signal e[n] = y[n] - ypred[n] should be small.
For example, Figure 2 compares an input signal y[n] (from a resonant cavity
with a resonance frequency of 2 kHz and a decay time of 10 ms that is being
excited by both noise and periodic pulses) with the error signal from using
the second order predictor described above. Notice that, although the input
signal covers most of the range from -1.0 to + 1.0, other than the occasional
spike (corning from the periodic pulses) the error signal is mostly contained
in the region from -0.01 to +0.01. In other words, this example shows a
typical amplitude reduction of roughly a factor of 100 in the scale of the
prediction error versus that of the input signal. If we know how much
quantization noise was allowed in the signal, we would need about 6 fewer
bits to quantize the error signal to the same level of quantization noise as is
needed to quantize the input signal.

Chapter 3: Representation of Audio Signals

1
0.8
0.6
0.4
0.2

'2 0 '>
-0.2
-0.4
-0.6
-0.8

-1

Effect of a Linear Predictor
0.05
0.04
0.03
0.02
0.Q1

'0
-0.01
-0.02
-0.03
-0.04

+---,----,--.,---,----,-----.----r---+ -0.05

0 256 512 768 1024 1280 1536 1792 2048
n

Figure 2. Prediction leads to an error signal with much lower amplitude than the original
input signal

65

As a very stylized example of how we can achieve this bit rate reduction,
let's consider a case where we can predict the next 16 bit quantized sample
to within three quantizer spacings 99% of the time. (Although a predictor
that can get within three quantizer spacings of a 16 bit quantized sample is
quite unlikely, this exaggerated example should make the mechanics of bit
rate reduction by prediction more clear.) In this case, we could code the
difference signal using 3 bits according to the following pattern:

Error Code
-3 [111]
-2 [110]
-1 [101]
0 [000]
1 [001]
2 [010]
3 [011]

beyond [100]

where any sample whose predicted value was more than 3 quantizer spacings
away would have the [100] code followed by the full quantized code of the
input sample. If the original samples were quantized at 16 bits then this
encoding of the prediction errors would have an average bit rate of 3.16 bits
per sample (3 bits to code the prediction error plus another 16 bits 1 % of the
time when the predicted value is beyond 3 quantizer spacings away from the
input signal).

66 Introduction to Digital Audio Coding and Standards

If we also knew that the prediction error was clustered around low values
we could supplement prediction with an entropy coding routine to further
reduce the required bit rate. For example, if the prediction error in the prior
example had the following probability distribution:

Error Prob
-3 1%
-2 3.5%
-1 15%
0 60%
1 15%
2 3.5%
3 1%

beyond 1%

we could encode it using the following Huffman code table:

Error
-3
-2
-1
o
1
2
3

beyond

Prob
1%

3.5%
15%
60%
15%
3.5%

1%
1%

Code
[1111110]

[11110]
[110]

[0]
[10]

[1110]
[111110]
[1111111]

to get an average bit rate of 2.03 bits per sample.
In implementing prediction in a coder there are a number of issues that

need to be confronted. First of all, a decision needs to be made as to the
form of the prediction. This depends a lot on the source of the data being
predicted. The all-poles filter approach has been used in low bit rate speech
coding, often implemented with 10th order prediction. The all-poles filter
approach is attractive for predicting speech samples since we know that
speech is formed by passing noise-like (e.g., the hiss in a sibilant) or pulsed
(e.g., glottal voicing) excitation through the resonant cavities of the vocal
tract and sinuses, but the appropriate prediction routine for other types of
information could very well take very different forms.

Secondly, the parameters describing the prediction function must be
determined. In predictive speech coding, the filter coefficients (the ak in the
all-pole filter expression above) are usually set to minimize the variance of
the error signal. This is carried out on a block-by-block basis where the

Chapter 3: Representation of Audio Signals 67

block length is chosen to be shorter than the typical phoneme time scale.
The resulting matrix equation for the ak depends on the autocorrelation of the
signal over the block (averages of y[n-k]*y[n-p] over all block samples n for
various values of k and p) and has been studied sufficiently that very high
speed solutions are known. For other forms of prediction equation,
corresponding parameter fitting routines need to be defined.

Thirdly, information about the predictor form and coefficients needs to
be passed to the decoder. Such information requires additional bits and
therefore removes some of the performance enhancement from prediction.
This loss is kept to a minimum by using a set of predictor coefficients as
long as is possible without causing significant degradation of the prediction.
For example, in low bit rate speech coding each set of predictor coefficients
is typically used for a passage of 20-30 ms.

Fourthly, to limit the growth of quantization errors over time, prediction
is almost always implemented in "backwards prediction" form where
quantized samples are used as past input values in the prediction equation
rather than using the signal itself. The reason is that the quantization errors
produced during backwards prediction only arise from the coarseness of the
quantizer while the errors in "forward prediction" form (i.e., doing the
prediction using the prior input samples and not their quantized versions) can
add up over time to much larger values.

Finally, a coding scheme must be selected to encode the prediction
errors. Quantizing the error signal with a lower Xmax and fewer bits than are
used for the input signal is the basic idea behind the "differential pulse code
modulation" (DPCM) approach to coding. Choosing to use a quantizer
where X max changes over time based on the scale of the error signal is the
idea behind "adaptive differential pulse code modulation" (ADPCM). (For
more information about DPCM and ADPCM coding the interested reader
can consult [Jayant and Noll 84].) In low bit rate speech coding several very
different approaches have been used. For example, in "model excited linear
prediction" (MELP) speech coders the error signal is modeled as a weighted
sum of noise and a pulse train. In this case, the error signal is fit to a 3-
parameter model (the relative power of noise to pulses, the pulse frequency,
and the overall error power) and only those 3 parameters are encoded rather
than the error signal itself. As another example, in "code excited linear
prediction" (CELP) speech coders the error signal is mapped onto the best
matching of a sequence of pre-defined error signals and the error signal is
encoded as a gain factor and a codebook entry describing the shape of the
error signal over the block. (For more information about predictive speech
coding the interested reader can consult [Shenoi 95]. Also, see Chapter 15 to
learn more about the role of CELP and other speech coders in the MPEG-4
Audio standard.)

68 Introduction to Digital Audio Coding and Standards

9. SUMMARY

In this chapter, we discussed the representation of audio signals in both
the time and frequency domains. We used the Fourier Transform and its
inverse as a means for transforming signals back and forth between the time
and frequency domains. We learned that we only need to keep track of
frequency content at discrete frequencies if we only care about signal values
in a finite time interval. We also learned that we can fully recover a signal
from its discrete-time samples if the sampling rate is high enough. Having
learned that we can work with only discrete-time samples of a signal, we
learned how to represent a series of quantized audio in a more compact way
by predicting samples from previous ones.

In the next chapters, we address the issue of time-to-frequency mapping
discrete quantized samples and learn how we can use the computer to
transform finite blocks of signal samples into equivalent information in the
frequency domain. Once in the frequency domain, we have greater ability to
use the tonal properties of the input signal and the limits of human hearing to
remove redundant and irrelevant data from how we store and transmit audio
signals.

10. APPENDIX - EXACT RECONSTRUCTION OF A
BAND-LIMITED, PERIODIC SIGNAL FROM
SAMPLES WITHIN ONE PERIOD

Let's consider a band-limited, periodic signal, x(t), with a maximum
frequency Fmax and period To. We can recover the exact input signal from its
samples if we can sample it with a sample rate Fs = lIT ~ 2Fmax using the
reconstruction formula

All samples contribute to x(t) when t "* nlFs with a contribution that drops
slowly with distance in time according to the function sin [1t(t-t')]ht(t-t').

In the particular case of a periodic signal, we can choose to sample an
integer number of times per period, i.e., T = 1fFs = TofM S; 1I2Fmax, so for
each period the sample values are the same. In this case defining n -= m +
kM and noting that x[n + kM] = x[n], we have:

Chapter 3: Representation of Audio Signals 69

x(t) = L L x[m) -~--,,-' --~
k~~ m~M-' (Sin(1t(tF - m - kM»)J

k~~ m=O 1t(tF, - m - kM)

= 'f mI<'_I)kMx[m)(sin(1t(tFs -m») J
k~~ m~{} 1t(tFs - m - kM)

= mI-'X[m) sin(1t(tFs - m») 'f ((_I)kM)
m=O k~~ 1t(tF, - m - kM)

Combining positive and negative k terms with equal Ikl, we obtain:

m~M-' ~ I k~~(2(-I)kM(tF -m) J}
x(t) = L x[m] sin(n(tF, - m) + L 2 s 2

m~O n(tF, - m) k~' n[(tFs - m) - (kM)]

By using [Dwight 61]:

with a = (tF, - m)/M, x = 0 for M odd, and x = 1t for M even, we obtain:

() m~-' [] sin(1t(tF, - m»)
xt= L..xm '

m~O Msin(-fr(tF, -m»)
for Modd

m~M-' sin(1t(tF - m»)cos(~(tF - m»)
x(t) = L x[m) s. It M s

m~O Msm("M(tFs -m»)
for Meven

You can recognize that these equations allow us to reconstruct the full signal
x(t) from a set of samples in one period of the periodic function. For M odd,
the function multiplying the sample values is referred to as the "digital sine"
function in analogy with the sinc function interpolation formula derived in
the discussion of the Sampling Theorem.

11. REFERENCES

[Brigham 74]: E. O. Brigham, The Fast Fourier Transform, Prentice Hall
Englewood Cliffs, N. J. 1974.

70 Introduction to Digital Audio Coding and Standards

[Dwight 61]: H. B. Dwight, Tables of Integrals and other related Mathematical
Data, MacMillan Publishing Co., Inc., New York 1961.

[Jayant and Noll 84]: N. Jayant, P. Noll, Digital Coding of Waveforms: Principles
and Applications to Speech and Video, Prentice-Hall, Englewood Cliffs, 1984.

[Shannon 48]: C. E. Shannon, "A Mathematical Theory of Communications", Bell
Sys. Tech. J., Vol. 27, pp. 379-423, July 1948.

[Shannon 49]: C. E. Shannon, "Communication in the Presence of Noise", Proc.
IRE, Vol. 37, pp. 10-31, January 1949 (reproduced in Proc. of IEEE, Vol. 86, no. 2,
pp. 447-457, February 1998).

[Shenoi 95]: K. Shenoi, DigitaL SignaL Processing in Telecommunications, Prentice
Hall PTR, 1995.

12. EXERCISES

a) Signal Representation and Summary Properties:
Consider the following signal:

{
sin(2000m) sin(41t t)

x(t) =
o elsewhere

forO ~ t ~1'

which represents a 1 kHz sine wave windowed with a sine window to a
duration of 1,4 second. Do the following:
1. Graph the signal
2. Compute the signal summary properties from the time domain

description of the signal.
3. Compute and graph the Fourier Transform of this signal.
4. Compute the signal summary properties from the frequency domain

description of the signal.
5. Sample this signal at an 8 kHz sample rate.
6. Use sine function interpolation to estimate the original signal from its

samples, and compare with the original signal. Explain any differences.

b) Prediction:
Consider the signal

Chapter 3: Representation of Audio Signals 71

y(n) = e COSnffiO n_ {
-an > 0

o n<O

where a = 0.05 and <00 = 0.3 1t. Consider also a (rectangular) windowed
version of this signal

_ R) {y(n) - M :s; n :s; M
y (n =

M 0 elsewhere

where M = 128 (i.e. rectangular window of length 2M+ 1 centered at n = 0).
Finally, consider a 2-term LPC predictor A(z) == alz -I + azz -z so that we try
to predict a signal yen) as ypredict(n) = aly(n-l) + azy(n-2).
1. Define the excitation (Le. prediction error) x(n) as x(n) == yen) - ypredict(n).

Show for arbitrary signals yen) that the transfer function relating x(n) to
yen) is equal to 1/(1- alz -I - azz -z). This transfer function can in general
have two complex poles (i.e. the denominator is quadratic in z -I).
Assume that the poles are complex conjugates of each other (i.e. one
pole is c = rde and the other is c * = re-ie) and determine al and az in terms
ofr, e.

2. Take the z-transform (see Chapter 5) of our specific yen) and relate r, e
to a, <.00 by identifying the pole locations of yen). Given r, e we also
know at. az (from part 1), so calculate the prediction error x(n) for our
two-point predictor applied to our yen) using its true pole locations.

3. Use the z-transform of yen) to calculate the Fourier Transform of yen)
(i.e. Y(ro) is the z-transform evaluated at z = d OO) and graph IY(ro)lz.
Take a close-up look at the positive frequency pole and fit a Lorentzian
to the peak of the form

K

where A, W, K are constants to fit by eye, analytical calculation, or
numerical fitting. What is your best fit for A, W, K? Show a close-up
graph at your fit vs. IY(ro)lz at the peak. How do you think A, W relate
to a, <.Oo?

4. Define the prediction error energy as

~

E = L (y(n) - Y predict (n»2
0=-00

72 Introduction to Digital Audio Coding and Standards

Substitute ypredict(n) = aly(n-l) + a2y(n-2) and write E as a quadratic
function of al and a2. An alternative approach to that of part 2 for
finding the predictor coefficients is to minimize E(al,a2) w.r.t. al and a2.
Do this by setting both

equal to zero. Write the result as a matrix equation for

in terms of the matrix elements

~

<l>(k, I) = Ly(n - k)y(n -I)
0=-00

5. Obviously we can't actually calculate <j)(k,l) values since they require us
to use infinite length signals. We can, however, calculate a windowed
approximation to <j)(k,l) using our windowed (and zero padded) signal

Define

Y R (n)
M

and show that it can be calculated as a sum of a finite number of terms.
Also show that it only depends on Ik-ll terms in the form

$~ (k,l) = g ~ (Ik -II)

Re-write the matrix equation from part 4 using the windowed
approximation and show that we only need three numbers to solve for x.
Namely, show that we only need to know

Chapter 3: Representation of Audio Signals 73

R R R
g M (0), g M (1), g M (2)

to fill in the matrix elements in the equation for x.
6. Using M = 128, calculate

R R R
g (0), g (1), g (2)

M M M

for our signal and solve the matrix equation to find at and a2. Use the
relations from parts 1, 2 to calculate the pole estimates a, roo
corresponding to this estimate of at and a2. Also use this estimate of at
and a2 to calculate the prediction error x(n) == y(n) - Ypredict(n). Graph this
prediction error vs. that calculated on part 2. Calculate the prediction
error energy in both cases: which is lower? Which do you think is a
"better" predictor? Explain.

7. Repeat part 6 with one of the other windows discussed in Chapter 5 (e.g.
Hanning, Kaiser-Bessel) in place of the rectangular window. In other
words, for some other window type W, use

y W (n)={W(n)y(n) -MnM
M 0 elsewhere

To estimate

W W W
g M (0), g M (1), g M (2)

and solve for the LPC predictor pole location. Compare the rectangular
window's pole estimates a, roo with these for your window for the cases
M = 32, 64, 128, 256.

Chapter 4

Time to Frequency Mapping Part I: The PQMF

1. INTRODUCTION

In this and the following chapter, we discuss common techniques used in
mapping audio signals from the time domain into the frequency domain.
The basic idea is that we can often reduce the redundancy in an audio signal
by subdividing its content into its frequency components and then
appropriately allocating the bit pool available. Highly tonal signals have
frequency components that are slowly changing in time. The data necessary
to fully describe these signals can be significantly less than that involved in
directly describing the signal's shape as time passes.

Frequency domain coding techniques have the advantage over time
domain techniques like, for example, predictive coding schemes such as
ADPCM (see also Chapter 3 and [Jayant and Noll 84]), in that the number of
bits used to encode each frequency component can be adaptable. Allocating
different numbers of bits to different frequency components allows us to
control the level of quantization noise in each component to ensure that we
have the highest coding accuracy in the frequency components that most
need it. In this sense, the frequency-domain signal representation provides
an ideal framework for exploiting irrelevancies in the signal. This issue is
intimately related to the main topic of Chapters 6 and 7, where we discuss
how studies of human hearing allow us to determine which frequency
components can accept significant quantization noise without producing
audible artifacts.

The basic technique of time to frequency mapping is to pass the ·signal
through a bank of filters that parse the signal into K different bands of
frequencies. The signal from each frequency band is then quantized with a

M. Bosi et al., Introduction to Digital Audio Coding and Standards
© Kluwer Academic Publishers 2003

76 Introduction to Digital Audio Coding and Standards

limited number of bits, putting most of the quantization noise in frequency
bands where it is least audible. The quantized signal is then sent to a
decoder where the coded signal in each band is dequantized and the bands
are combined to restore the full frequency content of the signal. In most
cases, an additional filter bank is needed in the decoder to make sure that
each band's signal is limited to its appropriate band before we add the bands
back together to create the decoded audio signal. An immediate issue with
such an approach is the fact that, by splitting the signal into K parallel bands,
we have multiplied our data rate by a factor of K. To avoid raising the data
rate when passing the signal through the encoder filter bank, we throwaway
all but one out of every K samples or in other words we "down sample" by a
factor of K. In Figure I, a general overview of the time to frequency
mapping process is shown. Remarkably, we shall see that we can cleverly
design filter banks such that the original signal is fully recoverable from the
down-sampled data.

Input
Signal

x

Filler Bank Down·sampling Data is quantized,packed,
parses frequency preserves delivered to decoder. and

content into bands data rate dcquanlized

Yo

YI

Encoder

I

Yo

I

YI

I

YK

Up-sampling Filtcr Bank limits
restores sample frequency conlent

rate of data to initial bands

+

Decoder

Figure 1. Overview of the time to frequency mapping process

Output
Signal

X'

In this chapter we discuss the constraints on the design of filter banks for
parsing signals into their frequency domain content and meet some of the
more commonly used filter banks in audio coding. We first introduce the
discrete time generalization of the Fourier transform, the Z transform. The Z
transform is a basic technique used in filter design for sampled data and is
the easiest way to derive the basic filter bank coding techniques. We then
introduce two-channel perfect reconstruction filter banks to get a better
understanding of how filter design constraints allow us to recover the
original signal from down-sampled frequency bands. We discuss how to
create filter banks that generalize the two-channel frequency parsing to
higher numbers of bands (e.g., 32 bands). We then present in detail a
particular filter bank, the "pseudo quadrature mirror filter" PQMF, that has

Chapter 4: Time to Frequency Mapping Part I: The PQMF 77

had a major impact in audio coding. As an example of its applications, the
32-band PQMF used in the MPEG audio coders is described in detail.

2. THE Z TRANSFORM

In Chapter 3 we saw that band-limited signals can be recovered from
sampled data provided that the sample rate Fs =IITs is higher than twice the
highest frequency component in the signal. We saw in our derivation of the
Sampling Theorem (you can derive this by replacing 2*Fmax with Fs) that we
can represent the frequency content of such a signal in the frequency range
from -F.l2 to F.l2 using the following Fourier series:

~ -j21t~
X(f)=t Lx(nTs)e F, ,

n=--oa

The time domain content of such a band-limited signal can then be
recovered using the inverse Fourier Transform to find that:

F,/2

x(t) = SX(f)e i21tft df
-F,/2

However, we need to be careful about making sure that the signal is band
limited to within the frequency range from -F.l2 to F/2 since sampling will
"alias" any spectral components outside this frequency range into this
frequency range. Moreover, since it is based on the Fourier series, any
attempt to use the above formula for X(f) outside of this frequency range
will find the frequency content in the range periodically continued
throughout all possible frequencies. We can use this pairing of sampled
time-domain data and frequency domain content in its own right to define a
frequency representation of any sampled time-domain data as long as we
recognize the limitations of this pairing in describing the true frequency
content of a signal. Such a pairing is called the "discrete-time Fourier
Transform".

The Z transform is a generalization of the discrete-time Fourier
Transform. Define the mapping of the frequency f onto the complex number

z(f)=ei21tf/Fs

78 Introduction to Digital Audio Coding and Standards

Notice that z(D is a complex number with values on the unit circle and
periodic in frequency with period Fs. In terms of z, we can write the forward
transform of the discrete time Fourier Transform as:

~

X(O =* Lx(nTs) z(O-n
n::::-oo

The Z transform generalizes this forward transform to arbitrary complex
values of frequency, i.e. values of z off the unit circle.

Given a data series x[n] and a complex number z, the Z transform of x[n]
is defined as:

~

X(z) = L x[n] z-n
n=-oo

Notice that we can immediately associate a Z transform of a sampled data
series with the discrete-time Fourier Transform of that data using

x[n] = x(nTs), z = z(f) = ei21tflF" and defining X(f) = X(z(f)/Fs

Like the discrete-time Fourier Transform, the Z transform has an inverse
transform requiring an integration in the complex plane (see for example
[Rabiner and Gold 75]), however, we will not need to use the inverse Z
transform in this book. In this book, we mostly use the Z transform as a
convenient way to derive analytical expressions for Fourier Transforms of
sampled data.

2.1 Important Properties

Three extremely important properties of the Z Transform are its linearity,
the convolution theorem, and the delay theorem. Linearity of the Z
transform says that, given two data series xt[n] and xz[n] then the Z
transform of any linear combination of the series:

is just the linear combination of the Z transforms:

Y(z) = A Xt(z) + B Xiz)

This is derived readily from the definition of the Z transform:

Chapter 4: Time to Frequency Mapping Part I: The PQMF 79

~ ~

Y(z) = Ly[n] z-n = L(Axl[n]+ Bx 2[nJ) z-n
0=-00 0==---00

~ ~

= A L x 1 [n] z -n + B L x 2 [n] z-n
0=-00 n=--oo

= AX l (z) + BX 2 (z)

The convolution theorem states that the Z transform of the convolution of
two data series is equal to the product of the Z transforms. In other words, if
we define the convolution of two data series xl[n] and x2[n] as:

~

y[n]=x l [n]ox2[n]= Lx l [n-m]x 2 [m]
m=-oo

then we have that

This can be shown as follows:

~ ~ ~

Y(z)= Ly[njz-n = L Lx l [n-mjx 2[mjz-n
0=-00 0=-00 m=-oo

00 00 00 00

= L Lxl[n -m]z-<n-m)x2[m]z-m = L Lx l [p]z-Px 2[m]z-m
n =--00 m=-oo p=~m=~

Since passing a signal through a linear, time-invariant filter is equivalent
to convolving the signal with the filter's impulse response function, the
convolution theorem tells us that the Z transform of a filtered signal is just
the product of the original signal'S Z transform and the Z transform of the
filter's impulse response function.

The delay theorem states that the Z transform of a signal delayed D time
samples is equal to ZO times the signal's Z transform. This can be readily
seen from the Z transform of a data series yen] = x[n-D]:

~ ~ ~

Y(z) = Ly[n]z-n = Lx[n-D]z-n = Lx[m]z-m+o =X(z)zo
0=---00 0=--00 m=-oo

80 Introduction to Digital Audio Coding and Standards

These three properties together tell us how to calculate the Z transform of
a signal passed through a chain of filters: for all filters in series multiply the
Z transforms, whenever parallel paths are summed add the Z transforms, and
whenever delay lines are used multiply by ZD.

2.2 Down-Sampling

Before proceeding to the design of perfect reconstruction filter banks, we
need to establish two more properties of the Z transform: the effects of
down-sampling and up-sampling on a signal's Z transform. We need these
properties because, as shown in Figure I, we typically down-sample the data
coming out of the filter bank to keep the data rate constant and then we
typically up-sample the data (Le. intersperse zeroes between data points)
prior to recombining the sub-band signals to space it out back to the original
data rate. We first derive the effect of down-sampling and then derive the
effect of up-sampling.

Prior to deriving the effects of down-sampling, we take a brief digression
to discuss a useful result that makes the derivation easier. This result
concerns the properties of the Kth roots of 1.

The K different Kth roots of 1 are symmetrically located on the unit circle
and can be enumerated as

{ Xr = ei21tr/K for r = 0, ... , K -1 }

Due to their symmetric location on the unit circle, the sum of the roots is
equal to zero. An interesting property of the roots of 1 is that the set of each
of the roots raised to the mth power:

is just another enumeration of the full set of roots provided that m is not a
multiple of K. For example, consider the cube roots of 1 (see also Figure 2):

The set of cube roots to the first power is trivially the set itself. The set of
cube roots to the second power is again the set itself but in a different order:

However, the set of cube roots to the 3rd power is just 1 repeated:

Chapter 4: Time to Frequency Mapping Part I: The PQMF 81

And so on ...
This property of the Kth roots of 1 allows us to establish the following

sum rule for powers of the roots:

~ Iei2mro/K = {I if m = nK
K r=O 0 otherwise

We make use of this rule in our derivation of the Z transform for down
sampled data.

Imaginary Axis

Real Axis

Figure 2. The cube roots of I

We now derive the Z transform of down-sampled data. Consider the data
series yen] = x[nK] which represents data down-sampled by a factor of K.
The Z transform of yen] is equal to:

+00 +00 +00

Y(z)= Ly[n]z-n = L x[nK]z-n = Lx[m]z-m/Kom.nKforsomen =
n=-oo n=-oo m=--oo

Notice that the Z transform of down-sampled data is the sum of K terms.
What does this mean?

82 Introduction to DigitaL Audio Coding and Standards

Let's think about it in the frequency domain. Suppose we have data
sampled with a sample rate Fs. If we down-sample this data by K, then each
data point is spaced farther out in time and the new sample rate is equivalent
to FJK. This means that any spectral content of the original signal outside
of the frequency range of -FJ2K to FJ2K will be aliased. The K-l extra
terms in the down-sample Z transform are the aliasing terms of this spectral
content. How do we see this in the frequency domain? First of all, we must
realize that we consider all data series to be sampled with the same
underlying sample rate. This means that, although the down-sampled data is
really sampled with an effective sample rate of FJK, the data is viewed in
the time domain as a new data series sampled at the usual sample rate Fs. In
other words, we can directly use the above associations between the Z
transform and the discrete time Fourier transform, using Fs for the sample
rate, to relate the discrete time Fourier Transform of yen] to that of x[n].

We find that:

1 K-\

Y(f)=- IX(flK-rFs/K)
K 1"=0

We can see from this that the effect of down-sampling, other than signal
power reduction due to the factor 11K, is to:

1) spread out the spectral bandwidth by a factor of K (r = 0 term) and
2) to alias any part of the spectrum pushed outside of the range -F/2K

to FJ2K (r * 0 terms).
For example, the contribution of Y(f) at f = 0 comes not only from X(f) at f
= 0 but also at values of X(f) at f = r F/K for r = 1, ... , K-l. When we try to
develop perfect reconstruction filter banks, considerable effort will go into
making sure that we can undo the aliasing caused by down-sampling. In
Figure 3, the effects of aliasing caused by the down-sampling process are
shown.

Chapter4: Time to Frequency Mapping Part I: The PQMF

\
\

Case I: No Aliasing "

1
1

I ...
1 ...

y(t)

83

Case II: Aliasing
+--""""-~-+ -.=-----

·f,/4 0 +f,/4 ·f,/4 0 +f'/4

Figure 3. Aliasing effects in the down-sampling process

2.3 Up-Sampling

The effect of up-sampling data by a factor of K (i.e. intersperse K-l
zeroes between each data point) is just to replace z in the Z transform by ZK.

This result is quickly derived by considering the Z transform of the data
series

{
x[m] if n = mK

y[n] = . o otherwise

which is equal to

~ ~ ~

Y(z) = Ly[n]z-n = Lx[m]z-mK = Lx[m](zK)-m =X(zK)
n=-oo m=-oo m=---oo

In the frequency domain this becomes Yet) = X(Kt) so we can see that
up-sampling shrinks the spectrum bandwidth by a factor of K. Note,
however, that X(t) is periodic with period Fs and so up-sampling will bring
images of these copies of X(t) into the Yet) spectrum. When we develop
perfect reconstruction filter banks, we filter out these extra images with a
band-pass filter corresponding to the frequency band of that signal
component. In Figure 4, the effects of imaging caused by the up-sampling
process are shown. For an in-depth description of multirate systems and
filter banks the reader can consult [Vaidyanathan 93].

84 Introduction to Digital Audio Coding and Standards

Yet)

V\/
-fs/2 o +fs/2 -fs/2 o +fs/2

Figure 4. Imaging effects in the up-sampling process

3. TWO-CHANNEL PERFECT RECONSTRUCTION
FILTER BANKS

Having developed all of the pieces we need, let's move ahead and
describe how to design a two-channel perfect reconstruction filter bank. We
then discuss how the two-channel filter bank can be extended to create
multi-channel perfect reconstruction filter banks.

In a two-channel perfect reconstruction filter bank (see Figure 5), we
pass the signal x[n] through two parallel filters with responses ho[n] and
hJ[n]. Ideally, these two filters split the frequency spectrum between them
so that different signal components will be isolated in each data stream. This
will give us twice the data rate so we need to down-sample the data by a
factor of two. In a real coder we would then quantize the two data streams,
pack them together and send the packed data stream to the decoder, and then
unpack and dequantize the two data streams before the next steps in the
chain below, introducing quantization noise on the way. In this chapter we
ignore the effect of quantization noise and try to characterize the steps by
which the two uncorrupted intermediate data streams yo[n] and YJ[n] can be
combined into a new signal x'[n] which is exactly equal to the original signal
x[n] other than possibly being delayed. What we will do to the intermediate
data streams is to up-sample them (so they really reflect the original sample
rate again), pass them through filters with responses go[n] and gJ[n], and then
add them together. The challenge to us is to define filters ho[n], hJ[n], go[n],
and gJ[n] that allow perfect reconstruction of the input data x[n].

Chapter 4: Time to Frequency Mapping Part I: The PQMF

Input
Signal

x
Yo Yo'

YI

Encoder Decoder

Figure 5. Two-channel perfect reconstruction filter bank

OUlput
Signal

X'

85

To begin our analysis we calculate the Z transform of signal x'[n] in
terms of the input signal and the four filter responses. At each step, we use
the properties described in the previous section for applying filters, adding
signals, down-sampling, and up-sampling. First we write down the Z
transform of x'[n] in terms of the Z transforms of Yarn], YI [n], go[n], gl[n]:

Then we write down the Z transforms of yo[n], YI[n] in terms of x[n] and the
filters horn] and hl[n]:

Finally, we put it all together to get the final result:

X'(z) = t(Ho (z)Go (z) + HI (z)G I (z))X(z) +

t(Ho(-z)Go(z) + HI (-z)G I (z))X(-z)

Notice that the equation described above has one term proportional to
X(z) and another proportional to X(-z) - in the frequency domain the X(-z)
term represents the aliasing of spectral components at frequency f - F,/2 onto
frequency components at frequency f. The first thing we need to do in our
filter design is to make sure that the coefficient of the aliasing X(-z) term is
zero.

3.1 Aliasing Cancellation

One way to set up the filter banks so that there is no aliasing of the signal
is to define the synthesis filters go[n], gl[n] in terms of the analysis filters
horn], hl[n] such that their Z transforms satisfy:

86

Ga(z) = -HI (-z)

GI(z) = Ho(-z)

Introduction to Digital Audio Coding and Standards

Notice how this choice of filters eliminates the X(-z) term and we are only
left with the relationship that

X'(z) = t(- Ho(z)HI (-z) + HI (z)Ho(-z»)X(z)

The Z transform relationships between the analysis and synthesis filters
can be written in the time domain as:

go[n] = -(-I)"hl[n]

gl[n] = (_I)" horn]

These relationships can be quickly derived by comparing the Z transform
relationship term by term for different powers of z.

3.2 Perfect Reconstruction: the QMF Solution

Having defined synthesis filters to eliminate aliasing, we still need to
pick analysis filters that lead to perfect reconstruction. There are multiple
ways known to do this but we focus here on one of the most common types:
the Quadrature Mirror Filters, QMF [Croisier, Esteban and Galand 76]. The
QMF solution defines the filter hI [n] in terms of the filter ho[n] as:

Notice that, if ho[n] is a low-pass filter then hI [n] will be high-pass (see
Figure 6). We can see this by going to the frequency domain where we find
that

If the filter ho[n] is low-pass filter then it has frequency components near
f = 0 but not near f = FJ2. The frequency domain relationship then shows us
that the filter hl[n] has response near f = 0 like that of ho[n] near FJ2, not
much pass-through, while it has response near FJ2 like that of ho[n] near
zero, lots of pass-through. In other words, hl[n] will be high-pass and have
its highest frequency response magnitude near Fsf2 and correspondingly near

Chapter 4: Time to Frequency Mapping Part I: The PQMF 87

-Fsl2. We can rewrite the definition of all 3 of the other filters in terms of
ho[n]:

HI (z) = -Ho(-z)

Ga(z) = Ha(z)

GI(z) = Ho(-z)

hI[n] = _(_I)n horn]

go[n] = horn]

gI[n] = (_I)" horn]

,,~/ ,.•
-fsJ2 o fsl2

~,••......

-fsl2 o fs/2

Figure 6. Qualitative relationship of frequency content in the two-channel QMF analysis
fi lters ho and hi

Having defined all of the other filters now in terms of ho[n], we can
rewrite the Z transform of the output signal as:

The output signal is just a delayed but perfectly reconstructed copy of the
input signal if we can construct a filter ho[n] which satisfies the following:

3.2.1 An Example: the Haar Filter

To get a feel for the QMF solution, let's examine the exact 2-tap solution:
the Haar filter. The Haar filter ho[n] has impulse response

ho[n]={ ,fi,,fi ,O,O, ... }

The Z transform of this filter Ho(z) is equal to

It satisfies the perfect reconstruction condition since

88 Introduction to Digital Audio Coding and Standards

which shows us that if we build a QMF filter bank using it, the output should
equal the input signal delayed by I sample.

Let's check. The impulse responses of the other filters hJ[n], go[n], and
gJ [n] are defined in terms of the filter ho[n], and in the Haar case are:

go[nJ={ Jz, Jz ,O,O, ... }

gJ[nJ={ Jz,- Jz ,O,O, ... }

If we start with an input signal x[n] ={ ... , 0, 0, x[O], x[1], x[2], ... } then the
signals yo[n], YJ[n] will be equal to

yo[nJ={ ... ,0, Jz (x[OJ+x[I]), Jz (x[2J+x[3]), ... }

YJ[nJ={ ... ,0, Jz (x[OJ-x[I]), Jz (x[2J-x[3]), ... }

After up-sampling and filtering with the synthesis filters these 2 series
become

{ ... ,O,O, Y2(x[OJ+x[I]), Y2(x[OJ+x[l]), Y2(x[2J+x[3]), Y2(x[2J+x[3]), ... }

{ ... ,O,O, Y2(x[OJ-x[I]), -Y2(x[OJ-x[I]), Y2(x[2J-x[3]), -Y2(x[2J-x[3]), ... }

respectively. Finally, when added together to get the output signal, we find
that x[n] = { ... , 0, 0, x[O], x[\], x[2], ... } as expected.

Although Haar filters can be used to create a two-channel perfect
reconstruction filter bank, the shortness of the filter impulse response makes
the frequency localization quite poor for the two channels. The reason for
using longer filters is to get a much shorter transition region between the
pass-bands of the two analysis filters (see Figure 7). Unfortunately, no finite
order FIR filter with more than 2 taps has been found to solve the QMF

Chapter 4: Time to Frequency Mapping Part I: The PQMF 89

perfect reconstruction condition. Although no exact solution has been
found, filter design techniques have been developed to find longer FIR filters
that approximate the QMF perfect reconstruction conditions extremely well.

o fs/2

Haar Filters QMF

Figure 7. Qualitative comparison of frequency response of the Haar filter QMF solution with
that of longer approximate solutions to the QMF perfect reconstruction condition

3.3 Perfect Reconstruction: the CQF Solution

The QMF solution is not the only possible solution to the 2 channel
perfect reconstruction equations. Another solution has been found that is
better adapted to implementation using FIR filters: the Conjugate Quadrature
Filter (CQF) solution [Smith and Barnwell 86J. For this solution the
synthesis filters go[n], gl[n] are just the time reverses of the analysis filters
ho[n], hl[nJ. For FIR filters of length N this implies that:

go[n] = horN -1- n]

gl[n]=hl[N-l-n]

Like in the QMF solution, the analysis filter hl[n] is a version of the low
pass filter horn] modulated by (-1 t to make it high-pass, but in this solution
it is the time reverse of ho[n] that is modulated rather than ho[n] itself. In
specific, the relationship between the two analysis filters for even length N
is:

If we rewrite these CQF relationships in the z domain we find that:

90 Introduction to Digital Audio Coding and Standards

Go(z) = z-(N-I)Ho(Z-I)

G I (Z) = Z-(N-I)H I (Z-I)

HI (z) = z-(N-I)Ho(-Z-I)

A quick substitution into the 2-channel alias cancellation condition shows
that these choices ensure alias cancellation for even length N. Substitution
into the 2-channel perfect reconstruction condition shows that the base filter
ho[n] must be designed to satisfy

where the delay D = N-I. We can look at this condition in the frequency
domain and we see that our two analysis filters must satisfy the "power
complementarity" condition that:

Several standard methods exist for developing FIR filters that exactly satisfy
this condition, see for example [Vetterli and Kovacevic 95] for a summary of
design methods. The value of this CQF solution is that it is the basis for
expanding the two channel results to multiple channel filter banks.

4. THE PSEUDO-QMF FILTER BANK, PQMF

Having shown with the two channel case that careful design of the
analysis and synthesis filters can lead to perfect reconstruction filter banks,
for practical applications we need many more channels than two. For
example, in Chapter 6 we will see that the human ear's frequency response
naturally divides into 20-30 "critical bands". How can we create perfect
reconstruction filter banks with closer to that number of channels?

Early work on multi-channel filter banks tried to cascade QMF filter
pairs to subdivide the spectrum into multiple channels. This tree structure
approach has the disadvantage of long impulse responses and high
computational complexity. A more efficient, parallel multi-band approach
that represents an approximate generalization of the two channel CQF
solution was developed variously called the "pseudo-QMF" [Nussbaumer
81], PQMF, and "polyphase quadrature" [Rothweiler 83] filter bank. We
refer to it as the PQMF filter bank. The basic idea is to take a narrow low
pass filter and modulate copies of it to span the frequency domain. The filter

Chapter 4: Time to Frequency Mapping Part J: The PQMF 91

is then defined so that it decays fast enough so that there is negligible
overlap between next-near-neighbor filters and so that near-neighbor filters
cancel aliasing and satisfy a CQF-type perfect reconstruction equation.

The PQMF solution to developing near-perfect reconstruction filter banks
was extremely important historically. The Layer I and Layer II coders in
MPEG-l and MPEG-2 use this approach to time to frequency mapping. The
ability of the PQMF filter banks to reconstruct input signals with extremely
high accuracy and their efficient implementation allowed the development of
early perceptual audio coders.

4.1 Basic Structure

The PQMF filter bank consists of K channels, each of which is a low
pass filter h[n] modulated by a cosine. The exact form of the analysis and
synthesis filters is:

hk en] = h[n]Co{ 1t(k ~ t }n - (N;I))+ <h 1
for k=O, ... ,K-I

gdn] = hdN -1- n]

where N is the length of hen]. The phase<l>k is determined by an anti-aliasing
conditions between adjacent bands and satisfies the relationship:

(h - (h-l = 1-(2r + I)

where r is an integer. Note that the synthesis filters are just the time reverses
of the analysis filters as in the CQF solution.

Recall that cosine has a delta-function frequency response at positive and
negative frequencies. The convolution theorem, i.e. products in the time
domain lead to convolutions in the frequency domain, tells us that hk[n] has a
frequency response equal to that of H(t) shifted to both frequencies

(k + 1)
fk = ± __ 2_Fs 12

K

The K channels therefore lay down 2K copies of H(t) to divide up the
frequency spectrum between -FJ2 and Fs 12. This means that the full-width
of the low-pass filter H(t) should be equal to FJ2K, i.e. the pass-band should
be for frequencies up to I~ - F/4K.

92 Introduction to Digital Audio Coding and Standards

The perfect reconstruction requirements are that we design h[n] so that its
frequency components beyond Ifl = F/2K are negligible and that for lower
frequencies we satisfy the PQMF power complementarity equation

IH(f)12 + IH(-F/2K+f)12 = 2/F/ for 0::; If I::; F/4K

Notice the similarity of this requirement to the power complementarity
condition of the CQF solution.

4.2 The MPEG PQMF

MPEG-l and 2 Layers I, II, (and also the hybrid filter of Layer III, see
Chapter 11) use 32 channel PQMF filter banks where the base filter h[n] has
511 taps [ISO/IEC 11172-3 and ISO/IEC 13818-3]. The PQMF filter bank
used in these coders employs the following analysis and synthesis filters,
hk[n] and gk[n] respectively:

hdnl = h[nlCOS[(k+~}n-16) 3~]

gk [nl = 32 h[n1CO{ (k +~}n + 16) 3~]
k =0,1, ... ,31

n = 0,1, ... ,511

where k is the frequency index and n is the time index. The filter coefficients
describing the prototype filter h[n] are shown in Table 1. (The filter
coefficients for n > 256 can be found from the symmetry relation h[256+n] =
h[256-n]). A good closed form approximation of the standard coefficients
can be found in [Searing 91]. The filter length N is equal to 513, of which
the first and last coefficients are zero.

Chapter 4: Time to Frequency Mapping Part I: The PQMF 93

Table 1. MPEG-I Audio PQMF prototype filter coefficients h[n] [ISO/lEe 11172-3]
hIO)= OOllJJXlX) hf32J= -OUXlJIJR2S h[6tI= -UO:X)IOt~ h(%1- O.(llJ2J8&i8 hll28): Q,(mI71317 hl.lOOJ:: ..(11))2457142 hfllJ2l= ..(10)3134727 hl22-1I= UOl7876148
h[ll= ..o.CXl):.mm h[33):= -UOOJ)l47l12 111651'" -<l00J103iJ51 11[911;:: Q{l)'P.A747K 11I1N]= O.~3674 h/i61j= -QtnYllJ711 hlt9)]= -0002841473 h[2251o:: aOI87.'ifl8«i

~:;:: ~~~ :~~: ~~:~ ::~: ~::= ~::: ~= :::~l: ~'= h[I62I= -aOO1&D3~ h(1941= -0.002521515 11(2);1= nOl%?>i247

111-1\= -il.ooxmm hl361= -QocmI95~ h[68I= -UOXlUlQ,,2 h[lool= U0Xl3:¥m1 hl1321= OCUI868M ~:~!: ~~~ ~::l: ~.:~~ ::::: ~.~~~
h[51:o .().onmm h[37J::o -UCXXII2I4~ 1I(6I)J= -0(0)100719 h[1011= U(lm11456 h(l33)= Ctc:xm29220 bll65J= -O.OO3~ 111197J::o -O(lHJfJ517 hl229lo:: 00222287111
h161:= -o'UIXlXI,m 11138)::;0 -O.o:.mZH6S hl70l= ·(l(WIOO\9 h[I(2)= UUX)K»358 111134)= 0011783920 h066\= -Q~ h[I98J=- .0.(((971317 hI2})]= o.0230041~
h(7J= -O.~ h[39]:o" -tl00Xl252n hJ7I];,: -U0CXI1OO42 hlIOO]" Uloon&:m h/l35]= 0.OXJ7J19·I.:'i hIl67]" -O00?622532 hll99I'" ..().too:'iJ.W38 hI231!== 0023007185

::~:: 1= :~~:: ~= :~~:: ~::=~ ~:~:: ~=~ :~:~l: ~:~~ ~:::: ~~;!: ~:l: ~:!U;:: ~:~~:: ~~~~~~
h(IOj= ,(),,0XXlXR54 h[42]= --O.<XXm2425 h(74]= -o.QX)I02.~2(h[I(k)I'= o.flXl:'i.l216.1 hll38]o: 000J539lJ3 h,(170]= .,(HJJ.Kl48R24 h[M]: 0.001011848 hl234lo:: o.02611IIDI
/ltll)= .().In)X)1431 hH31= -n~ hJ7S]= -O.OXUJ9l82 bll07]o:: o.rIX'fJ7ff173 hll}}}", o(m·~.m hlm]= -(H1Ul747tR hlm]= (1001573563 hI2351= o.02m38«l
h(12)= .()Jffl:n1431 hl4.tl== --o.~ h(16J= -o.o.xmS367 hllCl!J= Oocx)sIJ782 hll40l= O.(XXJ371!6.)} 11(172]= --o'(J).I2IX)5g1 h[~]= 0.002161503 hI2361=:: 0.0278IS~2
h{13]'" ..Qooxxmm hI45]= ..o.oonlO531 h[71J= -o.OXJ1.X)122 hIH))]= I.W)})..f659l hI141/: (l00J288486 h{1731'" -(J.(X)4395962 h(3JSI= U0027742.}} h(237'== 0.028532982
h(14]= --O.m:nmm hl461= --O.(XID0392 h(78]= --O.oo:x:&WX h./1I0]== o.OX))HOO2J h(l421= 0.(0)1916119 hI!?4]: -o.~ h(DS'= o.OO?411293 hI238]== 0.029224873
hjl5)= .oJnm:2384 h1411= -tlfXXlWj253 h/79,= ..Qar0m24 bllll]-= 0.flXJ714302 hI143,= 0.00Ul8215 hlI75J= ..Q(X)..f5Xl48$ h[3J7]= U0J.m2I89 h(2JJ]= O.~
h(16]= -O.OOXD2384 hj48I'" -noo:ot9591 h[IIO)= -U0CID:i9618 h[1I2J== 0.flXJ7412{}1 h(J4-l]= -1J.00Xl214S8 II(I76J= -0.0:»638195 hln]= 0.0.»756451 h(240)== 0.00052ffi38
h{J7J= -O..oo:nJ2!I61 h[49]= ..Qoo:m2929 hI8!1: .Q1l:U.X:Qi58 I\(II3J= 0cm779152 h(l45]= -OJUH37329 hfl17]= -1l!X)4(OII24 h(».l,,,, OOOS462I'Xl h[241)::= UU3IJ32698
h(18]= -OJlXnn338 h(~]= -O.00lJS579: h[82]= -O.0'ID5Il'i45 hI1l4,,,, O~ h[I46]", -0.(0)25987 h(178)= --0.001728317 hl2JOI= 0.()))189346 h1242J= 0.G.317())8!o
hll9j= .oCl.OO)3138 hlSlj= -Ooo::xJSlXll5 hI83]", -O.<r0J39577 h{1IS)", 0001138757 h[147,= -O.OOB88J45 hll79l= --0.004748821 h(2111= oo::w.nlUZ7 h[2431= 0032243n>

~~:: ~:=~ :g~:: ~= :~~: ~=:8 ~::~:: ~=~~ :g::: ~=~1 ~:~l: ~:~~~~ ~~:~:: ~= :g~:: ~~rn~
hl22J= -OOOXl).l16& hiS-lI= --U00l.Ji\M h[Ml= Oru.um~ hfI18]= U{DJ)Jw.il h[I~I= -O.~ h(1821= --O.OOI'703O-l5 hl214j= o.fl})2878M h(246]= 0G.3J6S9935
h(Z3J= ..o.ro:m"i245 h{55J=- -00C0013433 hl87J= UOO))J71«) h(1I9]=- UtIXJJ3555S h[15iJ= -O.cx:m56535 h(1831= -o'~I62 hl215]= o.OiOlG.3703 hl247]", 0.034055710
11[241= -OOOXJ)SI99 hl56]= --O.OXlJ7617I h[88j= o.<XXm4332 h(I20'=- U~151 h[I52J= .()JJJIlI1G.31 hjl84j= -0.004573822 h(216j= 001003339) h(248''''- o.o.wl2861
h(25J= --O.oo:mn76 h[S7J=..Q()llID585 h[89J= 01.lIDS2929 h(1211= 0lX.Oil68933 h[I53J= --O.OOI2t9817 h(185J= --O.OOU77024 h(217)=- OOlJ11~17 hl249]= 0CB413C»]4
h(2t:i]= .o.OOXXJ1629 hISS]= --O.CXJll:0923 ht90J= 0.0CXXJ7'20/0 h[122J= O(DJ.}8li~ h\l~J= -0.001432419 h[186]= .Qlx)'BS7815 hl218]=- UOI26216J2 hf2~J'" UG.35OO7OO)
hl27l=- ..o.OOlnU<ki h(59/= --U00llI7261 h[91]= Uoom3937 h(123]:: UlO»I!9437 h[IS5)", -OJXJlS97881 h[IS7]= -o.oomS2~ hI2l9)= 0.013489246 hl2S])= UG.3s:!~

~~:: ~= :~~:: ~= ::~:: ~::~: ~:~::: ~=: :::~:: ~~:~= ~:::: ~=~ ~::: ~~:~~~~ :g~:: ~~~~
h(lJl'" .o.OOX)11444 hl62l= -O.oo::o;l6321 h[94]= U(O)I65462 h(12t!'= uo::n:.m821 h[I~I= .().00211(Xl)4 h(1'Xl]=: -O.(msnO?6 him!", 0.016112roJ h(254j:: 0(135694122
ht31[=- .o.00x)12398 hl63J= --O.CXXlmI82 h[95j= 0.00.)191212 hlm,= U{lXP8]115 h[I9}J= .()'(XJ2283(Rn h(19lj= --O.OO34OI7~ h[2Z3I= 001f1-)9.U76 hf255]= Offi5758972

hl2Yl]= 0035]Il(00]

We can relate the above filter bank description to our general form of the
PQMF by noting that the phase <l>k in the MPEG PQMF is equal to:

<h = 2: (N - 1- K)(k + 1.)
2 K 2

which satisfies the near-neighbor alias-cancellation requirement that
<h - <h-l is equal to an odd multiple of rrl2 for these values of N = 513 and K
= 32. In addition, the encoder gain has been set to preserve the amplitude of
input sinusoids on encoding to provide a gain reference for the
psychoacoustic thresholds. The impulse response of the prototype low-pass
filter h[n] compared with hk[n] for k = 0, 1 is shown in Figure 8. The
frequency response of the prototype is shown in Figure 9.

94 Introduction to Digital Audio Coding and Standards

0.04 r·············,·················,.··············.,.······ , , , ,,. , ,

0.03 i-.. -+-.-'---+---....;--+H~·-+----;......--··~- - .,. .. - ... ,

0.02

0.01 t-.............. ,• , , ····1·1·

.... 0. t---t---t---

..Q.Q2

...... + , ,

~04 .

0.03

0.02 +--+--+--+--+-I\+#\-+---....;--'----'---i

0.01t··············,·················j···············, \ II

I ~n) I
_hl(n)

-0.0' f---+-+--+-+--HH-It---

-0.02 t··········+··········· .. ·+-·············+·· +.
...... ·t············:· ·t·········· ,············tf ,... t············ .,. ! ,

-0.04 "----'-_-'-_-'-----' __ ...L_...l......_.L......-l.. __ :....._-'

Figure S. MPEG Audio PQMF prototype filter impulse response h[nl and hk[nlfor (a) k = 0
and (b) k = I

Prototype Filler Response

,
i

/i "\
, ,
j

/
, \1

, if \
;

L

,
...

'" if\ Af\II ~r.J"'" ! r~l; .IIf\t;.. f\ Ii
i Vl~ "V I' Y' i' • L

,ny iV'" UV r
oS 0 . 2 3

~)

Figure 9. MPEG Audio PQMF prototype filter frequency response in units of F,I64.

Chapter 4: Time to Frequency Mapping Part I: The PQMF 95

Each filter hk[n] is a modulated version of the prototype h[n]. The
positive and negative frequency components of the modulating cosine lead
to a frequency response with the frequency response of the prototype filter
appearing in both positive and negative frequency locations with center
frequencies fk given by

fk =±~(k+~J
2K 2

for k = 0, 1, 2, .. , 31 and with each copy having a nominal bandwidth of
F/64. In Figure 10, the frequency response of the first 4 filters of the
MPEG Audio PQMF is shown. Notice how each successive set of filter
pairs is shifted outward in frequency by F/64 from the prior pair.

As shown in Figure 10, the prototype filter does not have sharp cut-off at
its nominal bandwidth of F/64. Because of this transition region, the
frequency content of adjacent bands shows a certain amount of overlapping
(see Figure 10). The phase shifts <j)b in absence of quantization, ensure
complete cancellation of the aliasing terms between neighbor bands in the
synthesis stage of the decoder. Although the PQMF is not a perfect
reconstruction filter bank, the MPEG prototype filter design guarantees a
ripple of less than 0.07 dB for the composite frequency response of the
analysis and synthesis filter banks [Noll and Pan 97].

PQMF Pilterbank

oS .. ·2 ., 0

32"I(O.s-fs)

Figure 10. Frequency response of the first four bands of the MPEG Audio PQMF in units of
F,I64

96 Introduction to Digital Audio Coding and Standards

4.3 Implementing the MPEG PQMF

In the standard implementation of the PQMF analysis stage the input buffer
contains a time sequence x[n] of 512 samples that is multiplied by the filter
coefficients to get the current output for each channel. Since the last filter
coefficient is equal to zero, the filter bank is implemented as if the filter
length is N = 512. Remembering that the PQMF is critically sampled, the
filter bank can be implemented as a block transform on a 512-sample block
that takes in 32 new samples in each pass.

A direct implementation of the PQMF filter bank results in 512 *32 =
16384 multiplications and 511 *32 = 16352 additions for each set of 32 new
samples (or about 512 multiplications and additions per sample). In the
standard specifications (see Figure 11), a description of a medium
complexity implementation, which involves about 80 multiplications and
additions per sample is given as follows:

63 7

ym[k]= IM[k,r]* I[C[r+64p]*x m[r+64p]] for all m and k=O, ... ,31
r=O p=O

where

M[k, r] = cos((k +~}r-16) 3~)
int(-"-)

C[n]=(-l) 64h[n]

In these equations, k is the frequency index, Ym[k] is the output of the kth
analysis filter after processing the mth block of 32 new input samples and
xm[n] represents a block of 512 audio input samples time-reversed with xm[n]
equal to x[32*(m+l)-1-n]. A comparison ofC[n] with the impulse response
of the filter prototype h[n] is given in Figure 12. Other efficient PQMF
implementations involve the utilization of fast algorithms for the
computation of the discrete cosine transform [Kostantinides 94] with an
additional reduction of over a factor of six in the number of multiplications
and additions with respect to the medium complexity implementation
described in the standard.

Chapter 4: Time to Frequency Mapping Part I: The PQMF

32 new input samples

Make room for new samples:
for i = 0 to 479 x[i+32] = x[i]

and add in new samples in reverse order:
for i = 0 to 31 x[31-i] = next sample

Apply window to samples:
for i = 0 to 511 Z[i] = x[i] * C[i]

Perform partial sum of Z[i]:

7

for r = 0 to 63 S[r] = LZ[r+64j)
j=O

Matrix multiply to get sub-band samples

63

for k = 0 to 31 y[k] = LM[k,r)*S[r)
r=O

32 sub-band samples

Figure 11. Flow chart of the MPEG PQMF analysis filter bank from [ISO/lEe 11172-3)

97

98 Introduction to Digital Audio Coding and Standards

MPEG PQM, Analysis Windows

0.04

I t\

-/ .\
- \ t--j \ r--..

18 "-.J r\ !V3~ r '2

0.'"

0."

0.01

I ~nJJI - n

r-- \
r----l + \

\ i

. I I

.....

......

.....

Figure 12. Comparison of C[nJ with the impulse response of the filter prototype h[nJ

The standard also specifies a medium complexity, efficient
implementation for the synthesis filter bank. This specification is shown in
flow-chart form in Figure 13. In this specification, the synthesis window
D[i] is equal to 32*C[i] for i =0,1, ... 511 and the matrix N[k,r] is given by

N[k,rl=c0s((k+~}r+16) 3~)

The complexity for the synthesis filter is again greatly reduced from naIve
implementation down to about 80 multiplications and additions per sample.

Chapter 4: Time to Frequency Mapping Part I: The PQMF 99

32 new sub-band samples y[k]

~
Make room for new z[r] values:

for i = 0 to 991 z[i+32] = z[i]
and matrix multiply in new samples:

31

for r = 0 to 63 z[r] = LN[k,r]* y[k]
k;()

~
Build 512 vector Uri]:

for i = 0 to 7
for j = 0 to 31

U[64*i+j] = z[128*i+j]
U[64*i+32+j] = z[128*i+96+j]

• Apply window:
for i = 0 to 511 W[i] = Uri] * D[i]

+
Perform partial sum for output samples:

15

for i = 0 to 31 xli] = I W[i+32j]
j=O

32 output samples

Figure 13. Flow chart of the MPEG PQMF synthesis filter bank from [ISO/lEe 11172-3]

5. SUMMARY

In this chapter we have learned that we can create filter banks that parse a
signal into its high and low frequency components without any loss of
information or increase in that data rate. We have then seen how this
technology can be generalized into the creation of near-perfect
reconstruction filter banks that can subdivide audio signals into reasonably
narrow frequency bands. These PQMF methods of creating large numbers
of frequency channels rely on modulating a prototype low-pass filter into the

100 Introduction to Digital Audio Coding and Standards

appropriate frequency band location. The PQMF filter banks developed in
this manner were very important to the historical development of audio
coding but become hard to work with as the number of desired frequency
channels becomes very large. In the next chapter we turn towards transform
coding methods as a means to create filter banks that can be used more
efficiently to create filter banks with large numbers of frequency bands.

6. REFERENCES

[Croisier, Esteban and Galand 76]: A. Croisier, D. Esteban, and C. Galand, "Perfect
channel splitting by use of interpolation, decimation, and tree decomposition
techniques", Proc. IntI. Conf. Inform. Sci. Syst., Patras Greece, pp. 443-446, August
1976.

[ISO/lEC 11172-3]: ISO/lEC 11172-3, Information Technology, "Coding of moving
pictures and associated audio for digital storage media at up to about 1.5 Mbitls, Part
3: Audio", 1993.

[ISO/IEC 13818-3]: ISO/IEC 13818-3, Information Technology, "Generic coding of
moving pictures and associated audio, Part 3: Audio ", 1994-1997.

[Jayant and Noll 84]: N. Jayant, P. Noll, Digital Coding of Waveforms: Principles
and Applications to Speech and Video, Prentice-Hall, Englewood Cliffs, 1984.

[Kostantinides 94]: K. Kostantinides, "Fast Sub-Band Filtering in MPEG Audio
Coding ", IEEE Signal Processing Lett., pp. 26-28, 1994.

[Noll and Pan 97]: P. Noll and D. Pan, "ISO/MPEG Audio Coding" in N. Jayant
(ed.), Signal Compression- Coding of Speech, Audio, Text, Image and Video, pp. 69-
1I8, World Scientific 1997.

[Nussbaumer 81]: H. J. Nussbaumer, "Pseudo-QMF Filter Bank", IBM Tech.
Disclosure Bull., vol. 24, pp. 308 I -3087, November 1981.

[Rabiner and Gold 75]: L. R. Rabiner and B. Gold, Theory and Applications of
Digital Signal Processing, Prentice-Hall, Englewood Cliffs, 1975.

[Rothweiler 83]: J. H. Rothweiler, "Polyphase Quadrature Filters - A new Subband
Coding Technique", International Conference IEEE ASSP, Boston, pp. 1280-1283,
1983.

[Searing 91]: S. Searing, "Suggested Formulas for Audio Analysis and Synthesis
Windows", ISO/IEC JTCIISC29/WGI I MPEG 9lf328, November 1991.

Chapter 4: Time to Frequency Mapping Part I: The PQMF 101

[Smith and Barnwell 86]: M. 1. T. Smith and T. P. Barnwell III, "Exact
reconstruction for tree-structured sub-band coders", IEEE Transactions on
Acoustics, Speech, and Signal Processing, vol. ASSP-34, no. 3, pp. 431 - 441, June
1986.

[Vaidyanathan 93]: P. P. Vaidyanathan, Multirate Systems and Filter Banks,
Prentice Hall, Englewood Cliffs, 1993.

[Vetterli and Kovacevic 95]: M. Vetterli and 1. Kovacevic, Wavelets and Subband
Coding, Prentice Hall, Englewood Cliffs, 1995.

7. EXERCISES

CQF filterbanks:
In this exercise you will design an N = 4 CQF filterbank. Recall that
implementing the CQF 2-channel filterbank requires finding a low pass
prototype filter horn] that satisfies the power complementarity condition
Ho(z)Ho(liz) + Ho(-z)Ho(-lIz) = 2. One way to create a CQF prototype filter
horn] is to create a half-band filter pen] that has non-negative Fourier
Transform and to factor its z Transform into Ho(z)Ho(l/z). A candidate half
band filter pen] can be created by windowing the ideal half-band filter
sinc[n/2] with a window centered on n=O.
1. Prove that the power complementarity condition is satisfied if P(z) ==

Ho(z)Ho(l/z) has only odd powers of z other than the constant term (z to
the zeroth power) which is equal to 1.

2. If Ho(z) = a + b z -I + c z -2 + d Z -3 then show that P(z) satisfies the
power complementarity condition if

a = -sin(8)cos(<1» c = cos(8)sin(<1»

b = sin(8)sin(<1» d = cos(8)cos(<1»

Write out the form of P(z) in terms of the angles e and <j>.
3. If horn] is 4 taps long then pen] will be seven taps long and will run from

n = -3 to n = 3. Create a candidate half-band filter pen] using a 7-tap
sine window ws[n]: pen] = ws[n+3]*sinc[nl2]. Notice that this candidate
filter satisfies the power complementarity condition. However, if the
Fourier Transform of the candidate filter has negative values it will not
be possible to factor it to determine horn]. Tune the angles e and <j> so
that P(z) best fits the z Transform of this candidate half-band filter.
What are the filter coefficients horn] corresponding to these best fit
angles e and <j>?

102 Introduction to Digital Audio Coding and Standards

4. Use the other CQF filter conditions to determine hI [n], go[n], and gl [n].
Graph IHo(DI and IHI(DI in dB relative to IHo(O)1 and compare with a
similar graph for the Haar filter.

5. Use these CQF filters to implement a 2-channel perfect reconstruction
filterbank. Test that the output exactly matches the input using the
signal x[n] = 0.3 sin[3nn/4] + 0.6 sin[nn/4]. Graph the input signal
against the outputs of the 2 channels. Now make another graph using
the signal x[n] = 0.3 sin[3nn/4] ws[n] + 0.6 sin[nn/4] ws[n - 50] where
ws[n] is a sine window of length N = 100. How are the 2 sub-band
signals related to the input signal x[n]?

Chapter 5

Time to Frequency Mapping Part II: The MDCT

1. INTRODUCTION

The PQMF solution to developing near-perfect reconstruction filter banks
(see Chapter 4) was extremely important. Another approach to the time to
frequency mapping of audio signals is historically connected to the
development of transform coding. In this approach, block transform
methods were used to take a block of sampled data and transform it into a
different representation. For example, K data samples in the time domain
could be transformed into K data samples in the frequency domain using the
Discrete Fourier Transform, DFT. Moreover, exceedingly fast algorithms
such as the Fast Fourier Transform, FFT, were developed for carrying out
these transforms for large block sizes. Researchers discovered early on that
they had to be very careful about how blocks of samples are
analyzed/synthesized due to edge effects across blocks. This led to active
research into what type of smooth windows and overlapping of data should
be used to not distort the frequency content of the data. This line of research
focused on windows, transforms, and overlap-and-add techniques of coding.

Although sub-band coding and the transform coding grew out of different
areas using different building blocks, it became clear that they are just
different views of the same underlying methodology. The windows used in
transform coding are related to the low-pass filters that generate sub-band
filters. The main differences between the techniques has to do with the
number of bands that are used to parse the signal. In the current view of
things, coders with a small number of frequency channels (e.g., MPEG
Layers I and II [ISO/IEC 11172-3]) are still sometimes referred to as sub
band coders, and coders with a larger number of frequency channels (e.g.,

M. Bosi et al., Introduction to Digital Audio Coding and Standards
© Kluwer Academic Publishers 2003

104 Introduction to Digital Audio Coding and Standards

AT&T/Lucent PAC [Sinha, Johnston, Dorward and Quackenbush 98], Dolby
AC-2 and AC-3 [Fielder et al. 96], and MPEG AAC [ISOIIEC 13818-7]) are
sometimes referred to as transform coders. From the mathematical point of
view, however, there is no distinction between sub-band and transform
coding.

In this chapter we will learn about the DFT and how it can be used to
create a perfect reconstruction transform coder at the cost of enhanced data
rate. Then we will learn about the Modified Discrete Cosine Transform,
MDCT, developed by Princen and Bradley in 1986-87 and used in state-of
the-art audio coding schemes such as MPEG AAC. The MDCT can be used
in a perfect reconstruction transform coder with a very high number of
frequency bands without requiring an increase in the coder data rate. As we
shall see, the MDCT can also be seen as a perfect reconstruction PQMF
filter bank showing the linkages between the material in this and the
previous chapter.

2. THE DISCRETE FOURIER TRANSFORM

In Chapter 3 we discussed the Fourier Transform and its use in mapping
time signals x(t} into the frequency domain X(f). We learned that band
limited signals, i.e. signals with frequency content only up to a finite upper
frequency Fmax, can be fully represented with discrete time samples x[n] ==
x(n*Ts} provided that the sampling time Ts is no longer than 1I(2*Fmax} or,
equivalently, the sample rate Fs == tITs is at least as large as 2*Fmax.
Moreover, we learned that a time-limited signal, i.e. a signal with non-zero
values only in a finite time interval, can be fully represented with discrete
frequency samples X[k] == X(k/T} where T is the length of the time interval.
What we would really like to be able to do is to work with signals that are
both time and frequency limited so that we could work with finite blocks of
time-sampled data in the time domain and convert them into a finite number
of discrete samples in the frequency domain. In other words, we would like
to work with a finite extent of sampled data and be able to map it into
discrete frequencies in a finite range without any loss of information. Can
we do this? The answer turns out to be not exactly, but, with a careful
choice of windows, accurately enough. We find that we can window finite
blocks of our signal so that they remain essentially band-limited. This will
allow us to define a finite block version of the Fourier Transform, called the
Discrete Fourier Transform, that maps these blocks of time-samples into a
finite and discrete frequency-domain representation. Moreover, we shall see
that this transform can be carried out exceptionally fast for large block
lengths allowing for much greater frequency-domain resolution than is

Chapter 5: Time to Frequency Mapping Part II: The MDCT 105

typically available using PQMF filter banks. Let's see how this comes
about.

2.1 Windowing the Signal in the Time Domain

Suppose we start with a band-limited signal, possibly band-limited from
being passed through a low-pass filter, that we would like to sample at a
given sample rate Fs. If the signal is band-limited so that Fmax ~ FJ2, we can
work with samples x[n] and not lose any information. However, suppose we
want to work with only a finite block of samples so that we can start making
calculations without waiting for the signal to finish. In this case, we only
consider signal values in the interval from t = 0 to t = T. One way to think of
this time-limiting is that we are multiplying our original signal x(t) by a
rectangular window function WR(t) equal to 1 from t = 0 to t = T and equal to
zero elsewhere (see Figure 1). We need to ask ourselves if this time-limited
signal is still band-limited enough to continue working with only the samples
x[n].

2.1.1 The Rectangular Window

What happens to the frequency content of the signal after windowing? In
Chapter 3 we learned about the convolution theorem, which tells us that
windowing in the time domain is equivalent to a convolution in the
frequency domain. We can quickly calculate the Fourier Transform of our
rectangular window to find:

W (f) - -f () -j2ltftd - TJ -j2ltftd _ -jltff sin(1tff)
R - wR t e t - e t - e __ 0 1tf

Notice that this function has a main lobe centered on f = 0 whose width is
proportional to Iff and it has side lobes that drop off in amplitude like 1I1~
(see Figure 2). In general, we find that the main lobe of any window's
Fourier Transform will get narrower as the window length T increases.

The Fourier Transform of our time-limited signal equals the original
signal's Fourier Transform convolved with (i.e. spread out by) the function
WR(f). The Fourier Transform of this window, however, drops off very
slowly with frequency implying that the Fourier Transform of the time
limited signal is unlikely to remain band-limited enough to work with the
sampled data xln]. If we choose to go ahead and work with x[n] anyhow, we
risk contaminating our analysis with aliasing. Does this mean we are out of

106 Introduction to Digital Audio Coding and Standards

luck? No, it just means we need to choose better windows than the
rectangular window!

I i ! j

0.2

I I /7 i ~ f---. l , ~
I 1.."" 1 i \\ I I ! \. ! .: " .-
1/ Y 1

,
'\\ 1

:1 i i

/ :'
I !

,
\ ..- i \ .' 1

~/
1 ; ! \~ i ! , I i

--Rect
-Sine
....... Hanning

0.8

0.6

0.4

o
-16 0 16 32 48 64 80 96 112 128 144

1fT.

Figure 1. Time domain comparison of the rectangular, sine and Hanning windows
for T=128 * Ts

0

-10

-20

-30

111-40
"-50

-eo
-70

-80

-90

0 0.01 0.02 0.03 0.04 0.05 'If.
Figure 2. Frequency domain comparison of the rectangular, sine and Hanning windows for

T=128*Ts (Note: Windows are normalized to have integral equal to I prior to graphing.)

2.1.2 The Sine Window

The problem with the rectangular window is that its cut-off is very sharp
at the edge of the window. Sharp changes in the value of a function lead to
high frequency components in the Fourier Transform. A better selection for
the window in the time domain would taper down slowly to the edges so that
there is no sharp discontinuity in window value there. For example, we can
consider the sine window ws(t) which is equal to

Chapter 5: Time to Frequency Mapping Part II: The MDCT 107

ws(t) = sin(mlT)

when t is between 0 and T and is equal to zero elsewhere (see Figure 1).
Note that when applied to discrete time signals over N samples this window
is implemented as

ws[n) = sin[1t(n+Y2)/N) for n=O, ... ,N-1

We can calculate the Fourier Transform of this window and we find that

~ T

W S (f) = f w s (t)e - j21tftdt = f sine;)e - j21tftdt
()

= e-jltfT COS(1tfT)(1f 1
1- (2fT)2

Although the main lobe around f = 0 is wider with respect to the rectangular
window, the frequency domain amplitude of this window drops off much
faster than the rectangular window (see Figure 2). Unlike the rectangular
window, the sine window can be used to time-limit a reasonably-sampled
signal without expecting it to spread out the frequency content enough to
cause substantial aliasing. Notice also that the width of the main lobe is
again proportional to liT showing that longer windows give better frequency
resolution.

2.1.3 The Hanning Window

One might conclude from this discussion that it might be even better to
use a window such as the Hanning window that doesn't have the sudden
change in derivative at the edges that the sine window has. The Hanning
window WHet) is equal to

for times between zero and T and is equal to zero elsewhere (see Figure 2).
Note that when applied to discrete time signals over N samples this window
is implemented as

wH[n) = Y2(l-cos[21t(n+Y2)/N)) for n=O, ... ,N-1

Again, we can compute its Fourier Transform and we find that

108 Introduction to Digital Audio Coding and Standards

= T

WH (f) = J W H (t)e - j2rrft dt = H(l- cos(2m IT»)e -j2rrftdt
o

= e - jrrfT sin(1tIT) (1/ 2)
1tf _ (IT)2

If we compare this Fourier Transform with that of the sine window (see
Figure 2), we find that the drop-off is indeed much faster for the Hanning
window (good to avoid aliasing) but the width of its main lobe is much
larger (bad for accurate frequency identification). In other words, we start to
face trade-offs in window design: low side lobes energy (linked to the
importance of spurious frequency components) versus width of the main
lobe (linked to the frequency resolution of the window).

2.1.4 The Kaiser-Bessel Window

The Kaiser-Bessel window allows for different trade-offs between the
main lobe energy and side lobes energy simply by changing a parameter a in
its description. The Kaiser-Bessel window WKB(t) is equal to

~[mx LO_(t~~~2)']
w KB (t) = -'---------"-

10 (1tu)

for times between zero and T and is equal to zero elsewhere. Io(x) is the oth

modified Bessel function

Io(x) = I((X/~)k)2
k=o k.

Note that when applied to discrete time signals over N+ 1 samples this
window is implemented as

for n=O, ... ,N

Chapter 5: Time to Frequency Mapping Part II: The MDCT 109

There is no closed-form analytical expression for the Fourier Transform
of the Kaiser-Bessel window, but we can approximate it as [Harris 78]

Kaiser-Bessel Window Shapes

-alpha=O.1
--alpha=.:!
-alpha=4

- - - ·rect
- - - - - _. hanning

-16 0 16 32 48 64 80 96 112 128 144
tITs

Figure 3. Time domain comparison of different shapes of the Kaiser-Bessel window for
different values of the parameter IX and the rectangular and Hanning windows for T=128 * Ts

The Kaiser-Bessel parameter (X controls the trade-off between main lobe
width and side lobe energy_ For example, for (X = 0 the window is just equal
to the rectangular window which we saw has a very narrow main lobe, but
very high side lobes. For (X = 2 the window is very similar in shape to the
Hanning window and likewise has low side lobe energy, but a wider main
lobe than the rectangular window. As (X gets larger, the side lobe energy
continues to decrease at the cost of wider main lobe. Figure 3 shows the
time-domain shapes of a Kaiser-Bessel window with a very low (X (X = 0.1),
with (X = 2, and with (X = 4 and their comparison with the rectangular and
Hanning windows. Figure 4 shows the frequency response of a Kaiser
Bessel window with a very low (X (x = 0.1), with (X = 2, and with (X = 4.
Notice the clear trade-off between the main lobe width and the side lobe
energy in the figure.

110 Introduction to Digital Audio Coding and Standards

Kaiser-Bessel Window Frequency Response
0

-10
-20
-30
-40

m -50 'tI
-60
-70
-80
-90

-100

0 0.01 0.02 flfs 0.03 0.04 0.05

l-aIPha=o.1 --alpha=2 - aIPha=41

Figure 4. Frequency responses of the Kaiser-Bessel window with different values of a for
T=128*Ts (Note: Windows are normalized to have integral equal to I prior to graphing)

There are many windows defined that can achieve different points in the
trade-off between main lobe width versus side lobe roll-off, and the best
choice of window is application-dependent. The important conclusion is
that, depending on the design requirements, we can achieve a good enough
roll-off rate with non-rectangular windows that we can window a signal to
finite length and still have a frequency spectrum that is reasonably well
band-limited. For the reader interested in a complete review of different
windows and window properties we recommend [Harris 78].

2.2 TheDFT

Suppose we had a signal x(t) that was windowed to finite length and the
windowed signal is also (reasonably) band-limited. Suppose further that we
select an adequate sample rate Fs = IITs and that the signal duration is T =
N*Ts. Since the windowed signal is finite length, we can work only with
discrete frequency components

X[k] == X(kff)= X(k*F/N) for k = 0, ... , N-t

and still recover the full windowed signal x(t). (Note that we have decided
to use the frequency range from 0 to Fs as our set of independent Fourier
series components rather than the range from -FJ2 to FJ2.) Since the
windowed signal is (reasonably) band limited we can work only with a set of

Chapter 5: Time to Frequency Mapping Part II: The MDCT 111

sampled values x[n] == x(n*Ts) for n=O, ... , N-l. The Fourier series (see
Chapter 3) tells us that we can get signal values as a sum over these
frequency components; so we can write

1 N-J 1 N-J
x[n] == x(nTs) =- LX[k]e j21t(kF,/N)(nT,) =- LX[k]ej21tkn/N

T~o Tk~

for n = 0, ... , N-l. Likewise, we can write the frequency components as a
Fourier series sum over time samples as:

N-J N-J
X[k] == X(kFs / N) = Ts L x[n]e -j21t(kF, IN)(nT,) = Ts L x[n]e -j21tkn/N

n~ n~O

for k = 0, ... , N-l. This transform pair is known as the "Discrete Fourier
Transform" or OFT, and is the basis for all applied transform coding. The
OFT pair is usually written in dimensionless form by absorbing a factor of Fs
into the definition of X[k] as follows:

1 N-J
x[n] == x(nTs) = - L X[k]ej21tkn/N n = 0, ... , N -1

N k~-{}

N-J
X[k] == FsX(kFs IN) = L x[n]e-j21tkn/N k = 0, ... , N -1

n~O

Notice the factor of Fs that now appears in the definition of X[k].

2.3 The FFT

One of the main reasons that the OFT became so important to applied
coding is that it has a fast implementation called the "Fast Fourier
Transform" (FFT). The forward OFT can be seen as a matrix multiplication
between a vector of N time samples x[n] and an NxN matrix of phase terms
(i.e. complex exponentials) leading to a new vector of N frequency samples
X[k]. The inverse OFT is similarly a matrix multiplication between a vector
of N frequency samples X[k] and an NxN matrix where now the matrix is
the inverse of the matrix used in the forward transform. In either case, such
a matrix multiplication would usually take N2 complex multiplications and
additions to carry out. Remarkably, the FFT allows us to carry out the exact
same calculation in roughly N*log2(N) complex multiplication/additions. A

112 Introduction to Digital Audio Coding and Standards

dramatic savings for large value of N! For example, a DFf 1024 (=2 10)

samples long would require roughly 1,000,000 multiplication/additions in a
straightforward calculation while the FFf would carry it out in roughly
10,000 multiplicationladditions, i.e., only about I % of the calculation time.

The trick that led to the development of the FFf is the observation that
we can take an N-point DFf and tum it into the sum of two N12-point DFfs
as follows:

N-I
X[k]= Ix[n]e-i21tkn/N

n:o()

N/2-1 N/2-1
= I x[2n]e-j21tk2n/N + I x[2n + l]e- j21tk(2n+I)/N

n=O n:o()

(
N/2-1) (N/2-1) = Ix[2n]e-j21tkn/(N12) + I x[2n + Ije-j21tkn/(N/2) e-j21tk/N

n:o() n:o()

Notice that this equation says that the N-point DFf evaluated at the kth
frequency sample is equal to the N/2-point DFf of the even samples at k
plus a k-dependent complex constant times the N/2-point DFf of the odd
samples at k. For each of the N values of k, this equation requires one
addition and one multiplication. Let's see how this result leads to the
operation count of the FFf. If we had the N12-point DFf results ready at
our disposal, we can calculate the N-point DFf at each value of k using only
one addition and one multiplication. How do we get the N/2-point DFf
results? We can recursively repeat this process B times for N = 2B, until we
only need to calculate a length two DFf. The final 2-point DFf can be
directly carried out for each k with one multiplication and one addition,
which is done in the straightforward way. For each of the B intermediate
stages, only one addition and one multiplication are required for each of the
N different values of k. If we add up all of the operations, we find that it
costs us N multiplications and additions for each of the B stages. In other
words, a total of roughly N*B = N*log2(N) complex additions and
multiplications to carry out the entire transform.

Normally recursive procedures like the one described above require large
buffers of memory. By exploiting the symmetries of the NxN phase terms in
the DFf multiplication matrix, Cooley and Tukey [Cooley and Tukey 65]
developed a very elegant and efficient method for computing the FFf in
place. In the Cooley-Tukey FFf algorithm, pairs of input data are processed
in parallel with the so-called "butterfly" operation in a series of log2(N)
stages (see the flow diagram of Figure 5 for an example). At the end of this
process, the output values then need to be unscrambled by swapping values

Chapter 5: Time to Frequency Mapping Part II: The MDCT 113

associated with bit-reversed indices. Note that the Cooley-Tukey FFf
algorithm is defined for numbers of input samples equal to powers of 2 (i.e.,
N = 2B for some B). This algorithm is also known as a "radix-2" decimation
in time FFf algorithm since the n components (time components) are
separated into the butterfly kernels.

If the number of input samples for a DFf is even but not a power of two
then a sequence decomposition to power-of-two sub-sequences can be
carried out with radix-2 FFfs done for each subsequence and then merged
into the final result (for more details see for example [Oppenheim and
Schafer 75]). Note that for analysis purposes, i.e. if the data rate of the
system is not an issue in the design of the system, one can instead choose to
zero-pad non-power-of-two length sequences up to the next power of two
length and then simply perform a radix-2 FFf.

Note also that you can also carry out an N-point FFf for a real function
in less than N*log2(N) operations. One can create a new input sequence by
creating an N/2-point complex series for which the even terms become the
real parts and the odd terms become the imaginary parts of the new
sequence. One can then perform an N/2-point (instead of an N-point) FFf
on the complex series and unwind the results to recover the N-point FFf
values for the original real-valued series (for more details see for example
[Brigham 74] and for efficient implementations [Duhamel 86]).

Input

o

2

3

Xo[kj

o

2

3

Output

.0·::::."." " ;)'. 3 .,:;::' ::: " : .. ~:::::;:, ..
w'

N/2 Butterflies N/2 Butterflies Bit Reversal

..... 1----- log2(N) stages ----.~

Figure 5. Block diagram of the Cooley-Tukey FFf algorithm for N = 4 (w == e-j2Jr!N).

3. THE OVERLAP-AND-ADD TECHNIQUE

Having discovered that we can window a band-limited time signal in
such a way that we can reasonably use the DFf or its fast implementation,
the FFf, to transform the data into a discrete frequency-domain
representation, how do we use this information to create an audio coder?

114 Introduction to Digital Audio Coding and Standards

The first reason we discussed going into the frequency domain is that we can
then easily remove redundancy from tonal signals. This reason suggests that
we expect the frequency domain content to be relatively static over time (at
least compared to the time-domain data) so that we have a more concise
description of the signal to store or transmit. Secondly, as we'll discuss
further in the next chapters, we can exploit frequency-domain masking to
eliminate irrelevant signal components. We do this by completely throwing
away inaudible frequency components and by allocating the available bit
pool in such a way that the added quantization noise falls in areas of the
spectrum where it will not be detectable. Having windowed the original
signal to be able to carry out the Off without creating significant aliasing
effects, however, we need to ask ourselves how we recover the original
signal from the transmitted/stored frequency domain data. We can carry out
the inverse transform of the frequency-domain data to get an approximation
of the windowed input signal but we still need to get the windowing effects
out of the data.

The first idea one may have about getting the window effects out of the
data is just to divide the output of the inverse Off by the window
coefficients. After all, we know what the window function is at each data
point since we applied the window in the first place. The problem with this
approach is that the quantization/dequantization process has typically created
small errors in the signal. These errors may be inaudible but dividing the
output of the inverse Off by the window function could amplify the errors
near the edges of the block of data since the window function is designed to
go smoothly to zero in that region. If we take our dequantized data and
divide them by the small values of the window function near the edges of the
block, we are going to magnify the errors greatly. We need another
approach.

The way we solve the window problem is to have our windowed blocks
of input signal overlap each other and design our windows so that we can
overlap and add the output signals in such a way that the original input
signal (other than differences due to the presumably small quantization
noise) is exactly recovered. We then put requirements on the window
function so that the overlap-and-added output signal equals the (albeit
delayed) original input signal in the absence of any quantization noise.

Chapter 5: Time to Frequency Mapping Part II: The MDCT

I) Slide M samples and Window
(window length = N)

2) Perform an N-point Transform

flflflflfll\flflflflfl
v1JlJ vlJ-vrV1J1JIJ1J

LXX-···········
M" .

3) Quantize,Store/Transmit, Dequantize

4) Perform an N-point Inverse Transform

5) Window then Overlap and Add to
last N-M Outputs

f\fll\l\l\l\f\f\f\I\f\
VVVVVIJIJ (nnrV

115

Figure 6. Schematic of the window and overJap-and-add approach utilized to encode-decode
audio data

The overlap-and-add approach proceeds as shown in Figure 6. For an N
point OFT we decide on an overlap amount N-M. For simplicity, we require
here that N-M be no larger than N/2 so that only adjacent blocks overlap.
(For extended overlapping between more than two consecutive block the
reader can consult [Malvar 92]). An overlap of N-M samples implies that
each successive block starts M samples after the start of the prior block of
data and includes M new time samples. In the encoder, we window the N
data points of a particular block, perform a OFT, and quantize the N OFT
frequency components. We can then transmit or store the encoded
frequency-domain data from each block until we are ready to decode it. In
the decoder, we dequantize each block's N frequency components, perform
an inverse OFT to create N time samples, window again with a synthesis
window, and transfer the first M samples of the result to an output buffer and
the remaining N-M samples to a storage buffer. We add the N-M samples
from the prior block's storage buffer to the first N-M samples of the current
block's output buffer and send the M output buffer samples to the decoder
output stream.

The reason we choose to window again after decoding is twofold. First,
we need to make sure that quantization noise in the frequency domain
remains small near the edges of the inverse-transformed block. Second, the
analysis and synthesis stages can then be easily carried out symmetrically
(see for example [Portnoff 80]). If the reader were to choose instead to only
use analysis windows and not use synthesis windows, the conditions for the

116 Introduction to Digital Audio Coding and Standards

analysis windows can be derived from the following results by simply
setting the synthesis window values to one in each equation.

In general, each N-sample block overlaps with N-M samples of the prior
block and N-M samples on the forthcoming block. If, other than differences
due to quantization noise, this overlap-and-add process is to recover the
original signal then we must require certain conditions on the analysis and
synthesis windows wa[n] and ws[n], respectively (see Figure 7).

In any block region without overlap, where n = N-M, ... , M-l, we require
that the signal windowed with both the analysis and synthesis windows be
equal to the original signal. Since we already saw that the DFT is invertible,
this condition, in terms of the window functions, is equivalent to:

w~[nl*w~[nl=l forn=N-M, ... ,M-\

where the superscript i on the window functions indicates the current block
index. In the overlap regions, where n = 0, ... , N-M-l for overlap with the
prior block i-I, and where n = M, ... ,N-l for overlap with the following one
i + 1, we must require that the sum of the windowed signal from both blocks
add to the original signal. In terms of the window functions, this is
equivalent to:

w~[nl*w~[nl+ w~-I[M +n]*w~-I[M+nl = \ for n = 0, ... , N -M-\

Notice that this condition relates the right sides of the windows of one block
with the left sides of the windows of the following block (see Figure 7). In
some cases, we use this observation to allow ourselves to change window
shapes on the fly by employing transition windows with left sides that match
the prior block's windows and right sides that match the following block's
windows.

Shift by M

I Shift by iM f-0..LI ___ ---,""! M_,IL!M,-L-!_L!N-l'll
Shift by M I Block i+ I

~ __ -,--~~" 1.--··_1r-1"~"t!;"i"1 I "' I
° I IM'I M I 'H ••• }j

Block i-I

Figure 7. Overlap regions of the different blocks

Chapter 5: Time to Frequency Mapping Part II: The MDCT 117

If we choose to work with identical analysis and synthesis windows then
we find that the perfect reconstruction conditions simplify to:

w i [n]2+wi-l[M+n]2 =1 forn=O, ... ,N-M-1

w i [n]2=1 forn=N-M, ... ,M-1

We can immediately write down one simple window that easily satisfies the
overlap-and-add perfect reconstruction conditions:

sin[1!. n + t]
2N-M

for n = 0, ... , N - M -I

w[n] = 1 for n = N -M, ... ,M-I

sin 1!. 2 [N-n-l]
2 N-M

for n = M, ... , N -\

Notice that this window relies on the property of sine and cosine that sin(x)2
+ COS(X)2 = 1 to achieve the perfect reconstruction condition in the overlap
region.

The sine-based overlap-and-add window may not provide the resolution
versus leakage trade-off needed for a particular application. Are there other
windows that satisfy the overlap-and-add perfect reconstruction
requirement? In fact, we can apply a normalization procedure by which any
window function can be modified to satisfy the overlap-and-add conditions.
Namely, we can take any initial window kernel w'[n] of length N - M + I,
where Nand M are even numbers, and create a length N overlap-and-add
window w[n] as follows:

n

L w'[p]

1\ Nf w'[p]

p=o
for n = 0, ... , N - M -I

p=o

w[n]= 1 for n = N -M, ... ,M-l
N-M

L w'[p]
p=n-M+I

1\ Nfw'[p]

for n = M •...• N-\

p=o

118 Introduction to Digital Audio Coding and Standards

Notice how this window satisfies the condition that w[n]2 + w[M+n]2 = 1
through the normalization procedure. If we start with an initial window
kernal w'[n] that has parameters controlling its shape, we end up with a
corresponding normalized window for each parameter setting. We can then
use the parameters to tune the normalized window so that it has appropriate
frequency resolution and leakage properties.

The window normalization procedure described above can be carried out
using a Kaiser-Bessel window as the kernel window with 50% overlap
between adjacent blocks to create the so-called "Kaiser-Bessel derived" or
KBD window used in the Dolby AC family of coders [Fielder et al. 96] and
in MPEG AAC [Bosi et al. 97]. For example, Figure 8 shows the window
shape of the a = 4 KBD window as compared with both the a = 4 KB
window and the sine window. Notice how the KBD window is shaped much
more like the sine window than the corresponding KB window, however, the
KBD window has a much broader top followed by faster drop-off than the
sine window. Figure 9 shows the frequency response corresponding to these
three windows. Again we see that the a = 4 KBD window is much more
similar to the sine window than to the a = 4 KB window. Notice also that
the smooth edges of the KBD window leads to faster side lobe drop-off in
the frequency response than the sine window but the narrower average width
of the window leads to slightly worse frequency localization.

1

0.8

0.6

0.4

0.2

0
·16 0 16 32 48 64 80 96 112 128 144

tITs

I-Kalser-Bessel Deriwd --Sine Window ·.· Kalser-Bessell

Figure 8. Time domain comparison of the a=4 KBD window with the sine window and the
a=4 KB window

Chapter 5: Time to Frequency Mapping Part II: The MDCT

0

-10

-20

-30

-40

¥1 -50
-60
-70

-80

-90

~--
I ~ ~ t\. -.;;: ":.:!.

i\'~ ~
I
i

V i\ ~ :::"'-.. I
\VI "", 1\ ~i
'IV, ~

, ,
,

\. V ~ !
, '" 'Ii ~

~ Hi
. :.~ VI -100

o 0.01 0.02 0.03 0.04 0.05
flFs

I-Kaiser-Besset Derived --Sine Window ... -... Kaiser-Bessell

Figure 9. Frequency response of the a=4 KBD window compared with that of the sine
window and the a =4 KB window

119

3.1 Window Considerations in Perceptual Audio Coding

Some of the major factors that come into play in the design of filter banks
for audio coding is the ability to maximize the frequency separation of the
filter bank and the ability to minimize the effects of audible blocking
artifacts. As we saw in the previous sections, two window parameters are
directly linked to these properties, namely the selected window length and
shape. Given a certain block size for the input data to the filter bank, the
selection of the window shape determines the degree of spectral separation
of the filter bank. For example, the sine window ensures a better close
selectivity than the ex = 4 KBD window (see Figure 9), i.e. the sine window
main lobe is narrower than the ex = 4 KBD window main lobe. On the other
hand, the ultimate rejection, i.e. the amount of attenuation in the side lobes
energy, of the sine window is worse than ultimate rejection of the ex = 4
KBD window (see Figure 9).

120

Le\eI
(dB)

-aJ

Introduction to Digital Audio Coding and Standards

10

Frequency Offset (Hz)

Figure 10_ Comparison of the minimum masking template with a = 4 KBD and sine windows
for Fs = 48 kHz (Solid line - KBD window; Dotted line - Sine Window; Dashed line -

Minimum masking template) from [Bosi et aL 97]

Depending on the characteristics of the input audio signal either the sine
or the ex = 4 KBD window may provide better frequency resolution for the
signal representation_ If we consider a highly tonal signal with closely
spaced picket-fence spectral structure (such as a harpsichord excerpt for
example) then close selectivity plays a more important role than ultimate
rejection in the frequency representation of the signal, given the
superimposition of masking effects (see next chapter for a detailed
discussion on masking effects) due to different parts of the signal spectrum.
If instead the signal exhibits wide separation among its frequency
components (such as a glockenspiel excerpt for example) higher ultimate
rejection allows for better exploitation of the signal components masking.

In Figure 10 a comparison of the frequency response of an N = 2048-
point sine window, an ex = 4 KBD window with a 50% overlapping region,
and a particularly demanding masking template (see next chapter for details
on masking curves) is shown. The sampling frequency utilized is 48 kHz. If
windowing spreads a masker's energy to other frequencies above the
masking curve, it will be impossible to see if the signal in that frequency
region is being masked. Notice how the close selectivity of the sine window
is better than the ex = 4 KBD window, however the ultimate rejection of the

Chapter 5: Time to Frequency Mapping Part II: The MDCT 121

sine window falls short of the requirements for the minimum masking
threshold. The KBD window satisfies much better this requirement.

In summary, no single-shape window is optimal for all signals. Based on
the signal characteristics one should dynamically select the window shape
while satisfying the perfect reconstruction conditions on the window.

3.2 Window-Shape Switching

In general the trick is to recognize that the overlap-and-add perfect
reconstruction condition is actual a requirement that involves the
overlapping region, i.e. the right side of each window in conjunction with the
left side of the subsequent one. When we use a single window type, this
becomes a condition on the right and left sides of that window but nothing
says that a single window type is necessary or that the windows utilized need
to be symmetric. This allows us to change from a series of KBD windows to
a series of sine windows or from a series of long windows into a series of
shorter windows provided that we appropriately handle the overlap-and-add
conditions for each overlap region.

We accomplish this by designing a pair of "transition windows" for
which one side of each overlaps correctly with the previous window series'
shape and length while the other side of each overlaps correctly with the
following window series' shape and length. These asymmetrical windows
are constructed for example by concatenating the left half KBD window with
the right half sine window and vice versa. An example of a window shape
sequence where the KBD window is alternated with the sine window is
shown in Figure 11. In this figure, the amount of overlapping between
adjacent blocks is 50% (i.e. M = NI2). Notice how, in order to satisfy the
perfect reconstruction requirement, during the transition from the KBD
window to the sine window and vice versa, asymmetrical hybrid transition
windows are employed.

122

Gain

o

Introduction to Digital Audio Coding and Standards

Kaiser-Bessel D3rived Wndows for CNerlap-Add SeqJence
A ~ c

-'. ,1',.,.-------........ ,

> ' ,", \

I .. \

, ,

CNer1ap-Add SeqJence w tth a Transttion to a Sine RJnctioo Wndow
D E F

..... ------ "
-'. /

,,;"....... \

, ,

"

O~~~~~~~~~~~~~~~~~n"~
o 512 1024 1533 aJ48 2500 3072 3584 4006

lime (sanlJles)

Figure 11. Window shape sequence from [Bosi et al. 97)

3.3 Block Switching

In order to adjust the frequency selectivity of the filter bank, we can also
change window lengths during the coding of a signal without losing the
perfect reconstruction property. Such ability can be useful when transient
behavior is detected in the input signal. Although long smooth windows
reduce leakage and provide high frequency resolution, they tend to blur time
resolution leading to artifacts where quantization noise is spread to times
prior to sharp attacks. These artifacts are known in the literature as pre-echo
effects (see next chapter for a description of these temporal effects). To
better handle transient conditions it is helpful to use very short analysis
windows. During more steady state conditions we would like to keep the
high frequency resolution found in long windows. To satisfy both
conditions, the coder can use long windows until a transient is detected.
When a transient is approaching, the coder can use a "start" window to shift
into short window operation until the transient is past. Once the transient is
past, the coder can use a "stop" window to return to normal long window
operation. For a long to short length transition during the course of a
transient signal component, the start window will have a left side that
overlaps with a long window and a right side that overlaps with a short
window, while the stop window will be the reverse (see Figure /2).

Chapter 5: Time to Frequency Mapping Part 1/: The MDCT 123

windows during steady state conditions

o 512 1024 1536 2048 2560 3072

Time (Sample)

Figure 12. Window switching to better model transient conditions

One of the important window properties discussed early on in this
chapter is the ability to reduce blocking artifacts. In order to reduce
blocking effects from windowing, we want the transition down to zero at the
edges or our windows to be as gradual as possible. This means that blocking
effects are most reduced when we are set up for large overlap regions. If, for
example, we set M = N-M = NI2, what is the implication for the system data
rate? In general, each block of N samples that we encode starts M samples
after the prior block. This means that we have to code and transmit/store N
samples of transformed data for every M samples of new time samples fed to
the coder. In other words, we are increasing our data rate in this approach by
a factor of N/M prior to any coding gain from redundancy and irrelevancy
removal. In the case of 50% overlap (M = NI2), we are doubling our data
rate prior to any coding gain. This puts a high hurdle on any coding scheme!
How much easier it would be if we could find some way of doing these types
of transforms on blocks of data without sacrificing data rate! In fact, such a
method has been found and is the subject of the next section.

124 Introduction to Digital Audio Coding and Standards

4. THE MODIFIED DISCRETE COSINE
TRANSFORM, MDCT

We saw in the previous sections that we can develop a good frequency
representation of audio signals by taking finite length blocks of time
sampled data and transforming the data into a finite length of discrete
frequency domain samples. We can then quantize those samples based on
psychoacoustics principles, transmit/store the data, and recover a
dequantized version of the frequency-domain samples. As discussed in the
previous section, we can restore a good approximation of the original time
domain samples from the dequantized frequency samples through an
overlap-and-add procedure. The main problem with implementing such a
coding scheme is that the overlap-and-add procedure increases the data rate
of the frequency-domain signal prior to any coding gains.

In coding applications, it is desirable that the analysis/synthesis system
be designed so that the overall rate at the output of the analysis stage is equal
to rate of the input signal. Systems that satisfy this condition are described
as being critically sampled. When we transform the signal via the DFf, even
a small amount of overlapping between adjacent blocks increases the data
rate of the spectral representation of the signal, yet, in order to reduce
blocking artifacts, we would like to apply maximum overlapping. With 50%
overlap between adjoining blocks we end up doubling our data rate prior to
quantization. The modified discrete cosine transform or MDCT is an
alternative transform to the DFf utilized in state-of-the-art audio coders.
One of the main advantages of the MDCT is that it allows for a 50% overlap
between blocks without increasing the data rate.

The MDCT is an example of a class of transforms called Time Domain
Aliasing Cancellation (TDAC) [Princen and Bradley 86, Princen, Johnson
and Bradley 87J. Specifically, the MDCT is sometimes referred to as an
oddly-stacked TDAC, OTDAC [Princen, Johnson and Bradley 87], as
opposed to the evenly-stacked TDAC, ETDAC, which consists of alternate
series of MDCT and modified discrete sine transforms, MOST [Princen and
Bradley 86]. These transforms do not invert like the DFf to recover the
original signal but rather invert to recover a signal that has some of the prior
and following blocks' signal mixed into it. This mixing of subsequent
blocks' data is called "time-domain aliasing" and it is analogous to the
frequency-domain aliasing that occurs when under-sampling mixes data
from frequencies outside of the block of frequencies from -Fsl2 to Fsl2 into
that frequency block. The TDAC transforms, however, are designed so that
the overlap-and-add procedure exactly cancels out the time-domain aliasing
that occurs. Therefore, although they are not invertible as a stand-alone
transforms, they still allow perfect reconstruction of an input signal.

Chapter 5: Time to Frequency Mapping Part 1/: The MDCT 125

Moreover, for a real-valued signal, only half of the N frequency-domain
samples from an N-point TOAC are independent implying that the transform
for audio signals only requires N/2 frequency samples from each data block
for full signal recovery. This means that we can design a coder with 50%
overlap (best for eliminating blocking effects) that does not increase the data
rate, i.e. is critically-sampled - a solution to the problems with the Off
coder.

4.1 Matrix Derivation of Time Domain Aliasing
Cancellation and Perfect Reconstruction Conditions

Let's see how transforms based on time domain aliasing cancellation can
lead to perfect reconstruction filter banks without increasing the data rate.
The matrix structure of a transform that converts N input samples into N/2
frequency domain samples and then back into N output time domain samples
is shown in Figure 13 (see also [Vetterli and Kovacevic 95]). In this figure,
the input samples on the right-hand-side are indexed in groups of N/2. The
current and prior input groups (indices i and i-I) considered as a single block
are windowed with a length N analysis window, Wi AR and Wi \ where the
indices Rand L indicate the right and left part of the analysis window for the
current block i. They are then transformed into only N12 frequency samples
with the matrix kernels Al and A2 and inverse transformed back into N time
samples with the matrix kernels BI and B2. Finally, they are windowed with
a length N synthesis window, Wi SR and Wi \ where the indices Rand L
indicate the right and left part of the synthesis window for the current block
i. The result of this matrix multiplication is then added to the result from
prior analysis (block i-I) and the transform process then continues for
another pass with the index i incremented by 1. If we multiply out the
matrices and add the result to that of all the other input blocks we find that
the net result is that the input data is multiplied by the band diagonal matrix
shown in Figure 14.

126 Introduction to Digital Audio Coding and Standards

Synthesis Window Inverse Transform Forward Transform Analysis Window

Figure 13. Matrix structure of the ith pass through the TDAC transform (gray areas show
location of non-zero entries)

In order to recover the input signal after the transform process shown in
Figure 13 (after overlap-and-add) we must require that the matrix shown in
Figure 14 be equal to the identity matrix. We need therefore to impose the
following matrix conditions:

where 1 is the NI2 by N/2 identity matrix and 0 is the NI2 by NI2 zero
matrix. These conditions constrain both our choice of window function and
our choice of transform. The MDCT provides a particular solution to these
equations.

Chapter 5: Time to Frequency Mapping Part II: The MDCT 127

Wi+2\ B2A2 Wi+2'\
+ Wit-I\ B,A2 Wj _+/\,

Wi+/R BJA I Wi+l\t

W j _l \ B2A2 Wi_1A t

Wi_lSI. B2A] W j_I '\. +
Wi_2\. BIAI Wj _2\

Figure 14. Matrix structure of the TDAC transforms after overlap-and-add

To better understand how such a solution can come about, consider a set
of transform matrices that satisfy the following properties (see Figure 16
below):

B(A2 = B2A(= 0

B)A)=l+J

B2A2 =l-J

where J is the N/2 by N/2 antidiagonal matrix (all ones on the other
diagonal). The first property is an anti-aliasing condition that eliminates the
blocks above and below the diagonal (top-right and lower-left gray blocks in
Figure 14) and makes sure that the time aliasing cancellation condition is
met for any window function. Applying the second property, i.e. the
properties on the matrix product A)B(and A2B2, allows us to. satisfy the
perfect reconstruction condition by requiring the following two window
conditions:

W jS L wt L + Wj~)R Wj~(R = 1

W jS LJWt L = Wj:)RJWj~(R

128 Introduction to Digital Audio Coding and Standards

The first of the perfect reconstruction window conditions is the same
perfect reconstruction condition we had for the Off case. The second
window condition is a new condition and adds further constraints to the
window functions. This condition is linked to the cancellation of the time
domain aliasing terms. Recognizing that JOJ time-reverses any diagonal
matrix 0 and that JJ=l, the second window condition can be met by
requiring that the analysis and synthesis windows be time-reversed copies of
each other:

wt L =JWj~\RJ

WjS L = JWj~\RJ

We can rewrite these conditions in a more familiar form (i.e. without matrix
notation) as:

w~[n] * w~[n] + w~-\[N /2 + n] * w~-\[N /2 + n] = 1

w~[n] = w~-\[N -1- n]

w~[n]=w~-\[N-l-n]

for n=O, ... ,NI2-1

It is worth noting that the new time-reversal conditions linking the analysis
and synthesis windows are similar to conditions we have earlier seen being
required of sub-band coders (e.g., CQF) for perfect reconstruction.

Having seen how to select windows to achieve perfect reconstruction,
let's look in detail at how the MOCT transform kernel satisfies its perfect
reconstruction conditions. The MOCT forward transform takes a block of N
time samples xj[n] and transforms them into N12 frequency samples Xj[k]
according to:

N-\

Xj[k]= Lw~[n]xj[n]cose~(n+no)(k+t)) fork=O, ... ,NI2-1
n~O

where

no =(1+ 1)/2

is a phase term that ensures alias cancellation. The MOCT inverse transform
then takes the N/2 frequency samples and transforms them back into N time
samples x\[n] according to:

Chapter 5: Time to Frequency Mapping Part /I: The MDCT 129

N/2-1

X'j [n] = w~[n]~ IXj[k]coser: (n + no)(k +t» for n = 0, ... , N-l
k~()

In terms of the prior matrix notation, we therefore have that:

Alkn = cos(2r: (n + N / 2 + no)(k + t»)

A2kn =cos(~(n+n()(k+t»)

BI =~A/

B2 =~A/

It is a straightforward exercise to show that these matrices satisfy the
necessary conditions that:

BIA2 = B2AI = 0
BIAI=l+J

B2A2 =l-J

when no has the correct anti-aliasing value. This result is most easily derived
by using the fact that:

N 12-1 ~

Icos(~ (k + t)n)cos(~ (k + t)m)=f I (-I)P (On.m+pN + 0n.-m+pN)
k~O p~-

To better understand the behavior of the MDCT, we can look in detail at
the rows of the matrices AI and A2. For example, Figure 15 shows the rows
of the matrices AI and A2 for N= 16 (in which case they are 8 by 8 matrices).
Notice how the rows of AI are symmetric around the center while the rows
of A2 are anti symmetric - the results for BIAI and B2A2 are a direct result of
these symmetries. Multiplying the data by AI will destroy the anti symmetric
part of the data so that the closest to perfect reconstruction we could possibly
recover from B(AI is 1+J. Likewise, multiplying by A2 will eliminate the
symmetric part of the data so we can't get any closer to 1 from B2A2 than 1-
J.

130 Introduction to Digital Audio Coding and Standards

Rows of A1 Matrix
(MDCT"16)

1.25 ,..---'--...,-----,-------.,.---,

0.75
0.5

0.25

0f4~cT,~~~~~~~~~ir1
-0.25
-0.5

-0.75

-1.25 .l..-___ -'-___ --'-___ ---'-_---l

n

Rows of A2 Matrix
(MDCT"16)

1.25 ,..----...,....---...,....---...,....---,
1

0.75
0.5 ..

0.25

-0.25
-0.5

-0.75

-1.25 .l..-___ --'-___ --'-___ --'-_---l

n

-0

-1

2

-3

-4

-5

-6

-7

-0

-1

2

-3

-4

-5

-6

-7

Figure 15. Rows of the MDCT transform matrices AI and A2 for N=16

To summarize this section, the MDCT transform allows us to have 50%
overlap between successive data blocks without increasing the overall data
rate. Given a set of analysis and synthesis windows that satisfy the perfect
reconstruction conditions we can transform N inputs from the ith and (i_1)th
sets of N/2 inputs into NI2 frequency domain outputs according to:

N-\

X[k] = Lx[n]wa[n]cose~(n +no)(k +t» for k= 0, ... , NI2 - 1
0=0

and then return them into N time domain samples ready to be overlapped
and-added using:

N/2-\

x'[n] = w s[n]t LX[k]cos(~ (n + no)(k + t» for n = 0, ... , N-I
k=O

Chapter 5: Time to Frequency Mapping Part II: The MDCT 131

The portions of the analysis and synthesis windows that overlap between
adjacent blocks should be time-reversals of each other. In addition, the
windows should satisfy the following perfect reconstruction condition:

w~[nJ * w~[nJ + w~-I[N / 2 + nJ * w~-I[N /2+ nJ = 1 for n=O, ... ,N/2-1

Since this latter condition is the same one we faced for the overlap-and-add
Off, we can use the windows discussed there (e.g., sine window, KBD
window) for the MDCT as well. We can also make use of the same tricks
we saw earlier to change window shape in differing blocks if we keep the
same window length and continue to overlap by 50%. However, the
requirements for time domain aliasing across blocks require us to be very
careful in designing windows to change time resolution (i.e. block size) or
overlap region. In the next section we take a look at what is required to
change block size after a transient is detected in an MDCT-based coder.

4.2 Changing Block Size with the TDAC Transforms

We saw in the previous section that the cosine functions in the OTDAC
transforms have phases specifically chosen so that a single pass through the
MDCT followed by an inverse MDCT, 1M OCT, leads to the matrix structure
shown in Figure 16. Similar results apply to the ETDAC transforms
[Princen and Bradley 86]. The window conditions are such that overlap and
add with the prior and subsequent windows leads to the matrix structure
becoming just the identity matrix. Making the analysis and synthesis
windows of overlapping blocks time reverses of each other is enough to
cancel out the antidiagonal parts of the single pass matrix (the J parts) and
the perfect reconstruction condition then makes sure the resulting diagonal
matrix is equal to the identity matrix. The challenge in developing window
functions that support changing block size is to ensure that it remains
possible to cancel out the antidiagonal parts of the single pass matrix. A
number of approaches have been proposed in the literature, see for example
[Edler 89], [Sugiyama, Hazu and Iwadare 90], [Bosi and Davidson 92], and
[Princen and Johnston 95]. In this section, we explore in detail two different
methods [Edler 89, Bosi and Davidson 92] that have been used to create
transition windows that allow a change of block size while still maintaining
time-domain aliasing cancellation so perfect reconstruction is still achieved.
These methods or variants of these methods are currently in use state-of-the
art coders such as MPEG Layer III, MPEG AAC and Dolby AC-3.

132 Introduction to Digital Audio Coding and Standards

Synthesis Window MDCTIIMDCT Analysis Window

Figure /6. Matrix structure of the MDCTIIMDCT transform before overlap-and-add

Let's consider what's needed in changing from a series of long blocks to
a series of shorter blocks. Figure 17 shows the matrix structure on either
side of the transition block. Overlap and add for the prior series of long
blocks leads to the identity matrix along the diagonal other than the last
Nlongl2 by N1ongf2 section which is equal to Wi} R (1 +J) Wi_I A R while overlap
and add for the following series of short blocks leads to the identity matrix
along the diagonal other than the first Nshortl2 by Nshort/2 section which is
equal to Wi+ ISL (I-J) W i+I\. Any transition block needs to be designed to
match both sides of this matrix and cancel out time-domain aliasing.

Figure /7. Matrix structure on either side of a transition from a series of long blocks into a
series of shorter ones (shown for the case where long blocks are twice as long as short blocks)

One of the first solutions to the transition block was developed by Edler
[Edler 89]. This solution was based on the observation that zero values in
the analysis and synthesis windows can project out part of the unwanted

Chapter 5: Time to Frequency Mapping Part II: The MDCT 133

matrix structure. In particular, although doing a long block MDCT for a
transition window can easily cancel out aliasing in the prior long block by
setting the left side windows to the normal long block left side windows, the
anti diagonal part is too long to easily cancel out the anti diagonal part in the
subsequent short block. In terms of Figure 17, the gray antidiagonal bar in
the bottom right of the transition is too long for the gray antidiagonal bar at
the top left of the transition. However, making part of the window in the
long block equal to zero can shorten the anti diagonal content of the matrix
and therefore make the problem easier.

Edler's solution is that you can create a transition block out of a long
block MDCT by setting the window values to zero in the right side of the
analysis and synthesis windows for the last N'ongf4 - Nshort/4 entries. Doing
so will reduce the anti diagonal part that needs to cancel out the antidiagonal
part of the short window from N'ongf2 non-zero entries down to only NshOli2
non-zero entries. Now that the antidiagonal part is the right length, it can be
cancelled out by aligning the subsequent short block with the center of the
right side of the transition block. The perfect reconstruction conditions then
become that the Nshort/2 entries at the center of the right side of the transition
block should be the same as the right side of a short block while the first
N'ongf4 - Nshortl4 entries (which don't overlap with the short block should be
equal to one (see Figure 18). Similarly, the transition block back from short
blocks to long blocks has windows that are just the time-reverse of those for
the transition from long to short. Figure 19 shows an example sequence of
windows from long blocks to short blocks and back again to long blocks
using the Edler solution.

Left side of Long Window Right side of Short Window

Figure 18. Structure of the Edler transition window from long blocks to short blocks

134

Gain

o

Introduction to Digital Audio Coding and Standards

wl'ldovollWdrg Ileady !tale ooncitions
ABC ", ,,"----_ .. - "

,. ,
I', ,

I " \

" ... \ ,', '
;,", '

o 512 1004 1Sl6 :!l48 25al 0012 3584 «Jl6

lime (samples)

Figure 19. Transition between long and short blocks using Edler transition windows from
[Bosi et al. 97]

One last thing to note about the Edler transition block structure is its
effect on data rate. In going from long blocks to short blocks the Edler
transition block takes a length N(ong MDCT which requires passing N(ong/2
frequency samples corresponding to the N(ong/2 new time samples needed for
this block. However, each of the short blocks that overlaps the right side of
the window (including the zero entries) also passes Nsho,/2 frequency
samples corresponding to the same set of time samples resulting in an excess
of N(ongl4 extra frequency samples. This implies that going through an Edler
transition from long blocks to short blocks actually increases the data rate
and the critical sampling property is lost in that region. However, in going
through an Edler transition from short blocks to long blocks reduces the data
rate exactly enough to cancel out any net increase in going from long blocks
to short blocks and then back again to long blocks. The data rate reduction
in going from short to long blocks results from that fact that 3N(ongf4 new
time samples are needed to perform the length N(ong transition block MDCT
while only N(ongl2 new frequency samples are passed by the block - a
reduction of N(ongf4 frequency samples as required. The net result is that
using Edler transition blocks to switch to short blocks only for the duration
of transient behavior in the input signal (for which shorter blocks give better
time resolution) and then going back to long blocks (with their better
frequency resolution) keeps the coder critically sampled overall.

Chapter 5: Time to Frequency Mapping Part II: The MDCT 135

Applications of the Edler method are found in the MPEG Layer III and AAC
coders.

A second solution to the transition block problem was provided by the
Dolby AC-2A team [Bosi and Davidson 92]. In the AC-2A solution,
originally developed for ETDAC transforms, the transition windows from
long to short are left sides of long windows on the left and right sides of
short windows on the right (see Figure 20). The transition windows from
short to long are the time-reverses of the windows from long to short. So
how does time-domain aliasing cancellation come about? It comes about by
changing the kernel of the MDCT transform. Namely, the MDCT is now
carried out with length Y:z (N1ong + Nshort) with a phase term no = b/2 + Y:z
where b is the length of the right side of the window, i.e. b = Nshort/2 for a
transition from long to short and b = N1ongl2 for a transition from short to
long. For this choice of phase, the MDCT followed by the IMDCT gives
exactly the matrix structure needed to tie together the two parts of Figure 17
(without any space between). As in the normal MDCT case, this fact can
easily be verified by writing out the MDCT followed by the IMDCT as a
matrix multiplication and then using the cosine orthogonality condition

N/2-\ ~

L cos(~ (k +t)n)cos(2~ (k +t)m)=.if L (-I)P (On,m+pN + 0n,-m+PN)
k=O p=~

Figure 12 earlier in this chapter showed an example sequence of windows
from long blocks to short blocks and back again to long blocks using the
AC-2A solution.

One last thing to note about the AC-2A solution is that, like in the Edler
solution, the data rate increases going from long blocks to short blocks but
there is no net increase in overall data rate in following a subsequent return
to long block operation. In going from long blocks to short blocks the AC-
2A transition block sends 1,4 (Nong + Nshort) frequency samples although it
only uses Nshortl2 new time samples. The AC-2A transition block from short
blocks to long blocks only sends 1,4 (N1ong + Nshort) frequency samples while it
actually needed N1ongl2 new time samples for its MDCT. The net result is
that using the AC-2A transition blocks to switch to short blocks only for the
duration of transient behavior in the input signal also keeps the coder
critically sampled overall. A variant of this method is utilized in AC-3 (see
also Figure 4 in Chapter 14). In AC-3 the transition and short blocks equal
half of the long block. and the overlap region for these blocks alternates
between 0 and half of the long block length, so that b in the MDCT phase
term no equals either 0 or N1ongl2.

136 Introduction to Digital Audio Coding and Standards

Left side of Long Window Right side of Short Window

Figure 20. Structure of the AC-2A transition window from long blocks to short blocks

4.3 MDCT and PQMF Filter Banks

While historically the PQMF and the MDCT filter banks were developed
independently, [Malvar 92] showed how these approaches can be unified. In
fact, Malvar showed that the MDCT is a special case of the PQMF filterbank
with filter length N = 2K where K is the number of frequency channels.
(Note that this relationship does not apply to the ETDAC). In this section
we first rewrite the N=2K PQMF filterbank in terms of an overlap-and-add
block transform. We then compare it with the MDCT to better understand
what it means when we say that the MDCT is a PQMF filterbank.

Recall that the PQMF filterbank was defined as a set of K paired analysis
and synthesis filters hk[n] and gk[n], respectively, equal to

hdn]=h[n]Cos({k+1)(n-(N;I))+(h] _
K for k-O, ... ,K-l

gdn] = hlJN -1- n]

for a particular phase term <h selected to ensure alias cancellation between
adjacent frequency bands. The PQMF filterbank is then carried out by
passing the input signal in parallel through each of the analysis filters hk[n];
down-sampling the result by a factor of K to keep the total data rate
constant; quantizing, transmitting/storing, and dequantizing the output Yk[n];
up-sampling the recovered Yk[n] values by a factor of K; passing that through
each corresponding synthesis filter gk[n]; and, finally, adding the outputs of

Chapter 5: Time to Frequency Mapping Part 1/: The MDCT 137

each of the K channels (see Figure J in the prior chapter). Let's explore in
detail what this process looks like for the specific case of N=2K.

If our input signal is x[n] then the action of filter hk[n] is the convolution
of the input sequence and the filter impulse response. Down-sampling this
result by a factor of K then just gives us the outputs of this process taken at
points n that are multiples of K (i.e. n = iK for integer i). Therefore, we find
that ydi] is equal to:

N-l

ydi]= Lx[iK-m]hdm]
m=O

N-l

= Lx[(i-2)K+I+n]hdN - 1- n]
0=0

where in the second line we made the change of variables to n = N-I-m and
recognized that N = 2K.

Suppose we choose to group our input signal x[n] into blocks of length N
where each successive block is the input signal slid forward by K = NI2
samples. We number our input samples so that the first non-zero value is
defined as x[l] and we number the blocks such that the block with i=l
contains the first K non-zero samples. In other words, we define the ilh block
of the input signal xi[n] as the following:

xj[n]=x[(i-2)K+I+n] forn=O, ... ,N-l

Notice how block i=O ends with the last zero value x[O] while block i=1 goes
up the Kth non-zero value x[K].

With this block definition we can rewrite the outputs of the analysis stage
Yk[i] as the following:

N-l

ydi]= LXi[n]hdN - 1- n]
0=0

Substituting the specific form of hk[n] for the PQMF filterbank into this
expression gives that:

ydi]= rh[N -1-n]x;[n]cos(2r:(k+tXn - (N;l))_(h) for k= ° , ... ,K-l
n;()

This expression shows us that the analysis stage of the N = 2K PQMF can be
written as a block transform on blocks of input samples where each

138 Introduction to Digital Audio Coding and Standards

successive block contains the next K = N/2 samples. After writing out an
expression for the synthesis stage of the N = 2K PQMF, we return to this
expression and compare it to the forward transform of the MDCT.

In the synthesis stage of the PQMF, we up-sample each of the analysis
channels Yk[i] by a factor of K, filter them with the corresponding synthesis
filter gk[n], and sum the results. Up-sampling intersperses K-l zeros
between each i value of Yk[i] in channel k. The synthesis filters in each k
channel are only N = 2K samples long and so each new set of outputs from
the filters will only feel the last two Yk[i] values from the analysis stage and
their interspersed zeros. For example, when Yk[i] is the newest element fed
to the kth synthesis filter (preceeded by the prior interspersed K-I zeros, Yk[i
I], and followed by K-I more zeros), the filter output will be Yk[i]gk[O]+ Yk[i
l]gk[K]. The next filter input will be the first zero interspersed after Yk[i]
and the filter output will be Yk[i]gk[l]+ Yk[i-l]gk[K+l], etc. In other words,
each new input value Yk[i] from the analysis stage will lead after up
sampling and filtering to K new outputs from each channel where the nth
output is equal to Yk[i]gk[n]+ Yk[i-l]gk[K+n].

Adding up the channel outputs sums this over k and we find the
following result for the ith block of K new outputs from the synthesis stage
xj[n] :

K-I

xj[n] = ~,>k[i]gdn] + ydi -1]gk[K + n] for n = O, ... ,K-I
k=O

Notice that the first term in this sum applies the first K elements of the
synthesis filters to the current Yk[i] synthesis stage inputs while the second
turn applies the second half of the synthesis filters to the last set of synthesis
stage inputs Yk[i-l].

We can get the same result by instead extending the length of xj[n]to N
elements and filling it using only the current synthesis inputs Yk[i] if we then
overlap and add the results of successive Xj [n] blocks. In specific, we
instead define the extended Xj [n] as

K-I

xj[n] = ~>di]gdn] for n = O, ... ,N-I
k=O

and for each block of K synthesis inputs Yk[i] we output the first half of the
extendedxj[n] added to the second half of the prior extended xj_l[n].
Rewriting this expression with the specific form of the PQMF synthesis
filters leads to the following result:

Chapter 5: Time to Frequency Mapping Part II: The MDCT

xJnJ = h[N -\- nJI YdiJcos(2: (k +tXn - (N;I))_ <Pk) for n = O, ... ,N-I
k=O

139

for the result of the synthesis stage prior to overlapping and adding. Notice
again that this is a block transform from the block of K synthesis stage
inputs Yk[i] onto a block of N outputs Xi [n] .

Having rewritten an arbitrary N = 2K PQMF filterbank in terms of a pair
of block transforms, we can compare the specific form of the MDCT
transform to this and see how they are related. In particular, we would like
to compare the pair of MDCT transform equations

N-I

Xj[k] = ~>j[n]w~[n]cos(~ (n + no)(k +1» for k = O, ... ,K-I
n~O

K-I

xJn] = ~ w~[n]I Xj[k]cos(~ (n + no)(k + 1» for n = 0, ... ,N-l
k~O

to the pair of N = 2K PQMF transform equations

ydiJ = I:h[N -\- nJxi[nJcos(~ (k +tXn - (N;l))-<h) for n = 0, ... ,K-\
n=O

Xi[nJ = h[N -\- nJIYdiJcos(~ (k +tXn - (N;I))-<Pk) for k = O, ... ,N-l
k~O

We first note that the arguments of the cosines are identical if

The MDCT required us to set no = N/4+ 112 in order to ensure time aliasing -
this implies that the MDCT has the same cosine as the N = 2K PQMF with a
phase term <l>k equal to

(h = - 3; (k + 1)

For the MDCT to be a PQMF filterbank we need to have the phase term <l>k
satisfy

140 Introduction to Digital Audio Coding and Standards

<Pk - <h-I = 1- (2r + I)

for integer r to ensure that aliasing terms are cancelled between adjacent
frequency bands - clearly a condition met by the MDCT phase term. In fact,
it turns out that the MDCT phase term cancels frequency aliasing between
all pairs of frequency bands, not merely adjacent ones. We can therefore
conclude that the MDCT does take the form of an N = 2K PQMF filterbank.

Next we can relate the MDCT window functions to the prototype filter
hen] for a PQMF filterbank. We should note that the outputs of the analysis
stages are defined with slightly different normalizations and are related by

Noting this change of normalization allows us to see that the MDCT has the
same form as a PQMF filterbank when the MDCT windows are related to
the PQMF prototype filter hen] through

i ,fN
w a [nl=-2- h[N-I- nl

i ,fN
W s [nl = -2-h[N -1- nl

Notice that these relationships require that the MDCT analysis and synthesis
windows be equal to each other. Now, for a time-invariant filterbank, i.e. for
a single window type, perfect reconstruction requires that the MDCT
analysis and synthesis windows be time reverses of each other. The MDCT
with a time-invariant filterbank can only satisfy both of the window
conditions with symmetric window functions.

Finally, the MDCT requires the window condition to satisfy the perfect
reconstruction condition that

w~ [nl* w ~[nl+ w~-I [N / 2+ nl* w~-I[N / 2+ nl = 1 for n = O, ... ,N/2-1

while a PQMF prototype filter is designed to satisfy the power
complementarity condition:

IH(OI2 + IH(-FsI2K+OI2 = 21F/ for 0 :-::; f :-::; F,/4K

and required to be effectively zero beyond Ifl = FJ2K. We need to ask
ourselves how, if at all, these conditions are related.

Chapter 5: Time to Frequency Mapping Part II: The MDCT 141

In the case where the MDCT windows are symmetric, they correspond to
a symmetric PQMF prototype filter hen] that satisfies the following perfect
reconstruction condition

h[n]2 + h[n + N 12]2 = 41 N for n=O, ... ,NI2-1

It can be shown that this perfect reconstruction condition implies the
following power complementarity condition in the frequency domain:

N-J

t LIH(f+kFs /N)12 =2/F/
k=O

Now if an MDCT window is well enough localized in the frequency domain
that it has negligible power beyond If I = F/2K then we find that this
condition is equivalent to the PQMF power complementarity condition other
than a trivial difference in gain of lIN between the two cases. However, any
window that satisfies the MDCT perfect reconstruction condition leads to
perfect reconstruction even if it is not localized enough to satisfy the PQMF
condition. For example, the sine window satisfies the MDCT conditions and
leads to perfect reconstruction but is not localized enough to be a PQMF
prototype filter. What we see is that the MDCT transform is a version of the
N = 2K PQMF filterbank that produces exact perfect reconstruction while
allowing a wider set of prototype filters than generally allowed in PQMF
filter banks.

In this section, we have tied together the two storylines of this and the
previous chapter. We first met the MDCT as a transform that solves a
number of problems in transform coding by allowing for 50% overlap
without increasing the data rate. We have now seen that the MDCT is also a
sub-band coding filterbank that allows for perfect reconstruction with lower
cost filters than the PQMF due to its lesser requirements on stopband
attenuation. The ease of window design (e.g., just use a sine or KBD
window) and the ability to adapt the filterbank resolution by simply altering
a single parameter (the window length N) have made the MDCT the
transform of choice for most of the newer coders.

4.4 Implementation of the MDCT via the FFT

We have seen how the MDCT solves the data rate problem inherent in
DFT coders, however, to be truly useful for implementation it needs to have
a fast transform method so that the runtime doesn't grow like N2 for large

142 Introduction to Digital Audio Coding and Standards

block sizes. In fact, the FFT can be leveraged to create a fast version of the
MDCT through a rewriting of the transform as follows:

N-l

X[k] = L x[n]w[n]cose~ (n + no)(k + t))
n=O

n=O

This rewriting tells us that we can implement the forward MDCT by
carrying out the following steps:

1. "Pre-twiddle" the input samples by (complex) mUltiplying with the factor

2. Perform an N-point FFT on the pre-twiddled data
3. "Post-twiddle" the transformed data for k values from 0 to N/2-1 by taking

the real part of the transformed data times the factor

Notice that rather than growing like N2, the fast implementation runtime only
grows like N*log2(N) (from the FFT, the pre- and post-twiddle operations
only grow like N).

Analogously, we can rewrite the inverse transformation to make use of
the FFT as follows:

N/2-1

x'[n] = w[n]~ L X[k]cos(~ (n + no)(k + t))
k=O

N-l

= wLn]i1 LX[k]cos(~ (n + no)(k +t))
k=O

N-\ .2. I

= w[n] Re{i1 L X[k]eJN(n+no)(k+,)}

k=O

= 2w[n] Re{eiM(n+no) ~ I[X[k]ei-li'kno ~i-li'kn }
k=O

Chapter 5: Time to Frequency Mapping Part II: The MDCT 143

This rewriting tells us that we can implement the inverse MDCT by
carrying out the following steps:

1. Pre-twiddle the frequency samples (note that we now go from k=O, ... ,N-I -
use X[N-I-k] = -X[k]for k ~ N/2) by (complex) multiplying with the factor

2. Perform an N-point inverse FFf on the pre-twiddled data
3. Post-twiddle the inverse transformed data by taking the real part of the

inverse transformed data times the factor

j*(n+no)
e

and then multiply by two times the synthesis window.
Again we can notice that use of the FFf algorithm allows us to reduce the
number of operations to only being of order N*log2(N).

Please be aware that what we've seen in this section is the simplest
example of converting the MDCT implementation from order N2 to order
N*log2(N) but not necessarily the fastest. A bit of work can get the
implementation even faster. The interested reader can refer to [Malvar 92],
[Duhamel, Mahieux and Petit 91], and [Bosi 99].

5. SUMMARY

In summary for this and the prior chapter, we have reviewed two
approaches for parsing input signals into frequency components to be
encoded: the sub-band filter bank approach where a PQMF is used to
segment frequency components, and the transform approach where a
modulated transform is used to segment frequency components. We have
seen that the PQMF methods of creating large numbers of frequency
channels rely on modulating a prototype low-pass filter into the appropriate
frequency band location. The PQMF is utilized in the time to frequency
mapping of MPEG-I and 2 Layers I and II (see Chapters II and 12). We
have also seen that blocking effects require transform methods to window
the input signals with smooth windows and to overlap-and-add the output
data to reconstruct the signal. Finally, we have learned about the MDCT
which can easily be seen as either a PQMF sub-band method or a type of
windowed transform showing that these two approaches are just different
faces of a single underlying multi-channel approach to signal processing.
Moreover, the MDCT achieves perfect reconstruction without adding to

144 Introduction to Digital Audio Coding and Standards

overall system data rate, and has a fast implementation allowing easy scaling
up to large numbers of channels. The MDCT is utilized in the time to
frequency mapping of MPEG-2 and 4 AAC (see Chapters 13 and 15) and
AC-3 (see Chapter 14). A hybrid filter bank, which cascades the PQMF
stage with an MDCT stage, is utilized in MPEG Layer III (see Chapter 9).

In general, in the design of time to frequency mapping for audio coding,
the main goal is to maximize the ability to separate the frequency
components of the signal while minimizing the audibility of blocking
artifacts. Critical sampling, although not a strict requirement, is highly
desirable. Perfect reconstruction or nearly perfect reconstruction filter banks
simplify the design of the coding systems. Time delay and computational
complexity are also important factors in the choice of filter banks. The filter
bank is a central step in coding systems, setting the stage for the extraction
of redundancies and irrelevancies of the signal. Before examining in detail
the allocation of the bit pool in order to achieve this goal, we turn our
attention in the next chapter to models of the human ear so that we can better
understand what signal components and quantization noise will not be
audible in a signal.

6. REFERENCES

[Bosi 99]: M. Bosi, "Analysis/Synthesis system with efficient oddly stacked single
band filter using time-domain aliasing cancellation," Patent number 5,890,106,
March 1999.

[Bosi and Davidson 92]: M. Bosi and G. A. Davidson, "High-Quality, Low-Rate
Audio Transform Coding for Transmission and Multimedia Applications", presented
at the 93rd AES Convention, J. Audio Eng. Soc. (Abstracts), vol. 40, P. 1041,
Preprint 3365, December 1992.

[Bosi et al. 97]: M. Bosi, K. Brandenburg, S. Quackenbush, K. Akagiri, H. Fuchs, J.
Herre, L. Fielder, M. Dietz, Y. Oikawa, G. Davidson, "ISO/IEC MPEG-2 Advanced
Audio Coding", JAES, 51, 780 - 792, October 1997.

[Brigham 74]: E. Oran Brigham, The Fast Fourier Transform, Prentice Hall
Englewood Cliffs, 1974.

[Cooley and Tukey 65]: J. W. Cooley and J. W. Tukey, "An Algorithm for Machine
Calculation of Complex Fourier Series", Math. Computation, vol. 19, pp. 297-301,
April 1965.

Chapter 5: Time to Frequency Mapping Part II: The MDCT 145

[Duhamel 86]: P. Duhamel, "Implementation of split radix FFf for complex, real
and real-symmetrical data", IEEE Transactions on Acoustics, Speech, and Signal
Processing, vol. ASSP-34, pp. 285 - 295 , April 1986.

[Duhamel, Mahieux and Petit 91]: P. Duhamel, Y. Mahieux, and 1. P. Petit, " A fast
algorithm for the implementation of filter banks based on time domain aliasing
cancellation", IEEE Transactions on Acoustics Speech, and Signal Processing, vol.
ASSP-34, pp. 285 - 295, April 1986.

[Edler 89]: B. Edler, "Coding of Audio Signals with Overlapping Transform and
Adaptive Window Shape" (in German), Frequenz, Vol. 43, No.9, pp. 252-256,
September 1989.

[Fielder et al. 96]: L. D. Fielder, M. Bosi, G. A. Davidson, M. Davis, C. Todd, and
S. Vernon" AC-2 and AC-3: Low Complexity Transform-Based Audio Coding," in
N. Gielchrist and C. Grewin (ed.), Collected Papers on Digital Audio Bit-Rate
Reduction, pp. 54-72, AES 1996.

[Harris 78]: F. J. Harris, "On the Use of Windows for Harmonic Analysis with the
Discrete Fourier Transform", Proc. of the IEEE,Vol. 66, no. 1, pp. 51-84, January
1978.

[ISOIlEC 11172-3]: ISO/IEC 11172, Information Technology, "Coding of moving
pictures and associated audio for digital storage media at up to about 1.5 Mbitls, Part
3: Audio", 1993.

[ISO/IEC 13818-7]: ISO/IEC 13818-7, Information Technology, "Generic coding of
moving pictures and associated audio, Part 7: Advanced Audio Coding", 1997.

[Malvar 90]: H. S. Malvar, "Lapped Transforms for efficient transfonnlsub-band
coding," IEEE Transactions on Acoustics, Speech, and Signal Processing, vol.
ASSP-38, pp. 969 - 978, June 1990.

[Malvar 92]: H. S. Malvar, Signal Processing with Lapped Transforms, Artech
House, Norwood, MA, 1992.

[Oppenheim and Schafer 75]: A. V. Oppenheim and R. W. Schafer, Digital Signal
Processing, Prentice Hall, Englewood Cliffs, 1975.

[Portnoff 80]: M. R. Portnoff, "Time-Frequency Representation of Digital Signals
and Systems Based on Short-Time Fourier Analysis", IEEE Transactions on
Acoustics, Speech, and Signal Processing, vol. ASSP-28, no. I, pp. 55 - 69,
February 1980.

[Princen and Bradley 86]: J. P. Princen and A. B. Bradley, "Analysis/Synthesis
Filter Bank Design Based on Time Domain Aliasing Cancellation," IEEE

146 Introduction to Digital Audio Coding and Standards

Transactions on Acoustics, Speech, and Signal Processing, vol. ASSP-34, no. 5, pp.
l153-1161,October 1986.

[princen and Johnston 95]: J. Princen, J. D. Johnston, "Audio Coding with Signal
Adaptive Filter banks," IEEE Proc. of ICASSP, pp. 3071 - 3074, 1995.

[Princen, Johnson and Bradley 87]: J. P. Princen, A. Johnson and A. B. Bradley,
"SubbandiTransform Coding Using Filter Bank Designs Based on Time Domain
Aliasing Cancellation", Proc. of the ICASSP, pp. 2161-2164, 1987.

[Sinha, Johnston, Dorward and Quackenbush 98]: D. Sinha, J. D. Johnston, S.
Dorward and S. R. Quackenbush, "The perceptual Audio Coder (PAC)", in The
Digital Signal Processing Handbook, V. Madisetti and D. Williams (ed.), CRC
Press, pp. 42.1-42.18, 1998.

[Sugiyama, Hazu and Iwadare 90]: A. Sugiyama, F. Hazu, M. Iwadare, "Adaptive
Transform Coding with an Adaptive Block Size (ATCABS)", Proc. of the ICASSP,
Albuquerque, pp. 1093 - 1096, 1990.

[Vetterli and Kovacevic 95]: M. Vetterli and J. Kovacevic, Wavelets and Subband
Coding, Prentice Hall, Englewood Cliffs, 1995.

7. EXERCISES

a) MDCT:
In this exercise you will implement a time-to-frequency mapping using the
MDCT. You will verify that the mapping leads to perfect reconstruction and
that the fast implementation is significantly faster than straightforward
implementation. Your fast MDCTIIMDCT implementation will be useful
for later exercises.
1. Program functions to carry out the MDCT and IMDCT using the

transform definitions.
2. Use your MDCT/IMDCT functions to implement a 50% overlap

analysis/synthesis system. Allow for arbitrary block sizes N and do
your windowing using the sine window.

3. Verify that your system leads to perfect reconstruction by testing it
using N = 2048 length transforms and the following test signals:
x[n] = cos(21tn/44.1) [1 kHz tone sampled at 44.1 kHz]
x[n] = 8(n) [step function]

4. Program new functions to carry out the MDCT and IMDCT using the
FFT-based fast implementation. To do so, you will need a routine for
implementing the FFTIIFFT. Source code for such routines is readily

Chapter 5: Time to Frequency Mapping Part II: The MDCT 147

available (e.g., see the Numerical Recipes book), but you will need to
check that the conventions for sign (-j in the forward transform) and
normalization factor (liN for inverse transform) are consistent with
our usage. Verify that your new routines are correct by using them in
your analysis/synthesis system with the above test signals.

5. Compare the execution time of your analysis/synthesis system when
using the fast implementation versus using the straightforward
implementation.

b) A Frequency Domain Audio Coder:
In this exercise you will convert the audio coder you developed in Chapter 2
into a frequency domain coder using the MDCT as a time-to-frequency
mapping.
1. Write an audio coder that reads in 16 bit PCM audio files, transforms

sine-windowed blocks of N time samples into N/2 frequency
components, quantizes those frequency components, packs and writes
the quantized frequency components into coded files, reads your coded
files, dequantizes and inverse transforms blocks of NI2 frequency
components into N time samples, overlaps and adds the time samples
with 50% overlap, and writes the decoded signal into a 16 bit PCM
audio file you can play. Verify that your coder is bug-free by making
sure that files coded using 16-bit midtread uniform quantization do not
sound degraded when decoded.

2. Test your codec on some sound samples using N=256 and N=2048
while using 1) 4-bit midtread uniform quantization, 2) 4-bit midrise
uniform quantization, 3) 8-bit midtread uniform quantization, and 4) 3
scale bits, 5 mantissa bits mid tread floating point quantization. What
compression ratios do you get? Describe the quantization noise you
hear. How does the quantization noise differ from what you heard at
the same quantization in the Chapter 2 coder?

Chapter 6

Introduction to Psychoacoustics

1. INTRODUCTION

In the introduction to this book, we saw that the last stage in the coding
chain is the human ear. A good understanding of how the human ear works
can be a powerful tool in the design of audio codecs. The general idea is that
quantization noise can be placed in areas of the signal spectrum where it
least affects the fidelity of the signal, so that the data rate can be reduced
without introducing audible distortion.

In this chapter, we examine the main aspects of psychoacoustics (the
science that studies the statistical relationships between acoustical stimuli
and hearing sensations) that are useful in the design of perceptual audio
coders. The main goal of this chapter is to introduce the basic principles and
data behind the masking models currently utilized in state-of-the-art audio
coders. First, units for sound pressure level measurements and the range of
human hearing are introduced. The hearing threshold and masking
phenomena are discussed and their main empirical properties presented. We
then examine the underlying mechanism of the hearing process and how the
ear acts as a spectrum analyzer, analyzing sound in specific frequency units
called critical bands. This will provide us with the foundation for
developing psychoacoustic models, which link empirical masking data with
the sound hearing sensation.

M. Bosi et al., Introduction to Digital Audio Coding and Standards
© Kluwer Academic Publishers 2003

150 Introduction to Digital Audio Coding and Standards

2. SOUND PRESSURE LEVELS

As we saw in Chapter 1, sound can be represented as a function of time.
Sound reaches the human ear in the form of a pressure wave. It can be
represented as the variation of the air pressure in time, pet), where the
pressure is defined as force per unit area. The unit of pressure in the MKS
system is the Pascal (Pa) where 1 Pa = 1 N/m2• Relevant values of sound
pressure for audio applications vary between 10-5 Pa, which is close to the
limits of human hearing at the most sensitive frequencies, and 102 Pa, which
corresponds to the threshold of pain.

To describe such a wide range of relevant sound pressures, we usually
choose to work in logarithmic units and define the sound pressure level,
SPL, in units of dB as

SPL = 10 iog IO (p/Poi

where Po = 20 1-1 Pa is roughly equal to the sound pressure at the hearing
threshold for tone frequencies around 2 kHz [Zwicker and Fastl 90].

We often also describe sounds in terms of the sound intensity. The sound
intensity, I, is the power per unit area in the sound wave and it is
proportional to p2. The SPL (in units of dB) can also be calculated in terms
of sound intensity as:

SPL = 10 iog lO (1110)

The intensity I is measured in MKS units in terms of W/m2 (lW = IN m/s)
and the reference sound intensity 10 = 10-12 W/m2 corresponds to a wave with
the reference pressure Po.

3. LOUDNESS

The hearing sensation that corresponds to sound levels is the loudness of
the sound. The concept of loudness was first introduced by Barkhausen in
the 1920s as a means to describe perceived sound intensities. The loudness
level is defined as the level of a 1 kHz sound tone that is perceived as loud as
the sound under examination for frontally incident plane fields. In general,
the loudness of an audio signal depends on its duration and its temporal and
spectral structure in addition to its intensity. The loudness unit is the phon,
where the phon describes a curve of equal loudness as a function of
frequency. It is interesting to note that the difference between values for the
loudness measured in phones and values for the intensity measures in dB

Chapter 6: Introduction to Psychoacoustics 151

decreases at high levels (see Figure I). For example a 1 kHz tone at 100 dB
is perceived almost as loud as a 100 Hz tone at 100 dB, while 1 kHz tone at
40 dB is perceived as about 20 dB louder than a 100 Hz tone at 40 dB
[Fletcher and Munson 33]. It should be noted that, depending on how the
equal loudness contours are measured, there might be differences in the data.
Some of these differences can be accounted for by considering an
attenuation factor necessary to produce equal loudness from frontally
incident plane fields versus diffused sound fields [Zwicker and Fastl 90].

Figure 1. Loudness contours from [Fletcher and Munson 33].

4. HEARING RANGE

The human ear can cover a wide range of SPLs. Figure 2 shows the
hearing area of a typical human ear [Zwicker and Fastl 90]. The graph
illustrates different SPL curves as function of frequency. The frequencies
shown in the abscissa vary between 20 Hz and 20 kHz, which is generally
considered the frequency range of audible sounds. It should be noted,
however, that recent findings imply that particularly sensitive subjects can
hear sounds at frequencies above 20 kHz.

152 Introduction to Digital Audio Coding and Standards

The curve in the lower part of the graph represents the threshold in quiet,
which is the level of audibility for pure tones in steady state conditions. The
dotted line extending upwards from the threshold in quiet between 2 and 20
kHz represents the hearing loss commonly seen in subjects exposed to loud
sounds in the mid-range frequency region. The threshold of pain is the
dashed line at the top of the diagram. The area between the threshold in
quiet and the threshold of pain represents the human hearing range.

~l.O !LO r----.---r----,...----.---..-----.--..,..--r---j

Qj

dB·
120

100

>
.!80

o
0.02 0.05 0.1 0.2 0.5 2kHz '5

frequency

Figure 2. Hearing area from [Zwicker and Fast) 90]

dB
120

............. 1Xl

eo

60

l.O

20

0

10 20

Human speech typically falls into the frequency range comprised
between 100 Hz and 8 kHz, and has SPLs ranging from about 30 dB up to
around 70 dB, with typical conversation levels at values at about 50-60 dB.
Music typically has a wider range in both frequency and SPLs than speech.
For example, the Ao note in the piano is tuned at 27.5 Hz (Co is tuned at
about 16 Hz) while the highest note of the piccolo is at a frequency of about
8.4 kHz. Moreover, harmonics of musical instruments such as the violin and
cymbals can reach frequencies above 15 kHz. The dynamic range for music
typically varies between 20 dB and 95 dB. Around 100 dB is the onset of
risk for hearing damage. At about 120 dB is the threshold of pain.

Chapter 6: Introduction to Psychoacoustics 153

5. HEARING THRESHOLD

The hearing threshold, or threshold in quiet, represents the lowest sound
level that can be heard at a given frequency. Even in extremely quiet
conditions, the human ear cannot detect sounds at SPLs below the threshold
in quiet. This curve is extremely important for audio coding since frequency
components in a signal that fall below this level are irrelevant to our
perception of sound and therefore they do not need to be transmitted. In
addition, as long as the quantization noise in frequency components that are
transmitted falls below this level, it will not be detectable by the human
hearing process.

The threshold in quiet is also important in describing how loud we
perceive sounds to be. In particular, the equal loudness contours display a
shape that is nearly parallel to the threshold in quiet for low loudness levels
(20 phones or below) suggesting that it is the difference between a sound and
the threshold in quiet that determines the loudness for soft sounds. For loud
sounds, the SPL itself plays a more important role in the determination of
loudness. According to [Zwicker and Fast 90] the threshold in quiet
corresponds to the equal loudness contour described by phon = 3.

The threshold in quiet can be measured by recording the sound pressure
level ofthe lowest sound level that elicits a listener's response that the sound
is audible. The frequency dependence can be tracked by giving the test
subject a switch which changes between continuously incrementing and
continuously decrementing the sound pressure level of a test tone whose
frequency is slowly sweeping from low to high values and vice-versa. The
test subject is instructed to switch to decrementing the sound pressure level
when the sound is definitely audible and to switch to incrementing the
pressure level when the sound is definitely inaudible. Typically, the results
produce zigzag curves such as that in Figure 3 from [Zwicker and Fast! 90]
with a range of roughly 6 dB between the point where the sound is definitely
audible and where it is definitely inaudible. The average of the two curves
marking the top and bottom of the zigzags is used as the assessment of the
threshold in quiet. According to [Zwicker and Fast! 90], the reproducibility
of the threshold in quiet for a single subject is within ±3 dB. In addition, the
frequency dependence of this curve has been recorded in a similar manner
for many subjects with normal hearing.

154

<II
C

.8
Vi
2

Introduction to Digital Audio Coding and Standards

80r--r--·-.---r---~----,---'----'---'--~

dB

'0 20 t------I----'-

iii
>
~

Figure 3. Sample results from an experimental assessment of the threshold in quiet from
[Zwicker and Fast! 90]

The frequency dependence of the hearing threshold has been fairly well
established. The threshold is relatively high at low frequencies. It is at an
SPL of around 40 dB at 50 Hz and almost drops to 0 dB by 500 Hz. It
remains almost constant near 0 dB between 500 and 2 kHz. It can then drop
below zero between 2 kHz and 5 kHz for listeners with good hearing. For
frequency above 5 kHz, there are peaks and valleys that vary from subject to
subject but the threshold is generally rising. Typically, the threshold then
increases quite rapidly above 16 kHz. While for frequencies below 2 kHz
the threshold seems to be largely independent of age, above 2 kHz it is
shifted to a value almost 30 dB higher at 10 kHz for 60-year old subjects
than for 20 year old subjects. Figure 4 shows a comparison plot of the
threshold in quiet for test subjects of various ages [Zwicker and Fastl 90].

Chapter 6: Introduction to Psychoacoustics

80r---~--r-~----~--r-~----r-~--"

dB

~ 40
'0
Q; 20
.!

o

-2Qo.02 a 05 a • .1 02

Ii
If

age 60 1 !
V i

/ .:"
/4Q/

/ .. '
-_~.- ---:........ 20

4 •••• ••

0.5 2kHz 5 10 20

Figure 4. Threshold in quiet for listeners of different ages from [Zwicker and FastI 90)

155

As shown in [Terhardt 79], one can obtain a good approximation of the
threshold in quiet by utilizing the following frequency dependent function:

A(f) I dB = 3.64(f I kHzr{)·8 - 6.5e -06(flkHz-3.3)' + 10-3 (f I kHz) 4

where the threshold in quiet is modeled by taking into consideration the
transfer function of the outer and middle ear and the effect of the neural
suppression of internal noise in the inner ear (see also Section 9 later in this
chapter). A graph of the frequency dependence of this function can be seen
in Figure 5. Notice how it reasonably mimics the behavior of the
experimentally derived curves shown in the prior figures.

One should be aware that, in order to be able to compare a signal with the
threshold in quiet, it is important to know the exact playback level of the
audio signal. In general, the playback level is not known a priori in the
design of a perceptual audio coder. A common assumption is to consider the
playback level as such that the smaIl est possible signal represented in the
audio coding system under design will be presented close to 0 dB. This is
equivalent to aligning the fairly flat bottom of the threshold in quiet,
corresponding to frequencies of roughly 500 Hz to 2 kHz, with the energy
level represented by the least significant bit of the spectral signal amplitude
in the system under design.

156

100
iii'
:!!. 80

i 60 • ..J

e 40 ::s
I
l 20

" c 0 ::s
JJ -20

Introduction to Digital Audio Coding and Standards

10

Threshold in Quiet

\
\
\
~

"------
100 1000

Frequency (Hz)

I

I
If

../

10000

Figure 5. Approximate fonnula for the threshold in quiet

100000

6. THE MASKING PHENOMENON

Masking of soft sounds by louder ones is part of our everyday
experience. For example, if we are engaged in a conversation while walking
on the street, we typically cease conversation while a loud truck passes since
we are not be able to hear speech over the truck noise. This can be seen as
an example of masking: when the louder masking sound (the truck) occurs at
the same time as the maskee sound (the conversation), it is no longer
possible to hear the normally audible maskee. This phenomenon is called
simultaneous or frequency masking. Another example of frequency masking
occurs when in a performance one loud instrument (masker) masks a softer
one (maskee) that is producing sounds close in frequency. In general
simultaneous masking phenomena can be explained by the fact that a masker
creates an excitation in the cochlea's basilar membrane (see also next
sections) that prevents the detection of a weaker sound exciting the basilar
membrane in the same area.

Masking can also take place when the masker and the maskee sounds are
not presented simultaneously. It this case we refer to this phenomenon as
temporal masking. For example, in speech a loud vowel preceding a plosive
consonant tends to mask the consonant. Temporal masking is the dominant
effect for sounds that present transients, while frequency masking is
dominant in steady state conditions. For example, in coding sharp

Chapter 6: Introduction to Psychoacoustics 157

instrument attacks like those of castanets, glockenspiel, temporal masking
plays a more important role than frequency masking.

6.1 Frequency Masking

Figure 6 illustrates frequency masking. In this figure, we see a loud
signal masking two other signals at nearby frequencies. In addition to the
curve showing the threshold in quiet, the figure shows a curve marked
"masking threshold"2 that represents the audibility threshold for signals in
the presence of the masking signal. Other signals or frequency components
that are below this curve will not be heard when the masker is present. In
the example shown in Figure 6, the two other signals fall below the masking
threshold, so they are not heard even though they are both well above the
threshold in quiet. Just like with the threshold in quiet, we can exploit the
masking thresholds in coding to identify signal components that do not need
to be transmitted and to determine how much inaudible quantization noise is
allowed for signal components that are transmitted.

Masker
dB

Masked Signals

Figure 6. Example of frequency masking

6.2 Temporal Masking

In addition to simultaneous masking, masking phenomena can extend in
time outside the period when the masker is present. Masking can occur prior
to and after the presence of the masker. Accordingly, two types of temporal

2 We shall refer to "masking thresholds" or "masking curves" to indicate the elevation of the
hearing threshold due to the presence of one or more masker sounds. We define the
"masked threshold" or "masked curve" as the combination of the hearing threshold and the
masking threshold.

158 Introduction to Digital Audio Coding and Standards

masking are generally encountered: pre-masking and post-masking. Pre
masking takes place before the onset of the masker; post-masking takes
place after the masker is removed. Pre-masking is somewhat an unexpected
phenomenon since it takes place before the masker is switched on. In
general, temporal masking can be explained if we consider the fact that the
auditory system requires a certain integration time to build the perception of
sound and by the fact that louder sounds require longer integration intervals
than softer ones.

dB Masker On
0(•

Pre-Masking Post-Masking
Simultaneous / Masking

~(. (
-20ms Time

-200ms -150ms

Figure 7. Example of temporal masking

In Figure 7, an example of temporal masking is shown [Zwicker and
Fastl 90]. A 200 ms masker masks a short tone burst with very small
duration relative to the masker. In the figure pre-masking lasts about 20 ms,
but it is most effective only in the few milliseconds preceding the onset of
the masker. There is no conclusive experimental data that link the duration
of pre-masking effects with the duration of the masker. Although pre
masking is a less dramatic effect than post or simultaneous masking, it is
nevertheless an important issue in the design of perceptual audio codecs
since it is related to the audibility of "pre-noise" or "pre-echo" effects caused
by encoding blocks of input samples. Pre-noise or pre-echo distortion
occurs when the energy of the coded signal is spread in time prior to the
onset of the attack. This effect is taken into consideration in the design of
several perceptual audio coding systems both in terms of psychoacoustics
models and analysis/synthesis signal adaptive filter design.

Figure 8 from [Bosi and Davidson 92] shows an example of a castanet
signal (Figure 8 (a)) in which encoding with a fixed block length led to a
spread of energy in the 5 ms prior the onset of the transient (Figure 8 (b)).
This effect is perceived as a distortion sometimes described as a "double
attack" and it is known in literature as pre-echo. Although some pre
masking effects can last on the order of tens of milliseconds, pre-masking is
most effective only a few milliseconds. It should also be noted that pre
masking is less effective with trained subjects. In order to correct for pre-

Chapter 6: Introduction to Psychoacoustics 159

echo distortion, adaptive filter banks (see Chapter 5) are often adopted in
perceptual audio coding. Figure 8 (c) shows the reduction in pre-echo
distortion that resulted from using an adaptive filter bank to adjust the block
length in the presence of the transient signal.

Post-masking is a better understood phenomenon. It reflects the gradual
decrease of the masking level after the masker is switched off. Post
masking is a stronger effect than pre-masking and has a much longer
duration. In Figure 7 post-masking lasts about 150 ms. Post-masking
depends on the masker level, duration, and relative frequency of masker and
probe.

0.004 0.008 0.012 0.016 0.020
.... neIs

a Original castaneI signal

o 0.004 0.016 0.020
second.

b castanel COded 81128 kblslch
wHh 512 point fixed block coder

0.004 0.016 0.020

c castanet COded 81128 kblslch
wnh adaptive blOCk COder

Figure 8. Example of pre-echo effects in a transient signal coded with a fixed (b) versus
adaptive (c) resolution filter bank; the original signal is shown in (a). In (b) the amount of

energy spread in time prior to the onset of the signal is perceived as pre-echo distortion and it
is not temporally masked by the signal from [Bosi and Davidson 92]

An important question in the design of perceptual audio coders is how to
account for masking effects. Masking curves are typically measured only
for very simple maskers and maskees (either pure tones or narrow-band
noise). In perceptual audio coding the assumption is that masking effects
derived from simple maskers can be extended to a complex signal. Masking
thresholds are computed by: a) identifying masking signals in the frequency
domain representation of the data, b) developing frequency and temporal

160 Introduction to Digital Audio Coding and Standards

masking curves based on the characteristics of each identified masker, and c)
combining the individual masking curves with each other and with the
threshold in quiet to create an overall threshold representing audibility for
the signal. This overall audibility threshold or masked threshold is then used
to identify inaudible signal components and to determine the number of bits
needed to quantize audible signal components.

7. MEASURING MASKING CURVES

Masking curve data are collected by performing experiments on subjects
that record what are the limits of audibility for a test signal (or probe) in the
presence of a masking signal. The masking threshold varies dramatically
depending on the nature and the characteristics of the masker and of the
probe. Typically, for frequency masking measurements, the probe and the
masker can be a sinusoidal tone or narrow band noise of extended duration.
For temporal masking measurements, a short burst or sound impulse is used
as a probe and the masker is of limited duration.

One way to measure a masking curve is to use a variant of the tracking
method described for measuring the threshold in quiet. In this case,
however, a masking signal will be played as the subject tries to identify the
audibility limits for test signals. Figure 9 shows an example of the masking
curve that results from such an experiment. In this example, the masking
signal is a pure tone a 1 kHz with an SPL of 60 dB. The lower zigzag line is
the threshold in quiet for this test subject measured in the absence of the
masking signal. The upper zigzag line is the audibility threshold when the
masking signal is playing. Notice how masking in this case is strongest at
frequencies near the masker's frequency and how it drops off quickly as the
test signal moves away from the masker frequency in either direction - these
features tend to be quite general results. Notice also that the highest
masking level is roughly 15 dB below the masker level and that the drop-off
rate is much quicker moving to low frequencies than moving to higher ones
- these features tend to be very dependent on the specifics of both the
masking signal and the test signal. In the following sub-sections, we
summarize some of the main features of frequency masking curves as
determined by similar experiments on test subjects.

Chapter 6: Introduction to Psychoacoustics

BO~~~~~~-rr-~~H
dB~~~~~~~~~
70~~~~~~~~1-~H

50~~~~~-+~r-+-~H

~50~~+++-+-+-~1--+-+~
o
~40~~~~~~-rr-~T-H
iii
230~-r~~~ ~++--r-~~

'0 20 ~--+JilIH--f-+
Q)

~ 10

O~ru:~_~
500 1000Hz 2000 30004000

frequency of test tone

161

Figure 9. Sample results from experimental determination of a masking curve from [Zwicker
and Fast! 90]

7.1 Narrow-Band Noise Masking Tones

In the case of narrow-band noise masking tones, the masker is noise with
a bandwidth equal to or smaller than a critical band (see the definition of
critical bandwidth in the next sections). Figure 10 shows measured masking
thresholds for tones masked by narrow-band noise centered at 250 Hz, 1
kHz, and 4 kHz [Zwicker and Fastl 90]. The noise bandwidths are 100 Hz,
160 Hz, and 700 Hz respectively. The slopes of the noise above and below
the center frequency are very steep, dropping more than 200 dB per octave.
The level of the masker is 60 dB, computed based on the noise intensity
density and bandwidth. The horizontal dashed line shows the noise level in
the figure. The solid lines in the figure show the levels of the pure tone
probe in order to be just audible. The dashed curve at the bottom represents
the threshold in quiet.

The masking threshold curves present different characteristics depending
on the frequency of the masker. While the frequency dependence of the
threshold masked by the I kHz and the 4 kHz narrow-band noise are similar,
the 250 Hz threshold appear to be much broader. In general, masking
thresholds are broader for low frequency maskers (when graphed, as is
customary, using a logarithmic frequency scale). The masking thresholds
reach a maximum near the masker center frequency. Their slopes can be
very steep ascending from low frequencies (over 100 dB per octave), and
present a somewhat gentler decrease after reaching the maximum. This steep
rise creates the need for very good frequency resolution in the analysis of the

162 Introduction to Digital Audio Coding and Standards

audio signals, otherwise errors will be made in the evaluation of masking
effects.

~40
o
OJ 20
>
~

o
0.02 0.05 0.1 0.2 0.5 2kHz 5 10 20

Figure 10. Masking thresholds for 60 dB narrow-band noise masking tones from [Zwicker
and Fastl 90]

The difference in level between a signal component and the masking
threshold at a certain frequency is sometimes referred to as the signal to
mask ratio, SMR. Higher SMR levels indicate less masking. The minimum
SMR between an masker and the masking curve it generates is a very
important parameter in the design of audio coders. The minimum SMR
values for a given masker tend to increase as the masker frequency increases.
For example, in Figure 10 we have a minimum SMR value of 2 dB for a
noise masker with 250 Hz center frequency, 3 dB for the 1 kHz masker, and
5 dB for the 4 kHz masker.

In Figure 11, the masking threshold for narrow-band noise centered at 1
kHz is shown for different masker SPLs. The minimum SMR stays constant
at around 3 dB for all levels. At frequencies lower than the masker, each of
the measured masking curves has a very steep slope that seems to be
independent of the masker SPL. In contrast, the slope in the masking curve
towards higher frequencies shows noticeable sensitivity to the level of the
masking signal. Notice that the slope appears to get shallower as the
masking level is increased. In general, the frequency dependence of the
masking curves is level sensitive, i.e. non-linear. The dips in Figure 11 are
caused by non-linear effects in the hearing system driven by the high level of
the noise masker and the probe.

Chapter 6: Introduction to Psychoacoustics

lOO .---.:......:.:~;.=-~=-~::.::--:;:::---==-:,..:-=-==:::;::=:::::::;:==:::;::::==::'---,--..,
dB
80

,
60 '\ , ,
~O " , ,
20 ',/

o
........... - -",. / -..... '" ---

0.02 0.05 0.1 0.2 o.s
frequency of test tone

Lea=

2kHz 5

I
I
I
I
I
J
I
I
I

I

10 20

163

Figure 11. Masking thresholds for a 1 kHz narrow-band noise masker at different levels
masking tones from [Zwicker and Fast! 90)

7.2 Tones Masking Tones

Although much of the early work on masking phenomena was based on
measurements of pure tones masking pure tones, such masking experiments
present greater difficulties than noise masking experiments due to the
phenomenon of beating. In such experiments, the subjects also sometimes
perceive additional tones besides the masker and probe. The most dominant
effect, the beating effect, is localized in the neighborhood of the masker
frequency and it depends on the masker level. Figure 12 shows the results
for a 1 kHz masker at different levels. In this particular experiment
[Zwicker and Fast! 90] the probe was set 90 degrees out of phase with the
masker when it reached the frequency of 1 kHz (equal to the masker
frequency) to avoid beating in that area. It is interesting to notice that at low
masking levels, there is a greater spreading of the masking curves towards
lower frequencies than higher frequencies. The situation is reversed at high
masking levels, where there is a greater spreading towards high frequencies
than lower frequencies.

In general, the minimum masker SMRs are larger in experiments on
tones masking tones than in experiments of noise masking tones. For
example, we can see that the 90 dB masking curve in Figure 12 peaks at
roughly 75 dB implying a minimum SMR of roughly 15 dB. These types of
results have been reproduced many times and the implication seems to be
that noise is a better masker than tones. This phenomenon is referred to in
the literature as the "asymmetry of masking" [Hellmann 72 and Hall 97].

164 Introduction to Digital Audio Coding and Standards

CA/,()
.!
15
-20
QI
>
.9!

o

, , , , , ,
" ,

" "-
.... -

0.02 o.os 0.1 0.2 0.5 2kHz 5 10 20

Figure 12. Masking thresholds for a 1 kHz tone masker at different levels masking tones from
[Zwicker and Fast! 90]

7.3 Narrow-Band Noise or Tones Masking Narrow-Band
Noise

Masking models exploited in perceptual audio coding rely upon the
assumption that quantization noise can be masked by the signal. Often the
codecs' quantization noise is spectrally complex rather than tonal. In this
context, therefore, a suitable masking model might be better derived from
experimental data collected in the case of narrow-band noise probes masked
by narrow-band noise or tonal maskers. Unfortunately, there is very little
data in the literature that address this issue. In the case of narrow-band noise
probes masked by narrow-band noise maskers, phase relationships between
the masker and the probe largely affect the results. According to [Hall 98]
and based on [Miller 47], measurements for wide-band noise lead to
minimum SMRs of about 26 dB.

In the case of tones masking narrow-band noise, early work by Zwicker
and later others [Schroeder, Atal and Hall 79 and Fielder 87], suggest that
the minimum SMR levels are between 20 and 30 dB. In general, it appears
that when the masker is tonal, the minimum SMR levels are higher than
when the masker is noise-like.

8. CRITICAL BANDWIDTHS

In measuring frequency masking curves, it was discovered that there is a
narrow frequency range around the masker frequency where the masking

Chapter 6: Introduction to Psychoacoustics 165

threshold is flat rather than dropping off. For example, Figure 13 shows the
masking threshold for narrow-band noise at 2 kHz centered between two
tonal maskers at 50 dB SPL as a function of the frequency separation of the
two maskers. Notice how the masking threshold is flat at about 33 dB until
the maskers are about 150 Hz away from the test tone (i.e. about 300 Hz
away from each other) at which point it drops-off rapidly.

$50r---~----~------'----'----'
'gdB

-g 40
.8
I

~ 30
g
'020

~
~ 10L---~----J-----~~~~~~~

50 100 200 SOD Hz 1000 2000
frequency separation of the two tones

Figure 13. Threshold of a narrow-band noise centered between two sinusoidal maskers at a
level of 50 dB as a function of the frequency separation between the two sinusoids from

[Zwicker and Fastl 90]

Figure 14 shows analogous results for the case where the maskers are
narrow-band noise and the test signal is tonal. Notice how the masking
threshold is again flat until the maskers are about 150 Hz away from the
maskee. Notice also that the level of masking at low frequency separations
from these noise maskers is at roughly 46 dB (versus only roughly 33 dB
when tonal maskers are employed), consistently with our earlier findings that
noise-like maskers provide greater masking than tonal maskers. The main
point, however, is that there is a so-called "critical bandwidth" around a
masker that exhibits a constant level of masking regardless of the type of
masker. The concept of critical bandwidth was first introduced by Harvey
Fletcher in 1940 [Fletcher 40]. Fletcher's measurements and assumption led
him to model the auditory system as an array of band-pass filters with
continuously overlapping pass-bands of bandwidths equal to critical
bandwidths. Experiments have shown that the critical bandwidth depends on
the frequency of the masker. However, the exact form of the relationship
between critical bandwidth and masker frequency is somewhat subject to
controversy since differing results have been obtained using different types
of measurements.

166 Introduction to Digital Audio Coding and Standards

50'---~-----.------.---~r----'

dB
()} 40
c
.8
Iii 30
2 ~~f~ SOdB

~20 DID,f
~ 2kHz
3

JOS~O---JO:'-::O:-----::2-':-O-:-O -----=S,-'-OO7:H-,-z-,0.,..0,...,0-----:2-:c'OO·0
difference. L'lf. between cut-off frequencies

Figure 14. Threshold of a sinusoid centered between two narrow-band noise maskers at a
level of 50 dB as a function of the frequency separation between the cut-off frequencies of the

noise maskers from [Zwicker and Fastl 90]

Since the early work by Fletcher, different methods for measuring critical
bandwidths have been developed and the resulting empirical data seem to
differ substantially for frequencies below 500 Hz. In the pioneering work of
Fletcher and later work by Zwicker [Zwicker 61], the critical bandwidth was
estimated to be constant at about 100 Hz up to masker frequencies of 500
Hz, and to be roughly equal to 1/5 of the frequency of the masker for higher
frequencies. An analytical expression that smoothly describes the variation
of critical bandwidth llf as a function of the masker center frequency fc is
given by [Zwicker and Fastl 90]:

This formula for critical bandwidths is widely accepted as the standard
description of them.

8.1 Equivalent Rectangular Bandwidth

A number of articles including Greenwood [Greenwood 61], Scharf
[Scharf 70], Patterson [Patterson 76], Moore and Glasberg [Moore and
Glasberg 83] disagree in their estimation of the critical bandwidths with that
of the standard formula, especially below 500 Hz. In particular, Moore and
Glasberg measure a quantity they define called the "equivalent rectangular
bandwidth", ERB, which should be equivalent to the critical bandwidth.
Their experiments were designed to provide an estimate of the auditory filter
shapes by detecting the threshold of a sinusoidal signal masked by notched
noise as a function of the width of the notch. The ERB as defined by Moore

Chapter 6: Introduction to Psychoacoustics 167

and Glasberg is about 11 % greater than the -3 dB bandwidth of the auditory
filter under consideration. The ERB, as a function of the center frequency fe
of the noise masker, is well fit by the function [Moore 96]:

ERB/Hz = 24.7 (4.37 fe/kHz + 1)

The ERB function seems to provide values closer to the critical
bandwidth measurements of Greenwood [Greenwood 61] than of Flecther or
Zwicker at low frequencies. Figure 15 compares the standard critical
bandwidth formula with Moore's ERB formula and with other experimental
measurements of critical bandwidth. Notice that the critical bandwidths
predicted by the ERB formula are much narrower at frequencies below 500
Hz than implied by the standard critical bandwidth formula. Since the
critical bandwidth represents the width of high-level masking from a signal,
narrower critical bandwidth estimates put stronger requirements on a coder's
frequency resolution.

N 2000
:r

~ 1000

i
u
~ 500

CD

<co

" go 200

~
u

!:! 100
...
c
Q)

co
~

" 0'
W

50

CO" 25 + 75(1 ... 1 . .4Mon

---- ERe - 24.71_. 37F + 1)

o Moore. Peters & Glasberg (199C-1

• Shailer et a1 (2990)
o Oubno & Oil"'kS (1909)

* Moore & Glasoerg (J9B31

20 ~~~~~~~LW~ __ -L-L-LLLLllL-~

0.05 0.1 0.2 0.5 2 5 10

Centre Frequency. kHz

Figure 15. Critical bandwidth function and the ERB function plotted versus different
experimental data for critical bandwidth from [Moore 96)

In summary, we have found that we can measure frequency masking
curves for various masking and test signals. In all cases, we find that the
masking curve levels are highest at frequencies near the masker frequency
and drop off rapidly as the test signal frequency moves more than a critical
bandwidth away from the masker frequency. We have seen that the shape of
the masking curves depend on the frequency of the masker and its level. We
have also seen that the masking curves depend strongly on whether or not

168 Introduction to Digital Audio Coding and Standards

the masker is tonal or noise-like, where we have seen that much greater
masking is created by noise-like maskers. We now turn to describe how
hearing works to help us interpret the empirical data we have just seen and
create models that link them together.

9. HOW HEARING WORKS

A schematic diagram of the human ear is shown in Figure 16. The outer,
middle, and inner ear regions are shown. The main role of the outer ear is to
collect sound and funnel it down the ear canal to the middle ear via the
eardrum. The middle ear translates the pressure wave impinging on the
eardrum into fluid motions in the inner ear's cochlea. The cochlea then
translates its fluid motions into electrical signals entering the auditory nerve.

We can distinguish two distinct regions in the auditory system where
audio stimuli are processed:
1. The peripheral region where the stimuli are pre-processed but retain their

original character
2. The sensory cells which create the auditory sensation by using neural

processing.
The peripheral region consists of the proximity zone of the listener where
reflections and shadowing take place through the outer ear and ear canal to
the middle ear. The sensory processing takes place in the inner ear.

Outer Ear

Converts air movement
in ear canal to fluid

movement in cochlea.

Collects sound and funnels it
down to ear drum. Physical size
tuned to sounds around 4 kHz.

Inner Ear
Cochlea separates sounds by
ti·equency. Hair cells convert

fluid motion into electrical
impulses in auditory nerve.

Figure 16. Outer, middle, and inner ear diagram.

Chapter 6: Introduction to Psychoacoustics 169

9.1 Outer Ear

A sound field is normally approximated by a plane wave as it approaches
the listener. The presence of the head and shoulders then distorts this sound
field prior to entering the ear. They cause shadowing and reflections in the
wave at frequencies above roughly 1500 Hz. This frequency corresponds to
a wavelength of about 22 cm, which is considered a typical head diameter.
The outer ear and ear canal also influence the sound pressure level at the
eardrum. The outer ear's main function is to collect and channel the sound
down to the eardrum but some filtering effects take place that can serve as an
aid for sound localization. The ear canal acts like an open pipe of length
roughly equal to 2 cm, which has a primary resonant mode at 4 kHz (see
Figure 17). One can argue that the ear canal is "tuned" to frequency near its
resonant mode. This observation is confirmed by the measurements of the
threshold in quiet, which shows a minimum, i.e. maximum sensitivity, in
that frequency region.

--=:~ --
Figure 17. Outer ear model as an open pipe of length of about 2 em

9.2 Middle Ear

The middle ear converts air movement in the ear canal into fluid
movement in the cochlea. The hammer, anvil, and stirrup combination acts
as lever and fulcrum to convert large, low-force displacements of air
particles against the eardrum into small, high-force fluid motions in the
cochlea. To avoid loss of energy transmission due to impedance mismatch
between air and fluid, the middle ear mechanically matches impedances
through the relative areas of the eardrum and stirrup footplate, and with the
leverage ratio between the hammer and anvil arm. This mechanical
transformer provides its best match in the impedances of air and cochlear
fluid at frequencies of about 1 kHz. The stirrup footplate and a ring-shaped
membrane at the base of the stirrup called the oval window provide the
means by which the sound waves are transmitted into the inner ear. The
frequency response of the filtering caused by the outer and middle ear can be
described by the following function [Thiede et al. 00]:

170 Introduction to Digital Audio Coding and Standards

A'(f) I dB = 0.6 * 3.64([IkHz)-{)·8 - 6.5e-{)·6(flkHz-33)2 + 10-\[I kHz)

9.3 Inner Ear

The main organ in the inner ear is the cochlea. The cochlea is a long,
thin tube wrapped around itself two and a half times into a spiral shape.
Inside the cochlea there are three fluid-filled channels called "scalae" (see
Figure 18 for a cross sectional view): the scala vestibuli, the scala media,
and the scala tympani. The scala vestibuli is in direct contact with the
middle ear through the oval window. The scala media is separated from the
scala vestibuli by a very thin membrane called the Reissner membrane. The
scala tympani is separated from the scala media by the basilar membrane.
From the functional point of view, we can view the scala media and the scala
vestibuli as a single hydro-mechanical medium. The important functional
effects involve the fluid motions across the basilar membrane. The basilar
membrane is about 32 mm long and is relatively wide near the oval window
while it becomes only one third as wide at the apex of the cochlea where the
scala tympani is in direct fluid contact with the scala vestibuli through the
helicotrema. The basilar membrane supports the organ of Corti (see Figure
18), which contains the sensory cells that transform fluid motions into
electrical impulses for the auditory nerve.

Scala Vestibuli --t#--_
Scala Media ---,bT---_

Spiral Ganglion

Scala Tympani _....l;;~~-- Organ of Corti

Basilar Membrane

Figure 18. Cross section of the cochlea showing the scalae and organ of Corti. (Courtesy of
Professor Alec N. Salt of Washington Unversity. Used with Permission.)

Figure 19 shows a functional diagram of the (unwrapped) cochlea [Pierce
83]. Fluid is displaced in the scala media/scala vestibuli by movements in
the oval window driven by the middle ear. This fluid displacement is

Chapter 6: Introduction to Psychoacoustics 171

equalized by movement of the basilar membrane or, for low frequencies, by
fluid flow into the scala tympani through the helicotrema. Finally, the scala
tympani fluid flow is equalized by offsetting movements of the round
window, which is localized at the base of the scala tympani. The delay
between the presentation of the signal at the oval window and the response
of the basilar membrane increases with distance from the oval window.
Such delay varies between less than 1 ms for high frequencies to above 5 ms
for low frequencies.

(h.1 \\'inJow Basilar membrane

Pushed in ----;.

Pushed our - 1====~=-'-:~7;'-=~-==:::~7
Round windo\\'

Fluid

Basal end of cochlea

Figure 19. Functional diagram of the cochlea from [Pierce 83]

,
~

\V .

Georg von Bekesy [von Bekesy 60] experimentally studied fluid motions
in the inner ear and proved a truly remarkable result previously proposed by
von Helmholtz: the cochlea acts as a spectral analyzer. Sounds of a
particular frequency lead to basilar membrane displacements with a small
amplitude displacement at the oval window, increasing to peak
displacements at a frequency-dependent point on the basilar membrane, and
then dying out quickly in the direction of the helicotrema. Figure 20 shows
the displacement envelope that results from the motion of the basilar
membrane in response to a 200 Hz frequency tone.

172 Introduction to Digital Audio Coding and Standards

---- Apex

Distance olong cochlea

Figure 20. Traveling wave amplitude of the basilar membrane displacement relative to a 200
Hz frequency tone; the solid lines indicate the pattern at different instants in time; the dotted

line indicates the displacement envelope from [von Bekesy 60]

The experiments by von Bekesy showed that low frequency signals
induce oscillations that reach maximum displacement at the apex of the
basilar membrane near the helicotrema while high frequency signals induce
oscillations that reach maximum displacement at the base of the basilar
membrane near the oval window. Figure 21 shows the relative displacement
envelopes of the basilar membrane for several different frequencies (50, 200,
800, 1600 Hz tones). Figure 22 shows the locations of the displacement
envelope peaks for differing frequencies along the basilar membrane from
[Fletcher 40]. In this sense, it is often said that the cochlea performs a
transformation that maps sound wave frequencies onto specific basilar
membrane locations or a "frequency-space" transformation. The spectral
mapping behavior of the cochlea is the basis for our understanding of the
frequency dependence of critical bandwidths, which are believed to
represent equal distances along the basilar membrane.

Chapter 6: Introduction to Psychoacoustics 173

Figure 21. Plots of the relative amplitude of the basilar membrane response as a function of
the basilar membrane location for different frequency tones; the left side of the plot is in
proximity of the oval window, the right side of the plot is in proximity of the helicotrema

from [Pierce 83]

2000

3000

Figure 22. Frequency sensitivity along the basilar membrane from [Betcher 40]. Copyright
1940 by the American Physical Society

On the basilar membrane, the organ of Corti transforms the mechanical
oscillations of the basilar membrane into electrical signals that can be
processed by the nervous system. The organ of Corti contains specialized
cells called "hair cells" that translate fluid motions into firing of nerve cells
in the auditory nerve. In the organ of Corti two types of sensory cells are
contained: the inner and outer hair cells. Each hair cell contains a hair-like
bundle of cilia that move when the basilar membrane oscillates. When the
cilia move, ions are released into the hair cell. This release leads to
neurotransmitters being sent to the attached auditory nerve cells. These
nerve cells then send electrical impulses to the brain, which lead to the
hearing sensation. The inner ear is connected to the brain by more than

174 Introduction to Digital Audio Coding and Standards

30,000 auditory nerve fibers. The characteristic frequency of a fiber is
determined by the part of the basilar membrane where it innervates a hair
cell. Since the nerve fibers tend to maintain their spatial relation with one
another, this results in a systematic arrangement of frequency responses
according to location in the basilar membrane in all centers of the brain.

At high intensity levels, the basilar movement is sufficient to stimulate
multiple nerve fibers while much fewer nerve fibers are stimulated at lower
intensity levels. It appears that our hearing process is able to handle a wide
dynamic range via non-linear effects (i.e., dynamic compression) in the inner
ear. Structural differences between the inner and the outer hair cells indicate
different functions for the two types of sensory cells. The inner hair cells
play the dominant role for high-level sounds (the outer hair cells being
mostly saturated for these levels). The outer hair cells play the dominant
role at low levels, heavily interacting with the inner hair cells. In this case,
the outer hair cells act as a non-linear amplifier to the inner hair cells with an
active feedback loop and symmetrical saturation curves, allowing for the
perception of very soft sounds.

It should be noted that in the inner ear a certain level of neural
suppression of internal noise takes place. The effects of this noise
suppression can be modeled by the following filtering of the signal [Thiede
et al. 00]:

Internal Noise / dB = 0.4 * 3.64(f / kHz) -0.8

Summing this expression with that of the transfer function for the outer
and middle ear, A'(f), one can derive the analytical expression A(f) that fits
the experimental data for the threshold in quiet.

Finally, it is worth mentioning that at low frequencies, the nerve fibers
respond according to the instantaneous phase of the motion of the basilar
membrane while at frequencies above 3500 Hz there is no phase
synchronization. Comparing intensity, phase, and latency in each ear, we are
provided physical clues as to a sound source's location.

10. SUMMARY

In this chapter we have learned that the human ear can only hear sound
louder than a frequency dependent threshold. We have seen that we can hear
very little below 20 Hz and above 20 kHz. We extensively discussed the
phenomenon of masking. Masking is one of the most important
psychoacoustics effects used in the design of perceptual audio coders since it

Chapter 6: Introduction to Psychoacoustics 175

identifies signal components that are irrelevant to human perception.
Masking depends on the spectral composition of both the masker and
maskee, on their temporal characteristics and intensity, and it can occur
before and after the masking signal is present (temporal masking) and
simultaneously with the masker. The experiments we have reviewed show
that frequency masking is most pronounced at the frequency of the masker
with rapid drop off as the frequency departs from there and that the ear has a
frequency dependent limit to its frequency resolution in that masking is flat
within a "critical band" of a masker. We discussed how the auditory system
can be described as a set of overlapping band-pass filters with bandwidths
equal to critical bandwidths. Examining how the hearing process works, we
found that air oscillations at the eardrum are converted into oscillations of
the basilar membrane, where different parts of the basilar membrane are
excited depending on the frequency content of the signal, and then into
auditory sensation sent to the brain. In the next chapter, we will show how
to put these observations to use in audio coding.

11. REFERENCES

[Bosi and Davidson 92]: M. Bosi and G. A. Davidson, "High-Quality, Low-Rate
Audio Transform Coding for Transmission and Multimedia Applications", Presented
at the 93rd AESConvention, J. Audio Eng. Soc. (Abstracts), vol. 40, P. 1041,
Preprint 3365, December 1992.

[Fielder 87]: Louis D. Fielder, "Evaluation of the Audible Distortion and Noise
Produced by Digital Audio Converters", 1. Audio Eng. Soc., Vol. 35, no. 7/8, pp.
517-535, July/August 1987.

[Fletcher 40]: H. Fletcher, "Auditory Patterns", Rev. Mod. Phys., Vol. 12, pp.47-55,
January 1940.

[Fletcher and Munson 33]: H. Fletcher and W. A. Munson, "Loudness, Its
Definition, Measurement and Calculation ", J. Acoust. Soc. Am., Vol. 5, pp. 82-108,
October 1933.

[Greenwood 61]: D. Greenwood, "Critical Bandwidth and the Frequency
Coordinates of the Basilar Membrane", J. Acoust. Soc. Am., Vol. 33 no. 10, pp.
1344-1356, October 1961.

[Hall 97]: J. L. Hall, "Asymmetry of Masking Revisited: Generalization of Masker
and Probe Bandwidth", J. Acoust. Soc. Am., Vol. 101 no. 2, pp. 1023-1033,
February 1997.

176 Introduction to Digital Audio Coding and Standards

[Hall 98]: J. L. Hall, "Auditory Psychophysics for Coding Applications", in The
Digital Signal Processing Handbook, V. Madisetti and D. Williams, CRC Press, pp.
39.1-39.25,1998.

[Hellman 72]: R. Hellman, "Asymmetry of Masking Between Noise and Tone",
Percep. Psychphys., Vol. 11, pp. 241-246, 1972.

[Miller 47]: G. A. Miller, "Sensitivity to Changes in the Intensity of White Noise
and its Relation to Masking and Loudness", J. Acoust. Soc. Am., Vol. 19 no. 4, pp.
609-619, July 1947.

[Moore 96]: B. C. J. Moore, "Masking in the Human Auditory System", in N.
Gilchrist and C. Gerwin (ed.), Collected Papers on Digital Audio Bit-Rate
Reduction, pp. 9-19, AES 1996.

[Moore and Glasberg 83]: B. C. J. Moore and B. R. Glasberg, "Suggested Formulae
for Calculating Auditory-Filter Bandwidths and Excitation Patterns ", J. Acoust.
Soc. Am., Vol. 74 no. 3, pp. 750-753, September 1983.

[Patterson 76]: R. D. Patterson, "Auditory Filter Shapes Derived with Noise
Stimuli", J. Acoust. Soc. Am., Vol. 59 no. 3, pp. 640-650, March 1976.

[Pierce 83]: J. Pierce, The Science of Musical Sound, W. H. Freeman, 1983.

[Scharf 70]: B. Scharf, "Critical Bands", in Foundation of Modern Auditory Theory,
New York Academic, 1970.

[Terhardt 79]: E. Terhardt, "Calculating Virtual Pitch", Hearing Res., Vol. 1, pp.
155-182,1979.

[Thiede et al. 00]: T. Thiede, W. Treurniet, R. Bitto, C. Schmidmer, T. Sporer, J.
Beerends, C. Colomes, M. Keyhl, G. Stoll, K. Brandenburg and B. Feiten, "PEAQ
The ITD Standard for Objective Measurement of Perceived Audio Quality", J.
Audio Eng. Soc., Vol. 48, no. 112, pp. 3-29, JanuarylFebruary 2000.

[von Bekesy 60]: G. von Bekesy, Experiments in Hearing, McGraw-Hill, 1960.

[Zwicker 61]: E. Zwicker, "Subdivision of the Audible Frequency Range into
Critical Bands (Frequenzgruppen)," J. Acoust. Soc. of Am., Vol. 33, p. 248,
February 1961.

[Zwicker and Fast! 90]: E. Zwicker and H. Fast!, Psychoacoustics: Facts and
Models, Springer-Verlag, Berlin Heidelberg 1990.

Chapter 6: Introduction to Psychoacoustics 177

12. EXERCISES

Masking Curves Framework:
In this exercise you will develop the framework for computing the masking
curve for a test signal. We will return to this test signal in the next chapters
to complete the masking curve calculation and utilize these results to guide
the bit allocation for this signal.
1. Use an FFT to map a I kHz sine wave with amplitude equal to 1.0 into

the frequency domain. Use a sample rate of 48 kHz and a block length
of N = 2048. Do your windowing using a sine window. How wide is
the peak? What is the sum of the spectral density IX[k]12 over the peak?
Try dividing this sum by N2/8, how does the result relate to the
amplitude of the input sine wave? (Check that you're right by changing
the amplitude to Y2 and summing over the peak again.) If we define this
signal as having an SPL of 96 dB, how can you estimate the SPL of
other peaks you see in a test signal analyzed with the same FFT?

2. Use the same FFT to analyze the following signal:

x[n] == Au cos(2n:440n / Fs) + Al cos(21t554n / Fs)

+ A 2 cos(2n:660n / Fs) + A 3 cos(21t880n / Fs)

+ A 4 cos(21t4400n / Fs) + As cos(21t8800n / Fs)

where Au = 0.6, Al = 0.55, A2 = 0.55, A3 = 0.15, A4 = 0.1, As = 0.05,
and Fs is the sample rate of 48 kHz. Using the FFT results, identify the
peaks in the signal and estimate their SPLs and frequencies. How do
these results compare with what you know the answer to be based on the
signal definition?

3. Apply the threshold in quiet to this spectrum. Create a graph comparing
the test signal's frequency spectrum (measured in dB) with the threshold
in quiet.

Chapter 7

Psychoacoustic Models for Audio Coding

1. INTRODUCTION

In the prior chapter we learned about the limits to human hearing. We
learned about the threshold in quiet or hearing threshold below which sounds
are inaudible. The hearing threshold is very important to coder design
because it represents frequency-dependent levels below which quantization
noise levels will be inaudible. The implication in the coded representation of
the signal is that certain frequency components can be quantized with a
relatively small number of bits without introducing audible distortion.

We learned about the phenomenon of masking where loud sounds can
cause other normally audible sounds to become inaudible. Frequency
masking effects temporarily raise the hearing threshold in certain areas of the
spectrum near the masker, allowing for larger levels of quantization noise
localized in these portions of the spectrum to be inaudible.

Finally, we learned that the ear acts as a spectrum analyzer mapping
frequencies into critical bandwidths, which correspond to physical locations
along the basilar membrane. This suggests that some frequency dependant
aspects of human hearing may be more naturally represented in terms of
physical distance along the basilar membrane rather than in terms of
frequency.

In this chapter we present a heuristic model of simultaneous masking
based on our limited ability to distinguish small changes in the basilar
membrane excitation. Such a model is characterized by the "shape" of a
sound excitation pattern, defined as the activity or excitation produced by
that sound in the basilar membrane, and by the minimum amount of
detectable change in this excitation pattern. These parameters correspond to

M. Bosi et al., Introduction to Digital Audio Coding and Standards
© Kluwer Academic Publishers 2003

180 Introduction to Digital Audio Coding and Standards

the shape of the masking curves relative to a sound masker and the minimum
SMR we discussed in Chapter 6. Moreover, this model suggests that
masking curves are represented more naturally in terms of distances along
the basilar membrane rather than in terms of frequency. We define a
critical-band rate known as the Bark scale to map frequency values onto
values in the Bark scale and then represent masking curves on that scale.
We then introduce the main masking curves shapes or "spreading functions"
commonly used in audio coding and discuss how they are used to create an
overall masking threshold to guide bit allocation in an audio coder.

2. EXCITATION PATTERNS AND MASKING
MODELS

In this section we consider a heuristic model to explain frequency
masking. Consider a signal that creates a certain excitation pattern in the
basilar membrane. Since our sound intensity detection mostly operates on a
logarithmic scale of sensation, we will assume that:

1) We "feel" the excitation pattern in dB units and
2) We cannot detect changes in the pattern that are smaller than a

certain threshold value, ilLmin, measured in dB.
We define the mapping z(f) from frequency to space to identify the

location z along the basilar membrane that has the largest excitation from a
signal of frequency f. The change in dB of the excitation pattern at basilar
membrane location z resulting from the addition of a second, un correlated
test signal will be equal to:

(2 2) 2 (A(Z)2+ B(Z)2) t.L(z) = 10 log 10 A(z) + B(z) -10 log 10 A(z) = 10 log 10 2
A(z)

10 B(z)2

'" 10(10) A(z)2

where A(z), B(z) are excitation amplitudes at location z of the original signal
and the test signal, respectively.

A test tone will become unmasked when the peak of its excitation pattern
causes ilL to exceed the threshold value ilLmin• We would expect the peak of
a signal's excitation pattern to be proportional to the signal intensity, so that
at the z corresponding to the peak excitation of the test signal we should
have that

Chapter 7: Psychoacoustic Models for Audio Coding

B(Z(f»)2

A(Z(f»)2

181

where lA, IB are the intensities of the original signal A and the test signal B,
respectively, F(z) is a function describing the shape of the original signal's
excitation pattern along the basilar membrane, and z(f) represents the
location along the basilar membrane of the peak excitation from a signal at
frequency f. The function F(z) is normalized to have a peak value equal to 1
at the z corresponding to the peak of the original signal's excitation pattern.

At the point where the test signal just becomes unmasked we have that

~L = 10 IB
min In(10) I A F(z(f»)

or equivalently that

(In(lO)) IB = IA IO~Lmin F(z(f))

In units of SPL this can be written as

(In(lO)) () SPL B =SPL A + 10 log 10 IO~Lmin +101og lO F(z(f))

where the fact the F(z) is normalized to peak at one implies that the last term
will have a peak value of zero. Test signals at levels below SPLB will be
masked by the masker A. In other words, the above equation shows that the
masking curve relative to the masker A can be derived at each frequency
location from the SPL of the masker A by:

a) Down-shifting it by a constant that depends on ~Lnun evaluated for
the masker A and

b) Adding a frequency dependent function that describes the spreading
of the masker's excitation energy along the basilar membrane.

The down-shift described by the second term of the equation represents the
minimum SMR of the masker. We saw in the last chapter that it depends
both on the characteristics of the masker, namely whether it is noise-like or
tone-like, and its frequency. The last term in the equation is usually referred
to as the masker "spreading function" and it is determined based on
experimental masking curves.

We now turn to characterizing the mapping from frequency f onto basilar
membrane distance z and see how the representation of masking curves is
greatly simplified when shown in terms of this scale rather than frequency.

182 Introduction to Digital Audio Coding and Standards

Then we present models commonly used to describe the spreading function
and minimum SMR in creating a masking curve from a single masking
component. Finally we address the issue of how to combine the masking
curves from multiple maskers.

3. THE BARK SCALE

The critical bandwidth formula introduced in the last chapter gives us a
method for mapping frequency onto a linear distance measure along the
basilar membrane. Assuming that each critical bandwidth corresponds to a
fixed distance along the basilar membrane, we can define the unit of length
in our basilar distance measure z(t) to be one critical bandwidth. This unit is
known as the "Bark" in honor of Barkhausen, an early researcher in the field.

The critical bandwidth formula represents the quantity df/dz at each
frequency point f, which just tells us that it represents the change in
frequency per unit length along the basilar membrane. We can invert and
integrate this formula as a function of f to create a distance mapping z(t).
We call this mapping function z(t) the "critical band rate". We can
approximate the critical band rate z(f) using the following expression
[Zwicker and Fastl 90]:

z I Bark = 13 arctan(O.76 f II kHz) + 3.5 arctan(f 17.5 kHz)2)

Table I shows the frequency ranges corresponding to each unit of basilar
distance up to an upper frequency of 15,500 Hz, which is near the upper
limit of human hearing. The frequency range corresponding to each unit of
basilar distance is called a "critical band" and the Bark scale measure z
represents the critical band number as a function of critical band lower
frequency fl. If we assume that the basilar membrane is about 25 critical
bands long, then clinical measurements showing that the membrane is
actually about 32 mm long imply that each critical band represents roughly
1.3 mm in basilar membrane distance.

Table 1. Critical bands and corresponding lower frequency fJ, upper frequency fu, center
frequency fc and critical bandwidth, M from [Zwicker and Fast! 90]
z f, fu fc M z f, fu fc M
(Bark) (Hz) (Hz) (Hz) (Hz) (Bark) (Hz) (Hz) (Hz) (Hz)

0 0 100 50 100 13 2000 2320 2150 320
100 200 150 100 14 2320 2700 2500 380

2 200 300 250 100 15 2700 3150 2900 450
3 300 400 350 100 16 3150 3700 3400 550
4 400 510 450 110 17 3700 4400 4000 700

Chapter 7: Psychoacoustic Models for Audio Coding 183

z f, fu fc M z f, fu fc M
(Bark) (Hz) (Hz) (Hz) (Hz) (Bark) (Hz) (Hz) (Hz) (Hz)

5 510 630 570 120 18 4400 5300 4800 900
6 630 770 700 140 19 5300 6400 5800 llOO
7 770 920 840 150 20 6400 7700 7000 1300
8 920 1080 1000 160 21 7700 9500 8500 1800
9 1080 1270 II 70 190 22 9500 12000 10500 2500
10 1270 1480 1370 210 23 12000 15500 13500 3500
11 1480 1720 1600 240 24 15500
12 1720 2000 1850 280

4. MODELS FOR THE SPREADING OF MASKING

Given the transformation between frequency and the Bark scale, we can
see how masking looks when transformed to frequency units that are linearly
related to basilar membrane distances. Not surprisingly, the masking curve
shapes are much simpler to describe when shown in the Bark scale. For
example, Figure 1 shows the excitation patterns that arise from narrow-band
noise maskers at various frequencies. Excitation patterns are derived from
experimental masking curves by shifting them up to the SPL of the masker
and then graphing them on the Bark scale. The slopes towards low
frequencies are fairly independent of the masker center frequency at roughly
27 dB per bark. The upper slopes are steeper for frequencies below 200 Hz,
but remain constant above that frequency. Compare the similarity of shape
across all these curves with how different the curves looked in Figure 10 of
Chapter 6 using normal frequency units. The transformation to the Bark
scale suggests that much of the shape change in masking curves with masker
frequency is an artifact of our measurement units - if we define the
frequency dependence of our masking curve in the Bark scale then the shape
is fairly independent of masker frequency.

184 Introduction to Digital Audio Coding and Standards

160 0.07 0.25 OS 8

5dB I
'§ 40 \
.~ \
'"

o 2 4 6 8 10 12 14 16 18 20Bork 24
critical-bond rate

Figure 1. Excitation patterns for narrow-band noise signals centered at different frequencies
and at a level of 60 dB from [Zwicker and Fastl 90]

Although we can reasonably assume that the excitation pattern is
independent of frequency when described in terms of the Bark scale, we
cannot necessarily make a similar assumption for the level dependence. For
example, Figure 2 shows the excitation patterns from 1 kHz narrow-band
noise at various masker levels. Notice how the shape changes from
symmetric patterns at low levels to very asymmetric ones at higher levels.
For levels below 40 dB the slopes are symmetrical dropping at about 27 dB
per bark while at higher levels the slope towards higher frequencies ranges
from about -5 dB per bark for a noise masker at 100 dB to -27 dB per bark
for a noise masker at less than 40 dB.

~
c
.2
:§
'u x
Q)

100'-~~--T--V~r-~~--,-~--r--.-.

dB

80

~ 20
.c
III
<l1

:6 0 ------- ---..-/

o 2 I. 6 8 10 12 11. 16 18 20Bork 24
critical-band rate

Figure 2. Excitation patterns for narrow-band noise signals centered at I kHz and at different
levels from [Zwicker and Fastl 90]

Chapter 7: Psychoacoustic Modelsfor Audio Coding 185

As a first approximation, a representation of the spreading function that
can be utilized to create excitation patterns is given by a triangular function.
We can write this spreading function in terms of the Bark scale difference
between the maskee and masker frequency dz = z(fmaskee) - z(fmasker) as
follows:

where LM is the masker's SPL and 9(dz) is the step function equal to zero for
negative values of dz and equal to one for positive values of dz. Notice that
dz assumes positive values when the masker is located at a lower frequency
than the maskee and negative values when the masker is located at a higher
frequency than the maskee. In Figure 3, this spreading function is shown for
different levels of the masker LM.

2 Slope Spreading Function

100

80
-Lm.20

QI
60

40

-Lm-40

-Lm-60

-Lm.60

20 -Lm.100

0
0 3 6 9 12 15 18 21 24

Bark

Figure 3. Spreading function described by the two slopes derived from narrow-band noise
masking data for different levels of the masker

There are a number of other spreading functions found in the literature.
For example Schroeder [Schroeder, Atal and Hall 79], suggested the use of
the following analytical function for the spreading function:

10 logIOF(dz) = 15.81 + 7.5 (dz + 0.474) - 17.5 0+ (dz + 0.474)2)1f1

This spreading function was used in some of the earliest works on perceptual
coding applied to speech signals. A similar spreading function was later
adopted in ISO/lEe MPEG Psychoacoustic Model 2. Figure 4 shows a plot
of the Schroeder spreading function. It should be noted that this spreading
function is independent of the masker level. Ignoring the dependence of the

186 Introduction to Digital Audio Coding and Standards

spreading function on the masker level allows for the computation of the
overall masking curve as a simple convolution operation between F(z) and
the signal intensity spectrum rather than a multiplication of (potentially)
different spreading functions with the different masking components of the
signal expressed in dB units and then an addition of the different
components spread intensities. The advantage of the Schroeder approach is
that the result of the convolution incorporates an intensity summation of all
maskers' contributions, so that there is no need to perform an additional sum
to obtain the final excitation pattern (see also next sections).

Schroeder Spreading Function

100

80 -Lm=20

-Lm=40

CD
60 -Lmm60

"0 40 -Lm=60

-Lm-l00
20

0

0 3 6 9 12 15 18 21 24

Bark

Figure 4. Schroeder spreading function

A modification of the Schroeder spreading function was later introduced
that takes the masker level into consideration as follows:

1

- (17.5 - I(LM , f)(1 + (dz + 0.474)2).,

where the level adjustment function I(LM,f) is defined as

I(LM,f) = min {5 1O(Lm-96)/lO df/dz, 2}.

which also has a slight frequency dependence due to the variation of critical
bandwidth df/dz with frequency. As shown in Figure 5, the effect of the
modification is to include a dependence of the spreading function on the
masker level. In this case, and consistently with the experimental data,
increasing the level of the masker translates in a decrease of the slopes of the
spreading function, i.e. increased masking.

Chapter 7: Psychoacoustic Models for Audio Coding 187

Modified SchroederSpreading Function

100

80 -lm=20

-lm=40

III 60 -lm=60
'tJ

40 -lm=80

-lm=l00
20

0
0 3 6 9 12 15 18 21 24

Bark

Figure 5. Modified Schroeder spreading function (solid lines) compared with the original
level-independent Schroeder spreading function (dashed lines)

The ISO/lEe MPEG Psychoacoustic Model 2 spreading function (see
Figure 6), which is derived from the Schroeder spreading function, is given
by

10 log 10 (F(dz»)= 15.8111389 + 7.5 * (1.05 *dz + 0.474) -17.5 *

JI.0+(1.05*dz+0.474)2 +8* MIN(O, (1.05 *dz-0.5)2 -

2 * (1.05 * dz - 0.5»

Model 2 Spreading Function

100
80

III 60
'tJ 40

20
0

0 3 6 9 12 15 18 21 24
Bark

Figure 6. Basic MPEG Psychoacoustic Model 2 spreading function compared with the
Schroeder spreading function for a masker with an SPL of 80 dB

188 Introduction to Digital Audio Coding and Standards

Another example of a spreading function is given by the function adopted
in ISO/IEC MPEG Psychoacoustic Model 1:

{
-17dZ+0.15LM (dz-I)9(dz-l) fordz<':O

10log (F(dz,L »)=
10 M _ (6 + 0.4 L M) I dz 1-(11 + 0.4 LM)(I dz I-I) 9<1 dz I-I) for dz < 0

Figure 7 shows the ISO/IEC MPEG Psychoacoustic Model 1 spreading
function. Notice how this spreading function starts symmetric at low levels
while has a great deal more masking at higher frequencies than lower
frequencies when the masker level is high. The two-piece linear spreading
function for upper and lower frequencies in Model 1 is meant to mimic the
masking data for tones masking tones (see also Figure 12 in Chapter 6).

III
'tI

100

80

60

40

20

o

Model 1 Spreading Function

! 1\
I /\ r---! --I--

I //\ ~ ---i'-.

I I /1\ ."" "'-~

IliJ /j\ l'\ "" ~

o 3 6 9 12 15 18 21 24
Bark

-Lm.20

-Lma4Q

-Lm-eo
-Lm-eo
-Lm.l00

Figure 7. Two-piece linear spreading function for upper and lower frequencies adopted in
ISO/IEe MPEG Psychoacoustic Modell

In Figure 8 a comparison of the three approaches described above for the
spreading function relative to an 80 dB masker is shown. Model 1 spreading
function allows for a larger amount of upward spreading of masking than the
triangular function or the Schroeder function. From Figure 8, it is clear that,
of the three spreading functions introduced, the triangular offers the most
conservative approach to determine irrelevancies in the signal.

Chapter 7: Psychoacoustic Models for Audio Coding 189

Comparison of 3 Spreading Functions

100

80 -2 Slope

m 60
-Schroeder

-t.tlde11
'0 40

20

0
0 3 6 9 12 15 18 21 24

Bark

Figure 8. Comparison of three different approaches for the spreading function relative to an
80 dB masker

The spreading functions shown in Figure 8 do not depend upon the
masker center frequency. While this is correct as a first approximation, there
appears to be some frequency dependence according to some experimental
data. For example, the masking slope towards higher frequencies is less
shallow for masker frequencies below 200 Hz than for frequencies above
that value. A frequency dependence that reflects this behavior is built in the
following triangular approximation to the spreading function introduced by
[Terhardt 79]:

In Figure 9 the Terhardt spreading function for different masker center
frequencies is shown. Notice that the spreading functions are superimposed
in the bark scale to facilitate the comparison. The Terhardt spreading
functions is adopted in objective perceptual measurement models see for
example [Thiede et al. 00] (see also Chapter 10).

190 Introduction to Digital Audio Coding and Standards

100

80

60

40

20

o
o 3

Terhardt Spreading Function

I ,
I'~

II
J

/
6

~!I..
I \~

I \ ~
9 12 15 18 21 24

Bark

-b=O

-b=1

-b=2

···--b=3

-1>=4

-b=8

-b=12

-b=17

-b=20
-b=22

Figure 9. Terhardt spreading function for different masker center frequencies superimposed at
8 Bark

5. MASKING CURVES

We have seen empirically that the peak of the masking curve is shifted
down from the masker SPL by an amount that depends on the type of
masker. Our understanding in terms of excitation patterns relates this
downward shift to the minimum changes in excitation pattern ~Lmin that we
can detect. By looking at experimental values for the difference between the
masker level and the maximum threshold value, one can get a feel for how
~Lmin varies with different types of signals. For example, Zwicker suggested
a value of I dB for ~in. Adopting this value implies that the peak of the
masking curve should be about 6 dB below the SPL level of the masker.
This value reflects experimental data for narrow-band noise masking tones.
Moore suggested a value of ~in equal to 0.1 dB as more appropriate,
corresponding to a difference of about 16 dB between the masker and the
maskee levels. This value is close to experimental data for tone maskers.

A number of factors should be considered in modeling the offset between
the peak of the masking curve and the masker SPL. First, from experimental
data, our ability to detect changes in excitation level is reduced at low
frequencies, i.e. the difference in peak level between masker and masking
curve increases with increasing frequency. Second, given the asymmetry of
masking, depending on whether the masker is noise-like or tone-like this
difference is bigger or smaller, noise being a "better masker". Finally, when
the masker is a complex sound, information can be combined from several
parts of the excitation pattern to improve the detection of the maskee.

Chapter 7: Psychoacoustic Models for Audio Coding 191

In Figure 10 a simple masking curve derived from the triangular
spreading function is shown. First the masker level LM is evaluated. The
masker level LM is then convolved with the triangular spreading function to
reflect the spreading of excitation energy along the basilar membrane.
Finally a down-shift by A is applied to predict the masking threshold relative
to the masker under examination.

dB Masker of level Lm

Bark

Figure 10. Example of a predicted masking threshold for the masker of level Lm

For example, in [Jayant, Johnston and Safranek 93] the difference A in the
case of a tone-like signal masking a noise-like signal and in the case of a
noise-like signal masking a tone-like signal are given respectively by:

~tone masking noise = 14.5 + z dB

~ noise masking tone = C dB

where C varies between 3 and 6 dB depending upon the experimental data.
Notice, however, that according to the data presented in Figure 10 of
Chapter 6 there appears to be some degree of frequency dependence of the A
even in the case of noise masking tones. In general, depending on the
nature of the masker, A assumes different values. It is a good exercise to test
the design of the coder varying A to optimize the coder output.

Typically, audio sounds may contain several tone-like and noise-like
components. Once the different components are identified at a certain time
interval, the individual masking patterns are derived and the relative masking
thresholds are computed by shifting masking patterns down by the

192 Introduction to Digital Audio Coding and Standards

appropriate amount Ll. We discuss next how these thresholds are combined
to create a global masked threshold.

6. "ADDITION" OF MASKING

In general, when a complex sound is presented to the ear, we bear the
concurrent effects of more than one single masker. As a first approximation,
we can identify the individual masking components of the signal on a critical
band scale and create their respective masking curves as if they acted
independently from each other. The issue then becomes how should we
combine these masking curves together at particular frequency locations.

A natural way to expect these masking curves to combine is to assume
that their intensities simply sum up. In this case, two masking curves of
equal intensity would combine to give a combined effect 3 dB higher than
either curve. Another plausible addition rule is to assume that the highest
masking curve dominates at each frequency location. In this case, two equal
masking curves would just lead to a combined effect equal to the maximum
value of the two curves at each frequency location. Either of these cases can
be described according to the summation formula

1

(
N-l Ja

IN = ~ I~

where IN represents the intensity of the masking curve that results from the
combination of N individual masking curves with intensities In for n = 0, ... ,
N-I, and a is a parameter that defines the way the curves add. In this
equation, setting a = 1 corresponds to intensity addition while taking the
limit as a ~ 00 corresponds to using the highest masking curve. Setting a to
values between 1 and 00 gives results intermediate to these two cases. One
could also choose to set a lower than 1, in which case the combined effect of
two equal maskers is greater than the sum of their intensities, however one
would need to be careful because this sum rule becomes ill-defined as a
approaches zero. How should we set a in a coder? Of course, the way to
decide is to turn to the experimental literature for the effects of maskers
addition.

Some studies in the literature, see for example [Lufti 83], suggest that
"addition" of masking for maskers of comparable intensities is best
described using values of a "" 0.33, implying that two equal masking curves
have a combined effect equal to a single masking curve with an intensity 8

Chapter 7: Psychoacoustic Models/or Audio Coding 193

times either curve. Such a result follows rules closer to the addition of
specific loudnesses rather than the addition of intensities and it is quite
surprising. Further review of the literature, shows numerous experimental
results where an increased amount of masking with respect to intensity
summation of the single maskers was detected, see for example [Green 67].
In these experiments, the combined effect produced 6 to 14 dB more
masking than simple intensity addition of the two equal-level maskers would
predict. This empirical result was observed for both narrow-band noise and
sinusoidal maskers, independently of the maskers absolute level, and for
cases of up to four maskers [Lufti 83]. It should be noted that there is not
complete agreement in the literature on this subject but the fact that maskers
over-add in at least some cases does seem to be a real empirical effect.

Figure 11 shows the implication of using Lufti' s value of 0: "" 0.33 for
adding two masking curves of various intensities. The curve shows how
many dB higher the combined masking curve is above the greater of the two
masking added curves for various relative intensities. Notice that two equal
curves combine equivalently to a single curve about 9 dB higher (rather than
3 dB higher as expected from intensity addition). In fact, adding a second
masker about 20 dB below a masker is roughly equivalent to doubling the
intensity of the first masker. It should be noted however, that most of the
experiments directly test the area around 0 dB difference in masking curves.
The rest of the curve is based on extrapolating these results using 0: = 0.33
for adding maskers with higher-level differences.

><
IV
E
.9'$
'i g.
"0 '-
"0
IV

al
"0

10

8

6

4

2

Lufti Model of Two Masker Addition
(a =0.33)

dB difference in inputs

Figure 11. Lufti's model for the addition of two masking curves

194 Introduction to Digital Audio Coding and Standards

Another issue to be aware of is the implication of adopting the
summation formula for the addition of multiple (i.e., more than two)
masking curves. Lufti [Lufti 83] cites experiments using 4 maskers that are
better fit using the summation with a value of ex = 0.33 than by intensity
addition. Figure 12 shows how the results extend to arbitrary numbers of
maskers. In Figure 12 the summation formula for ex "" 0.33 is compared with
intensity addition for combining the effects of various numbers of equal
intensity masking curves. Notice that 10 maskers combine to be equivalent
to a masking curve 30 dB higher than each individual curve. Simpleminded
use of this addition formula would suggest the nonsensical result that a large
number of maskers could combine to mask themselves - an effect in which
if you make enough noise and you can't hear it any more. The answer to this
apparent paradox has to do with the integrative effects of critical bands
(discussed below) wherein we learn that nearby frequencies are integrated in
their impacts on masking by the ear. In other words, although you can
subject the ear to an arbitrary number of tone sources, the ear will not deal
with all of the tones as independent maskers when their separation in
frequency is less than a critical bandwidth.

50

oS! 40 01

~ 5 S 30
"2 ..

20 Ii
!8 e 10

0
o

Lufti Model of Addition of N Equal Maskers
(a=O.33)

~
./

£---
5 10

N

15

-Luftimodel

--Intensity addition

20

Figure 12. Implications of Lufti's model for the addition of large numbers of maskers

A number of psychoacoustics models in the literature, for example
ISOIIEC MPEG Psychoacoustic Models 1 and 2, sum the intensities of the
different masking components, i.e., a value for ex equal to one is adopted. In
some other cases, for example Dolby AC-2 and AC-2A (see also Chapter
14), the maximum value of the different masking components is retained, i.e.
a value of ex ~ 00 is adopted. In [Baumgarte 95] the non-linear summation
model is applied to ISO/IEC MPEG Psychoacoustics Model 2 with ex = 0.33.

Chapter 7: Psychoacoustic Modelsfor Audio Coding 195

A non-linear model for the addition of masking is also applied for sound
quality measurement systems, see for example [Beerends and Stemerdink
92] and [Thiede et al. 00]. In [Thiede et al. 00] the value for ex is set to 0.4.

It should be noted that the non-linear addition of masking models
described above doesn't take into consideration cases where the maskers
happen to be very close in frequency. In these instances, other phenomena
like beating may cause masking to behave in a very different fashion and, in
particular, to unmask some of the regions that are considered below their
separate masking curves. In the latter case, current models may be
erroneous in the description of the perceived signal.

Typically, audio sounds may contain several tone-like and noise like
components. Once the thresholds are combined to create a global masked
threshold, the threshold of hearing is also taken in consideration to derive the
masked threshold for the signal during that time interval. Often in
perceptual audio coding, the maximum value between the global masked
threshold and the threshold of hearing is retained (see for example ISO/IEC
MPEG Psychoacoustic Model 2 and AC-3, Chapters 11 and 14) as the
masked threshold for the signal at that time interval. Portions of the signal
below the masked threshold are considered irrelevant to the signal
representation.

7. MODELING THE EFFECTS OF NON·
SIMULTANEOUS (TEMPORAL) MASKING

In addition to simultaneous masking, perceptual models exploit also the
effects of non-simultaneous or temporal masking. Modeling of frequency
masking effects was described in detail in the previous sections. Modeling
of temporal masking takes into consideration a time-sliding window.
According to the experimental data described in Chapter 6, Section 5.2, a
weighting function of time, which assigns a larger weight to events that
occur near the center of the window as opposed to events that occur near its
edges, is employed. It is in general assumed that this temporal smoothing
occurs after the auditory filtering, i.e., it is applied to the signal spectrum,
resulting in a smoothed version in time of the output signal. Examples of
temporal windows can be found in [Plack and Moore 90, Moore 96].
Depending on the time resolution of the analysis filters used in the frequency
representation of the signal, it may be possible to apply both backward and
forward masking or forward masking only, where the time resolution needed
to apply backward masking is very high, typically of the order of
milliseconds. For example, in [Thiede et al. 00] a raised cosine FIR and a
first order IIR low-pass filters are utilized to model backward and forward

196 Introduction to Digital Audio Coding and Standards

masking respectively. The time constant for the FIR filter was set at eight
ms to mimic a backward masking of about two ms. The time constant 't for
the IIR was set as follows:

where fc is the center frequency of the auditory filter corresponding to the
masker, 'tmin = 4 ms and 'tlOO = 50 ms.

In addition to temporal smoothing, in perceptual audio coding, a measure
of the temporal characteristics of the input signal is evaluated and utilized to
adapt the analysis/synthesis properties of the overall system as described in
Chapter 6, Section 5.2.

8. PERCEPTUAL ENTROPY

Once the masked threshold is computed, the masked level values can be
used to appropriately allocate quantization noise. It is assumed that the
coding noise within a critical band will not be audible as long as the SNR
resulting from an R-bit quantization of the signal in that critical band is
higher than the SMR. Johnston [Johnston 88] introduced the concept of
perceptual entropy to define the average minimum number of bits per
frequency sample needed to code a signal without introducing any
perceptual difference with respect to the original signal. Given a signal
intensity, I, and the relative intensity of the masked threshold, IT, at each
frequency line fi , the perceptual entropy (PE) for the signal at a determined
time interval can be expressed as:

PE=- I max O,log2 __ i_ "'- Ilog2 1+ 1 N-I 1 [I(f »)1 1 N-I [

N i=O IT (f i) N i=O

where N is the number of the frequency lines in the signal representation.
As shown in the above expression, the PE represents the logarithm of a
geometric mean of the threshold-weighted energy across the frequency
block. The perceptual entropy measure gives the lower bound estimate for
the perceptual coding of audio signals based on the signal time-frequency
analysis and the computed masked threshold.

Chapter 7: Psychoacoustic Models/or Audio Coding 197

9. MASKED THRESHOLD AND ALLOCATION OF
THE BIT POOL

In Figure 13, a simple example for different quantization SNR for a
signal partially masked by a stronger one to its right is shown. The goal of
bit allocation is to make sure that bits are allocated so that the SNR is greater
than the SMR across the spectrum. The difference between the SMR and the
SNR is referred to as the noise to mask ratio, NMR, and gives an indication
of the rate of distortion with respect to the computed masked threshold (see
Figure 13). Given a certain bit budget, when there are extra bits, they are
allocated across the spectrum to create a coding margin. When there are not
enough bits, bits are allocated to minimize the overall (positive) deviation
between SMR and SNR or NMR.

dB

Audible
Signal

Audible Noise)

Frequency

Figure 13. Example of different SNR values allocated to a signal component versus masked
threshold

In Figure 14 an example of a masked threshold and the associated bit
allocation that introduces only "inaudible" quantization noise is shown for a
mono signal with sinusoidal components at 440, 554, 660, 880, 4400, 8800
Hz sampled at 48 kHz. The signal analysis is performed by applying an FFf
with a 2048-point sine window. The SPL curve shows the strength of the
original signal. The spreading function adopted for the computation of the
masking threshold (indicated by the line "mask" in Figure 14) is the two
slope function shown in Figure 3. The value selected for A is 15 dB. The
masked threshold is computed as the maximum of the individual
components masking thresholds and the threshold of hearing, corresponding
to applying the summation rule with (J;:=.oo. The curve labeled "bits" shows
the minimum number of bits allocated to the signal in order to keep the
quantization noise below the masked threshold. In the next chapter, we

198 Introduction to Digital Audio Coding and Standards

describe how to optimally allocate bits given instead a fixed data rate
constraint for generic audio signals.

100 6 I-SPL _mnk _bits I
~}r~~------------------~=============-------~ 5

" 60 40

20

o
o 1000 2000 3000 4000 6000 6000 7000 6000 9000

f (/il)

4

3;i
2

1

0
10000

Figure 14. Example of masked threshold and bit allocation for a signal with sinusoidal
components at 440, 554, 660, 880, 4400, 8800 Hz

10. SUMMARY

In this chapter we have presented the main aspects of masking models
used in the design of audio coders. While there is not complete agreement in
literature on all aspects of auditory modeling, psychoacoustics tools
represent a powerful aid in the coding of audio signals. By improving the
masking models used by a coder, one can improve the quality of the codec at
a given data rate. In this chapter we have seen that masking models are
much simpler when defined using the Bark scale of frequency rather than in
terms of frequency itself. We have discussed how to add up the effects of
multiple maskers in a signal (although there is not complete agreement on
this in the literature) to combine with the hearing threshold to get an overall
masked threshold that can be used to guide quantization and bit allocation in
an audio coder. In the next chapter we discuss how to use the masked
thresholds developed here to optimally distribute the bit pool available.

11. REFERENCES

[Baumgarte 95]: F. Baumgarte, C. Feredikis, H. Fuchs, "A Non-Linear
Psychoacoustic Model Applied to the ISO MPEG Layer III Coder", Preprint 4087,
October 1995.

[Beerends and Stemerdink 92]: J. G. Beerends and J. A. Stemerdink, "A Perceptual
Audio Quality Measure Based on a Psychoacoustic Sound Representation", J. Audio
Eng. Soc., Vol. 40, no. 12, pp. 963-978, December 1992.

Chapter 7: Psychoacoustic Modelsior Audio Coding 199

[Green 67]: D. A. Green, "Additivity of Masking ", J. Acoust. Soc. Am., Vol. 41, no.
6, pp. 1517-1525, 1967.

[Jayant, Johnston and Safranek 93]: N. Jayant, J. Johnston and R. Safranek, "Signal
Compression Based on Method of Human Perception", Proc. of IEEE, Vol. 81, no.
10, pp. 1385-1422, October 1993.

[Johnston 88]: J. D. Johnston, "Estimation of Perceptual Entropy Using Noise
Masking Criteria", in Proc. of ICASSP, pp. 2524-2527, May 1988.

[Lufti 83]: R. A. Lufti, "Additivity of Simultaneous Masking ", 1. Acoust. Soc. Am.,
Vol. 73 no. I, pp. 162-267, January 1983.

[Lufti 85]: R. A. Lufti, "A Power Law Transformation Predicting Masking by
Sounds with Complex Spectra", 1. Acoust. Soc. Am., Vol. 77 no. 6, pp. 2128-2136,
June 1985.

[Moore 96]: B. C. J. Moore, "Masking in the Human Auditory System", in Collected
Papers on Digital Audio Bit-Rate Reduction, N. Gilchrist and C. Gerwin (ed.) pp. 9-
19, AES 1996.

[Plack and Moore 90]: C. J. Plack and B. C. J. Moore, "Temporal Window Shape as
a Function of Frequency and Level", J. Acoust. Soc. Am., Vol. 87 no. 5, pp. 2178-
2187, May 1990.

[Schroeder, Atal and Hall 79]: M. R. Schroeder, B. S. AtaI and 1. L. Hall,
"Optimizing Digital Speech Coders by Exploiting Masking Properties of the Human
Ear", J. Acoust. Soc. Am., Vol. 66 no. 6, pp. 1647-1652, December 1979.

[Terhardt 79]: E. Terhardt, "Calculating Virtual Pitch", Hearing Res., Vol. 1, pp.
155-182,1979.

[Thiede et al. 00]: T. Thiede, W. Treurniet, R. Bitto, C. Schmidmer, T. Sporer, 1.
Beerends, C. Colomes, M. Keyhl, G. Stoll, K. Brandenburg and B. Feiten, "PEAQ
The ITU Standard for Objective Measurement of Perceived Audio Quality", J.
Audio Eng. Soc., Vol. 48, no. 112, pp. 3-29, January/February 2000.

[Zwicker and Fastl 90]: E. Zwicker and H. Fast!, "Psychoacoustics: Facts and
Models", Springer-Verlag, Berlin Heidelberg 1990.

200 Introduction to Digital Audio Coding and Standards

12. EXERCISES

Masking Curves:
In this exercise you will develop masking curve for a test signal. We return
to the test signal utilized in the exercise of Chapter 6:

x[n] = Ao cos(21t440n / Fs) + Al cos(21t554n / Fs)

+ A 2 cos(21t660n / F,) + A 3 cos(27t880n / Fs)

+ A 4 cos(21t4400n / Fs) + AS cos(27t8800n / Fs)

where Ao = 0.6, Al = 0.55, A2 = 0.55, A3 = 0.15, A4 = 0.1, As = 0.05, and
Fs is the sample rate of 48 kHz.
1. Using the FFT results and the identified peaks in the signal and their

SPLs and frequencies, define a masking model and specify its
parameters (spreading function and down-shift). Recall that masking
models are simpler to define in the Bark scale.

2. Use the masking model to define masking curves for the different
components of the test signal.

3. Create a masked threshold that combines the effects of all masking
components and threshold in quiet and create a graph comparing the test
signal's frequency spectrum (measured in dB) with the masked curve.

4. Are any of your signal peaks going to be masked? How about the rest of
the frequency spectrum? What is the signal to mask ratio (SMR) of any
of the unmasked signal peaks? Assuming 6 dB per bit, how many bits of
resolution are needed for each unmasked signal peak for the resulting
quantization noise to be inaudible, i.e., below the masked curve?

Chapter 8

Bit Allocation Strategies

1. INTRODUCTION

The most common approach in perceptual coding of audio signals is to
subdivide the input signal into frequency components and to encode each
component separately. In Chapters 4 and 5 we discussed different time to
frequency mappin,g techniques and how these techniques can represent the
input signal in the frequency domain and allow for redundancy removal.
Time domain based coding algorithms such as ADPCM can achieve similar
results in terms of redundancy removal (see also Chapter 3). In this
framework, typically the audio signal is treated as a single, wide-band signal
and prediction and inverse filtering are adopted to describe it. In this
context, the main difference between time-domain and frequency domain
coding algorithms is the degree of redundancy removal and signal
decorrelation.

One of the main advantages of frequency domain coding systems over
time domain coding systems, however, is their ability to code each
component separately with appropriate accuracy depending on its spectral
strength. Bits can be allocated adaptively through the spectrum, where the
bands that contain high-energy components are encoded with a large number
of bits and bands that contain no components or components with very small
energy may not be encoded at all. In this approach, quantization noise can
be separately controlled in each band and the overall reconstruction noise
spectrum is shaped in frequency. In addition, based on the power spectrum
density of the signal, excitation patterns can be computed as described in
Chapter 7 for each component from empirical masking data. By
appropriately allocating bits through the spectrum and taking into

M. Bosi et al., Introduction to Digital Audio Coding and Standards
© Kluwer Academic Publishers 2003

202 Introduction to Digital Audio Coding and Standards

consideration the masking patterns generated by each component,
quantization noise can be shaped to be inaudible. We saw in the previous
chapter how we can allocate bits based on the SMR of the signal under
exam. The aim is to obtain a coded signal that is perceptually identical to
the original signal. In this case, the quality of the coded signal is kept
constant while distributing the bit pool through the signal spectrum.
Maintaining a constant quality implies that the overall data rate of the system
may vary. There are applications where a fixed data rate may be required.
In this case, one would like to maximize the quality at the system specific
data rate. The issue of maximizing the quality or equivalently minimizing
the block distortion at a given rate and the resulting bit allocation strategies
are the main topics we discuss in this chapter.

First, we introduce transmission data rates and an algorithm for optimal
bit allocation that satisfies the data rate constraint. We compare the results
of optimal bit allocation with uniform allocation. We define a measure of
the potential gain introduced by the optimal bit allocation, the spectral
flatness measure, which depends on the characteristics of the signal and is
linked to the resolution of the signal representation, (see also [Jay ant and
Noll 84]). Finally, we apply psychoacoustics principles to the optimal bit
allocation approach to spectrally confine the quantization noise in regions
where it can't be detected. A new perceptual measure of the potential gain is
introduced, the perceptual flatness measure, (see also [Bosi 99]). This
approach based on perceptual models discussed in Chapter 57 allows for not
only the removal of redundancies, but also the extraction of irrelevancies
from the signal representation at a given data rate.

2. CODING DATA RATES

In the introduction to this book, we described how the main goal in
coding audio signals is to maximize the perceived quality of the encoded
sound while minimizing the data rate necessary to reproduce it. The coder
data rate is probably one of the most important parameters in the design of
the overall system. It is related to the overall system bandwidth and/or
storage capacity. The operational data rate of a coder, I, depends on the rate
Fs at which the time domain input is sampled the average number of bits per
sample R, and the number of audio channels n. It is typically measured in
bits per seconds and equals

1= n Fs R

Chapter 8: Bit Allocation Strategies 203

For example, the CD format has a sampling rate of 44.1 kHz and uses 16 bits
per sample for stereo sound. The CD data rate, therefore, is equal to I =
2*44,100* 16 = 1.411 Mb/s. Based on these numbers, we can easily see how
one hour of music encoded in the CD format requires 635 MB of storage.

In perceptual audio coders, the signal is typically represented in the
frequency domain. Let's assume that we have K frequency sub-bands and
that each frequency sub-band k is encoded with Rk bits where k = 0, ... ,K-1.
The overall system data rate is given by the sum over all sub-bands of the
rates needed to encode each individual sub-band. Assuming each sub-band
output is sampled at a rate Fsk, we have

K-J

l=nLFskR k
k=O

If we are critically sampled, for example by down-sampling by a factor of K
when we divide the signal into the K sub-bands, then each sub-band has a
sampling rate equal to

Fsk = F/K

The resulting system data rate I is then equal to

where <Rk> represents the average number of bits used to encode a
frequency sample:

Typical data rates for high quality, state-of-the-art perceptual audio
coders vary between 64 kb/s per channel up to 128 kb/s per channel. Let's
consider, for example, a monophonic signal sampled with a sampling rate of
48 kHz, and mapped to the frequency domain using an MDCT with window
length of N = 1024 and a system bit rate of 128 kb/s per channel. In this
case, the average number of bits per frequency sample is given by

<Rk> = 128/48 = 2.666667 bits

Given the data rate constraint of 128 kb/s per channel, the number of bits
available for each new block of data is

204 Introduction to Digital Audio Coding and Standards

N/2-1

IRk = (Rk) * 512 = 1365 bits/block per channel
k=O

Given the constraint of the data rate, the aim is to allocate the available
bit pool based on the spectral strength of the audio signal and its masking
properties. In a perceptual audio coder one can maximize the quality versus
the data rate by appropriately assigning the bit pool available through the
signal spectrum. In the next sections of this chapter, we discuss methods for
bit allocation to achieve these goals.

3. A SIMPLE ALLOCATION OF THE BIT POOL

Once we know the number of bits available for each block of frequency
samples, we need to decide how to allocate them. We start with a very
simple scheme and then discuss ways to improve it. We first consider bit
allocation to be binary (either a frequency component gets bits or it doesn't)
and then move on to the more complicated case of variable number of bits
per frequency sample.

In Chapter 3 we saw how by switching to the frequency domain
representation of audio signals one can reduce redundancy for tonal signals;
let's think through how we can carry out this redundancy reduction in a
simple coder by appropriately allocating the bit pool available. Our time
frequency transformation is handing the bit allocation routine blocks of input
data parsed into frequency sub-bands. If the signal is highly tonal we would
expect most of the signal content to be located in only a few of the frequency
sub-bands. We would like to exploit this fact to reduce the number of bits
needed to quantize and pass along the signal.

We can reduce redundancy in our coder by only allocating bits to the
sub-bands that contain useful data and not bothering to pass any bits for
other sub-bands. Suppose we had 32 sub-bands and this block of data only
had signal in five of the sub-bands - we would only need to pass five of the
32 sub-band samples on to the decoder. However, we would also need to
tell the decoder which five sub-bands were the ones for which we are
passing data or it wouldn't know what to do with the five samples! In other
words, we need to also pass data telling the decoder how we allocated the
bits. One way to do this is to allocate a single bit to each sub-band to tell the
decoder whether or not a sample is being passed for that sub-band.

The next issue we face is how to decide which sub-bands contain useful
data. For instance, we can set up a threshold and only pass data for sub
bands whose signal amplitude exceeds this threshold. We could throwaway

Chapter 8: Bit Allocation Strategies 205

sub-band samples whose amplitude level is below the quantization noise
level determined by the number of bits we are using for each coded sample.
An issue with a fixed threshold, however, is that the number of sub-band
samples that exceed the threshold and hence the bitrate of the coder differs
from block to block. Although a variable data rate might be acceptable for
some operations, it can be a problem for transmission or decode-on-playback
applications. In general, given a predetermined bitrate, we could set the
threshold to match the bitrate. For example, the sub-band amplitudes can be
sorted from highest to lowest values and bits be distributed to the highest
amplitude sub-bands until the bit pool for the block is exhausted. Note that
in any such calculation, the bits needed to tell the decoder which sub-bands
have data need to be taken out of the available bit pool first.

Removing redundancy in this manner decreases the system data rate only
if the reduction in the data sample representation is higher than the bits
allocated for the side information. For example, if our 32 sub-band coder
utilizes 16 bits per sample then it would require 32 bits of side information
per block to define the bit allocation and we would need to be able to expect
to throwaway more than 2 sub-bands of data per block on average to be
better off encoding in this manner. This is a common theme in bit allocation
routines - the more control there is on the encoder side of the bit allocation
the more it costs in side information to be sent to the decoder.

4. OPTIMAL BIT ALLOCATION

Having described a simple binary bit-allocation scheme, let's discuss
whether or not we can make it even better off by allocating variable numbers
of bits to the sub-band samples for which we pass data. The question that we
should ask ourselves is: "Can we increase coding gain by redistributing bits
throughout the spectrum of the signal?" In general, there is a potential
increase in coding gain if the signal spectrum is colored, i.e., certain spectral
components are stronger than others. In this case, an increase in coding gain
can be achieved by appropriately redistributing the bit pool throughout the
spectrum. Given that the statistics of audio signals describe them as quasi
stationary, the assumption that audio signal spectra are colored is in general
justified.

To better understand this issue, we should remind ourselves how much
quantization error we can expect to have from a given number of bits. For
the time being we ignore psychoacoustic masking effects and use the total
block quantization error as our measure of signal distortion. Varying the
number of bits can achieve coding gain relative to keeping the bits fixed if

206 Introduction to Digital Audio Coding and Standards

we can find a set of Rb i.e. an appropriate bit allocation that reduces the
average block squared error

relative to a fixed allocation of R bits to each sample, where 10k is the
quantization error for spectral sample k and <Ck2> is the expected power of
this quantization error.

Let's first look at the case of uniform quantization. From Chapter 2, we
recall that the expected error power for a sample that is uniformly quantized
with R bits is roughly equal to

I <£2 >= __ _
3*2 2R

where our amplitude units have been chosen so that the maximum non
overload input Xmax equals one. Unfortunately, the fact that 2-2R is convex
means that we cannot increase the system gain by shifting some bits from
one sample to another since:

I I 1
---+--->2--
2 2(R+O) 2 2(R-O) - 22R

for any shift () in bits between samples. The net result for uniform
quantization is that we reduce distortion by using the same number of bits
for each spectral sample that we pass through the coder. Basically, we
minimize the block error by keeping a constant error level across all samples
for which we pass any data at all.

We can now look at the case of floating point quantization. In floating
point quantization, the effect of the scale factor is to scale the quantizer
maximum non-overload factor Xmax to the order of the signal so that the
expected error power in terms of the number of mantissa bits Rk is now
roughly equal to:

The average block squared error now becomes:

Chapter 8: Bit Allocation Strategies 207

where each term is now weighted by the signal power of the sub-band.
Again, we can increase the coding gain with dynamic bit allocation if we

can find a set of Rk that decreases the average block squared error. In order
to simplify this computation, one should remember that:

so we can rewrite the average block squared error as:

We saw in the uniform quantization case that this is minimized when the
exponent in the denominator is equal for all terms. This implies that we
should allocate our mantissa bits Rk so that:

or equivalently:

for some constant C. The constant C is set based on the number of bits
available to allocate to the mantissas in the block.

The above equation implies that we need to allocate more bits where the
signal has higher amplitude. The reason for this is that the quantizer's Xmax is
large for such samples and so we need more mantissa bits to get down to the
same error power as that from lower amplitude samples.

If we knew how many spectral samples were being passed and we didn't
have to worry about capping the number of bits passed to any sample, we
could relate C to the size of the bit pool and the signal spectrum. Suppose
Kp of the K spectral samples are being passed to the decoder, the others
being allocated zero mantissa bits. Suppose also that the bit pool for
mantissas, i.e. total bit pool for the data block minus the bits needed for scale
factors and for bit allocation information, is equal to P. If we averaged our
allocation equation over all passed samples, we would find that

208 Introduction to Digital Audio Coding and Standards

C=2[: l-~" ~)Og2(X~)=2[~l-IOg2[I1X~ 11K"]
P passed k K p passed k

Substituting this into our allocation equation and solving for Rk then gives us
the following optimal bit allocation result:

for all k bands with non-zero bit allocations.
The bit allocation equation tells us that each non-zero sample is allocated

a number of bits that differs from the average number of mantissa bits
available for non-zero samples, P/Kp, by an amount that depends on the ratio
of the sample squared amplitude to the geometric mean of the non-zero
sample squared amplitudes. The geometric mean of the power spectral
densities reflects the contribution of the total block, not just the spectral
sample under consideration, to the bit allocation for a particular sample.

4.1 A Mathematical Approach

A different method adopted to derive similar results for the optimal bit
allocation is based on the solution of a set of equations that minimize the
average block error power with the data rate constraint by means of
Lagrange multipliers (see for example [Jayant and Noll 84]). While this
method is mathematically rigorous, it gives less intuitive insights on
practical implementation issues. We describe now this method for
completeness. This optimization problem can be framed as follows:

{
I K-l(2)} 1 K-l - L X~Rk such that - LRk =R
K bO 3·2 K k=O

Chapter 8: Bit Allocation Strategies 209

This problem is a problem of constrained minimization and can be solved
applying the following steps3:
1. Solve using a Lagrange multiplier A to enforce the average data rate

constraint.
2. Take the derivatives with respect to each Rk and with respect to A.
3. Solve the resulting equation for Rk and then enforce the average data rate

constraint.
We defi ne the Lagrangian L({Rk }, A)

11 K-l(2) A (K-I)} L[{Rd,A] = -I x~Rk +- IRk - KR
K k=O 3· 2 K k=O

By taking the derivatives of the Lagrangian with respect to each Rk and with
respect to A and setting these derivatives to zero we obtain the following
equations:

a 11 K-l(x~ J A (K-l)} - -I -- +- IRk-KR =0
aRm K k=O 3·22Rk K k=O

m = O,I, ... ,K-I

a 11 K-l(x ~) A (K-l)} - - L --2R- +- LRk -KR =0
aA. K k=O 3·2 k K k=O

The above equations solve our minimization problem by finding the
appropriate set of {Rd that satisfies these conditions. By taking the
derivatives of the Lagrangian with respect to each Rm we have:

from which we derive:

where

3 We are assuming all Rk >= 0, so we don't need to apply Kuhn-Tucker multipliers, and
ignoring the requirement that all Rk are integer so we can take derivatives. In applying the
results we have to round the "optimal" Rk to the nearest integer and force any negative Rk
up to zero (recovering the bits from other Rk, possibly by re-optimizing)

210 Introduction to Digital Audio Coding and Standards

The number of bits per frequency sample depends on the squared amplitude
of that sample plus a constant throughout the block under exam. By taking
the derivatives of the Lagrangian with respect to A we have:

and by substituting into it the expression for Rk we obtain:

K-I
L(C+logz xn= KR
k=O

Using this result, we can solve for C to find:

I

C = R --!ogz IT XI
1 (K-I ZJK
2 1=0

As shown above, C depends on the average bits per sample, R, minus the
logz of the block geometric power spectral density. Finally substituting the
expression for C into the expression for Rk we again obtain the optimal bit
allocation:

4.2 Coding Gain and Spectral Flatness Measure

It is apparent that, for each block of samples, a bit allocation that varies
based on the spectral energy distribution of the signal introduces an
improvement with respect to uniform bit allocation when the geometric
mean of the signal power spectral density is much smaller than the average
of the signal power spectral density. If the signal presents a flat spectrum
then the geometric mean of the signal power spectral density is equal to the

Chapter 8: Bit Allocation Strategies 211

average of the signal power spectral density. In this case, the optimal bit
allocation Rk coincides with the uniform bit allocation R.

It is instructive to estimate the coding gains from using optimal bit
allocation with that of uniform quantization. The quantization error from
optimal bit allocation can be obtained by substituting the optimum Rk back
into the expression of the average block squared error and we find that

I

IT x 2 (
K-I JK

(q2)OP! = k=O k
block 3. 22R

In contrast, the error from using uniform quantization is equal to

1 K-I

-:L X2

(q 2) unifonn = K k=O k

block 3.2 2R

Optimal bit allocation performs better than uniform quantization when the
ratio of these errors is less than one. In other words, the squared error for
optimal bit allocation is decreased when the geometric mean of the signal
power spectral density is less than its average through the block.

The ratio of the geometric mean of the signal power spectral density to
the average of the signal power spectral density is a measure of the spectral
flatness of the signal, sfm [Jayant and Noll 84]:

I

(fi X~JK
sfm = -,-k=O-=~_

1 K-l

~2>~
K k=O

Notice that the sfm varies between 0 and I, where the sfm assumes the value
1 when the spectrum is flat. It is worth noticing also that sfm depends not
only on the spectral energy distribution of the signal but also on the
resolution of the filter bank in terms of the total number of frequency
channels K. If K is much bigger than 2, then, for a given signal, the sfm
decreases by increasing the number of frequency channels K. Values for the
sfm much smaller than 1, typical for audio signals, imply high coding gains
from optimal bit allocation. Values of the sfm near 1, very flat spectra,

212 Introduction to Digital Audio Coding and Standards

imply low coding gains so the informational cost makes optimal bit
allocation worse than uniform quantization.

4.3 Block Floating-Point Quantization

The bit optimal allocation equation above assumes that we are allocating
bits independently to each spectral sample. This is typically the case for a
small number of frequency bands, i.e. for typical sub-band coders. For large
number of frequency bands, such as in transform coders, we normally group
spectral samples into sub-bands containing multiple spectral samples and
block floating point quantize the sub-band. We need to keep in mind that the
Xk2 terms in the bit allocation equation is inversely proportional to the
quantizer spacing for that sample. The corresponding term for a block
floating point quantized spectral sample is the peak value of Xk2 for that sub
band. In the case of B sub-bands indexed by b with Nb spectral samples in
sub-band b and with maximum value of Xk2 for that sub-band denoted as
xma/ b, the bit allocation equation for the spectral lines in sub-band b
becomes:

Notice that this version of the equation also applies to sub-band coding
where Nb usually equals I for each sub-band.

As an important note on optimal bit allocation, we do have to worry
about how we pass bit allocation information to the decoder and about
making sure that our bit allocation is feasible, i.e., non-negative. As opposed
to the binary allocation described earlier, optimal bit allocation needs to pass
information not only on whether bands are passed, but also how many bits
are passed per band. If we allow for a large number of different bit
allocations for a particular sub-band, more bits are needed to describe which
allocation was chosen. In order to keep the bit allocation information to be
transmitted to the decoder to a minimum, some predefined values can be
incorporated in the decoder routines. For example, in MPEG Layer II (see
also Chapter 11), depending on the sampling rate and data rate of the system
and the known distribution of audio signals, a set of tables pre-defines the
maximum number of bits that can be allocated to certain bands. In this

Chapter 8: Bit Allocation Strategies 213

fashion, the bit allocation information to be transmitted to the decoder is kept
to a minimum.

We should also note that there is no difference between passing zero or
one mantissa bits for a midtread quantizer (you need at least two mantissa
bits to get a non-zero step) so you should not allow a midtread quantizer to
ever be assigned only one bit.

A given number of bits used to describe the alIocation limits the number
of bits that can be assigned to any sub-band. When we apply our bit
allocation equation, we likely find outcomes where some sub-bands are
assigned more bits than we allow and while others have fewer than 2 bits
assigned. In fact, depending on the data rate constraints, even negative
numbers of bits can come out of the formula if a signal is particularly
demanding or its spectrum is nearly flat. A natural way to fix this problem is
to simultaneously raise a lower threshold while lowering an upper threshold,
the maximum bit allocation being assigned for sub-band b when Y2
log2(xmax \) is above the upper threshold and no bits being assigned to sub
band b when Y210g2(xmax2b) is below the lower one. The thresholds are set so
that the residual mantissa bit pool can be allocated using the optimal bit
allocation formula to all sub-bands whose Y2 log2(xma/b) falls between the
thresholds without leading to any alIocations over the maximum bit
allocation or below two bits. When doing so, it is important to keep in mind
that an allocation of Rb bits per sample for a sub-band actually reduces the
bit pool by Nb Rb bits since there are Nb spectral samples in the sub-band.

Another way to fix the bit alIocation problem is to do a "water-filling"
allocation. The water-filling algorithm is an iterative approach wherein we
allocate bits based on each sub-band's Y2 log2(xmax\) relative to a threshold
level. We start out by sorting the sub-bands based on Y2 log2(xma/b), giving
each sub-band a starting allocation of zero bits, and setting the threshold to
the highest value of V2 log2(xmax 2 b). At every iteration we lower the threshold
by one and then we alIocate one more bit to each sub-band for which V2
log2(Xmax 2 b) is at or above the current threshold (but we stop giving additional
bits to any sub-band that has hit the maximum bit allocation value). We stop
the process when we run out of bits. In the water-filIing case, when we run
out of bits we may still have some sub-bands with just one bit each - we
need to take lone bits away and either pair them up with other lone bits or
throw them onto samples with more bits. Again, we need to keep in mind
that an allocation of Rb bits per sample for a sub-band actually reduces the
bit pool by Nb * Rb bits. The choice between these and other methods is
going to depend on the trade-offs you face on optimality versus complexity.
The water-filling method is quite often used and seems to be a good
compromise between accuracy and speed.

214 Introduction to Digital Audio Coding and Standards

5. TIME-DOMAIN DISTORTION

In the previous section, we showed that the block distortion (measured by
the average block quantization error) of the frequency domain coefficients
can be reduced by optimally allocating bits if the spectrum is not flat. Since
ultimately the encoded signal will be presented to the listener in the time
domain, a natural question to ask is: "How does the block distortion in the
frequency domain relate to the block distortion in the time domain?".
Remarkably, for commonly used time-to-frequency mapping techniques, the
time-domain distortion is equal to the frequency-domain distortion [Jayant
and Noll 84] as we now show.

Suppose we start with a set of time domain samples x[n] for n = 0, ... ,N-
1. We consider transforms of these samples to and from the frequency
domain with a linear transform of the form:

N-l

y[k] = I A ko x[n]
0=0

N-l

x[n] = I B ok y[k]
k=O

where the inverse transform is such that Bok = AkO* (and where * represents
the complex conjugate). We call such a transform a "unitary transform"
since matrices that satisfy this condition (i.e., that their inverse is the
complex conjugate of their transpose) are called "unitary matrices" and it
turns out the DFf is such a transform. We can see this by writing the DFT
in its symmetric form (in which we include a factor of 1/.JN in the
definition of the forward transform) for which A ko = e-j2rrkolNl.JN and Bok =
eizrrkolN I .IN .

We now see how quantization error in the frequency domain samples
translates back into quantization error in the time domain samples when we
inverse transform. Suppose that quantization/dequantization changes the
frequency domain samples from y[k] to y'[k] due to (possibly complex)
quantization error Ck. When we inverse transform back to the time domain
the quantization error in y,[k] lead to output samples x'[n] containing
quantization error Co where:

Chapter 8: Bit Allocation Strategies

En =x'[n]-x[n]= ~:Snky'[k] -x[n] (
N-I)

k=()

=(%BnkY[k]+ %BnkEk)-x[n]

N-I

= LBnkEk
k=O

215

Noting that IOn is real-valued for real-valued input signals x[n] and the
quantization error is independent from sample to sample (so that we can
assume <CkCk'*> is zero ifk -:;:. k'), we can write the average block distortion in
the time domain as:

(
2)timedOmain _~IN-I 2 _~IN-I *

q - <En > - <En£n >
block N N

n=O n=O

= ~ ~ <[~BnkEkl[~Bn/E/l>
n=O k=O k =()

N-I N-I N-I

= ~ I I IBnkAk'n <Ekc/ >
n=O k=O k'=O

N-I N-1

= ~ I IBnkA kn <IEk 12>
n=O k=O

1 N-I 2 [N-I 1 =N ~ <I Ek 1 > t;AknBnk

N-I

=~I<I£kI2>
N k=O

= (2) freq domain

q block

where the transition to the second-to-last line is due to the fact that Akn and
Bnk are inverses of each other so that the quantity in parentheses is equal to
one. Note that, for complex transforms, we need to worry about the
quantization error in both the real and imaginary parts. However, since the
quantization errors in the real and imaginary parts are independent of each
other, the quantity <ICkI2> is just the sum of the expected quantization error
power in the two parts.

This result tells us that the total block distortion in the time domain is
equal to the block distortion in the frequency domain. Why then do we do

216 Introduction to Digital Audio Coding and Standards

our quantization in the frequency domain? Recall the main result from
optimal bit allocation that the block distortion for a given number of bits is
proportional to the spectral flatness measure. The reason we go to the
frequency domain and do our quantization is that we expect most audio
signals to be highly tonal. By highly tonal we mean that audio signals
spectra have strong peaks. A very "peaky" signal has a low spectral flatness
measure and therefore produces lower block distortion for a given number of
bits per block. For example, consider a pure sinusoid. In the time domain
the signal is spread out across the block while in the frequency domain its
content is collapsed into two strong peaks (one at positive frequencies and
one at negative frequencies). Clearly, the frequency domain representation
is much less flat than the time domain representation.

We conclude that we go to the frequency domain because we expect the
signal representation to be less flat than the time domain representation. Our
calculations for optimal bit allocation tell us that we can reduce distortion in
the time domain output signal by doing our quantization in a representation
that is less flat than the time domain representation. This conclusion is the
technical manner in which we "reduce redundancy" by changing signal
representation.

As a final note, we mention the fact that the MDCT of a single block of
samples is not a unitary transform due to time-domain aliasing effects.
However, when we include the overlap-and-add to view the MDCT as a
matrix transform on the overall input signal (see Chapter 5), it is a unitary
transform. Therefore the conclusions above also apply to the MDCT with
the caveat that, although the overall time domain distortion equals the
frequency domain distortion when compared over the whole signal, there is
not an exact balance on a block by block basis. Again, the fact that the
MDCT is a frequency domain spectral representation implies that it is also
peaky for highly tonal signals and as such it can be used to remove
redundancy in the signal.

6. OPTIMAL BIT ALLOCATION AND
PERCEPTUAL MODELS

In perceptual audio coding, the goal is not just to remove redundancy
from the source, but it is also to identify the irrelevant parts of the signal
spectrum and extract them. This translates into not just trying to minimize
the average error power per block, but also trying to confine the resulting
quantization noise below the masking curves generated by the signal under
examination. We no longer care just how large the error is but rather how
large it is compared with the masking level at that frequency. We can keep

Chapter 8: Bit Allocation Strategies 217

the quantization noise imperceptible if we can keep all of the quantization
noise localized below the masking curves. If, because of the data rate
constraint, we don't have enough bits for imperceptible quantization, we
want to keep the perceived noise at a minimum.

We can keep the perceived noise at a minimum by allocating bits to
minimize the following measure of perceptible distortion:

1 K-J 2
(q2)perCePI =-L ~

block K k=O M ~

where Mk is the amplitude equivalent to the masking level evaluated at
frequency index k. Notice that this measure of distortion gives a lot of
weight to quantization noise that is large compared to the masking level
while very little weight to noise below the masking level.

Allocating bits to minimize this measure of distortion is almost identical
to the problem we just studied other than the fact that now, when we
substitute in our formula for the quantization noise from floating point
quantization, the spectral sample amplitude Xk is always divided by the
corresponding masking amplitude Mk• This means that we can make use of
all of our prior results for optimal bit allocation if we make this substitution.
The resulting perceptual bit allocation result is:

for all b with non-zero bit allocations (i.e., passed samples) where Mb is the
amplitude corresponding to the masking level assumed to apply in sub-band
b. Normally, our psychoacoustic model provides us with information on the
signal-to-mask ratio for each sub-band. We can rewrite this equation in
terms of each sub-band's SMR as

R~PI =(:)+ 2~:~~i)(SMRb - i p LNbSMRb)
P ~a~b

where SMRb represents the SMR that applies to sub-band b.
Perceptual bit allocation proceeds very much analogously to optimal bit

allocation. The main difference is that the masking thresholds and
corresponding SMRs for the block need to be calculated prior to deciding

218 Introduction to Digital Audio Coding and Standards

how to allocate the bit pool. Given the SMRs, the bits are allocated exactly
as in the bit allocation described in the previous section.

The effectiveness of carrying out perceptual bit allocation is measured by
the perceptual spectral flatness measure, psfm, which can be described by
[Bosi 99]:

The psfm is analogous to the sfm in that it ranges between zero and 1 with
low numbers implying the potential for high coding gain. Notice that the
psfm depends on the spectral energy distribution of the signal weighted by
the masking energy distribution.

7. SUMMARY

In this chapter, we have brought together many of the themes discussed
in prior chapters and shown how they fit together to reduce the bit rate of the
system under consideration. We have seen how a transformation to the
frequency domain can reduce bit rate for a highly tonal signal. We have then
seen how the use of floating point quantization allows us to extract greater
coding gain through optimal bit allocation. Finally, we have seen how
perceptual measures of masking can be used to better allocate quantization
noise and squeeze out more coding gain by removing irrelevant bits.
Similarly to the procedures described in this chapter, many of the standard
audio coding systems make use of bit allocation strategies based on the ratio
of the signal versus its masking strength with a fixed data rate constraint (see
for example the description of MPEG Layer I and II and Dolby AC-3 in later
chapters). It should be mentioned, however, that the MPEG Layer III
approach differs somewhat in that a locally variable data rate approach is
adopted in order to accommodate particularly demanding audio signals (see
also Chapter II). Before examining the specific implementation of several
state-of-the-art coders, we illustrate in the next chapter how all of the
building blocks described in the previous chapters fit together into a coding
system.

Chapter 8: Bit Allocation Strategies 219

8. REFERENCES

[Bosi 99]: M. Bosi, "Filter Banks in perceptual Audio Coding", in Proc. of the AES
17th IntI. Conference, pp. 125-136, September 1999.

[Jayant and Noll 84]: N. Jayant, P. Noll, "Digital Coding of Waveforms: Principles
and Applications to Speech and Video", Prentice-Hall, Englewood Cliffs, 1984.

9. EXERCISES

Bit Allocation:
In this exercise, you will compare bit allocation methods for the test signal
studied in the exercises of Chapters 6 and 7. The goal is to gain an
appreciation of how different bit allocations perform.
1. Define 25 sub-bands by mapping the NI2 frequency lines of a length N =

2048 MDCT onto the 25 critical bands. (Remember that fk = Fs kiN for
k=O ... NI2-I)

2. Consider the data rates I = 256 kb/s per channel and I = 128 kb/s per
channel for the coded spectral lines of a length N=2048 MDCT.

a) How many bits per line are available for coding the spectral data?
b) If 4 bits/sub-band are used for a sub-band scale factor, how many

bits per line remain for coding mantissas?
3. Write a function to allocate bits to a set of K sub-bands dividing up the

N/2 frequency lines of a length N MDCT block so as to minimize the
average block error. The lines in each sub-band will share a single scale
factor represented with Rs bits and will all use the same number of
mantissa bits. Also create a variant of this function to perform the
allocation to minimize the average block perceptual error.

4. For the input signal used in Chapters 6 and 7:

x[n] = Ao cos(2n440n / Fs) + A I cos(2n554n / Fs)

+ A 2 cos(2n660n / Fs) + A 3 cos(2n880n / Fs)

+ A4 cos(2n4400n / Fs) + A5 cos(27t8800n / Fs)

where An = 0.6, Al = 0.55, A2 = 0.55, A3 = 0.15, ~ = 0.1, A5 = 0.05,
and Fs is the sample rate of 48 kHz, and for both data rates above,
quantize and inverse quantize each frequency output of an N = 2048
MDCT using "block" floating point, where each frequency sub-block
has only one scale factor and the frequency sub-bands are the 25 sub
blocks defined in 1) above. Use 4 bits per scale factor and:

220 Introduction to Digital Audio Coding and Standards

a) Uniformly distribute the remaining bits for the mantissas.
b) Optimally distribute the remaining bits for the mantissas based on

signal amplitude.
c) Distribute the bits by hand to get the best sound you can.
d) Use the signal-to-masking level for each critical band calculated in

Chapter 7 to optimally distribute the remaining bits for the
mantissas.

Listen to the results of each bit allocation scheme above and comment
on their relative performance. (Note: the maximum amplitude of this
signal is 2.0. This implies that you should set Xmax in your quantizer
equal to 2.0 or, if your Xmax is hard-coded to 1.0, you should divide the
signal by 2.0 prior to quantizing it.)

Chapter 9

Building a Perceptual Audio Coder

1. INTRODUCTION

In this chapter we discuss how the coder building blocks described in the
prior chapters can be fit together into a working perceptual audio coder.
Particular attention is given to how to create masking curves for use in bit
allocation. We also discuss issues in setting up standardized bitstream
formats so that coded data can be decoded using decoders provided from a
variety of vendors.

2. OVERVIEW OF THE CODER BUILDING
BLOCKS

Figure 1 shows the basic building blocks of a perceptual audio encoder.
Typically, the input data is an audio PCM input signal (rather than the
original analogue input). This signal has its content mapped into the
frequency domain using some type of filter bank, for example PQMF or
MDCT. The frequency domain data is then quantized and packed into a
bitstream. The quantization is carried out using a bit allocation that is
designed to maximize the overall signal to noise ratio (SNR) minus the
signal to mask ratio (SMR) of each block of data. The psychoacoustic
model stage analyzes the input signal, determines the masking level at each
frequency component, and computes the SMR values. The bit allocation
routine allocates a limited number of mantissa bits to the frequency-domain
data based on the signal components strength and the their relative SMR
values. The encoded bitstream includes both the coded audio data, i.e.,

M. Bosi et al., Introduction to Digital Audio Coding and Standards
© Kluwer Academic Publishers 2003

222 Introduction to Digital Audio Coding and Standards

mantissas, scale factors, and bit allocation. In addition any control
parameters including, for example, block length, type of windowing, etc.
needed to tell the decoder how to decode the data is included in the coded
bitstream. Synchronization word, sampling rate, data rate, etc. are typically
contained in the data header and passed to the decoder at certain time
intervals. Finally, error correction codes, time-synchronization stamps, and
other auxiliary or ancillary data can also be mUltiplexed in the data stream.
The result is an encoded bitstream that can be stored or directly transmitted
to the decoder.

Audio
PCM Time to

Frequency
Allocation Bitstream

Mapping and Coding ,--» Formatting
, , , , , , , , ,

Psychoacoustic
, ,

'----+-
,

Model r--- Ancillary Data

Encoded
Bitstream

Figure I. Basic building blocks for a perceptual audio encoder

Quantized
Subband
Data and

Reconstructed
Sub-band

Data
Scale Factors

Bitstream
Unpacking -,

Frequency
Sample
Reconstruction

'-------' :'---------'
I

Frequency
to Time
Mapping

y
Ancillary
Data

Figure 2. Basic building blocks for a perceptual audio decoder

Encoded
stream Bit

~

Decoded
PCM
Audio

Chapter 9: Building a Perceptual Audio Coder 223

The basic building blocks of a perceptual audio decoder are shown in
Figure 2. First, the encoded bitstream is unpacked into its constituent parts,
i.e., audio data, control parameters, and ancillary data. The bit allocation
information is used to dequantize the audio data and recover as best as
possible the frequency-domain representation of the original audio data. The
reconstructed frequency-domain data contain quantization noise but, if the
psychoacoustic model has correctly done its job, that noise is inaudible or as
close to inaudible as possible given the data rate constraint. The frequency
domain data is returned to the time-domain using the appropriate filter bank,
for example a synthesis bank of PQMF or an IMDCT, and finally converted
into an audio PCM output data stream. It should be noted that the
psychoacoustic model computation and relative bit allocation is shown only
in the encoder side of the audio coding system. While for most state-of-the
art audio coding schemes this is the case, there are instances, like for
example AC-3 (see also Chapter 14), in which the bit allocation routine is
computed both in the encoder and, at least a sub-set of the routine, the
decoder. In this approach the allocation side information to be transmitted to
the decoder is minimized at the expense, however, of an increased layer of
complexity for the decoder.

We've already discussed alternatives for time-to-frequency mapping
tools, how to allocate bits given masking curves, and how to quantize the
data. What we still need to explore in a bit more detail is how to use the
psychoacoustic properties of hearing to create the masking curves and how
to design a bitstream format. We'll first turn to the issue of computing a
masking curve.

3. COMPUTING MASKING CURVES

We've already discussed how masking models can be used to reduce the
precision in the representation of frequency-domain data without introducing
perceptual differences between the coded and the original signal. Time
domain masking is typically exploited in defining the time resolution of the
coder, i.e., to control the system input block-size so that quantization errors
are confined in time regions where they do not create audible artifacts (pre
echo). We also discussed measurements of the hearing threshold and
developed models of frequency-domain masking - what is there still left to
talk about? The main issues we still need to address revolve around bringing
together the information contained in the computed masking curves relative
to the input signal and the frequency representation of the signal in the
coder's main-path time-to-frequency mapping stage.

224 Introduction to Digital Audio Coding and Standards

We've seen that frequency-domain masking drops off very sharply in
frequency, especially towards lower frequencies. This rapid drop off means
that we potentially can introduce large errors in the masking levels at
particular signal components if we don't know the frequency locations of
both the masker and the maskee with reasonably high accuracy. In contrast,
the time-to-frequency mapping used by the coder may not have adequate
frequency resolution for this purpose. Moreover, the frequency-domain
representation of the signal may have significant aliasing that, although it
may disappear in the synthesis stage, could potentially lead to errors in
estimating the masking curves.

Typically, perceptual audio coders perform a high-resolution DFf (using
the FFf algorithm) with blocks of input data solely for use in the
psychoacoustic model. The results of this high frequency resolution DFf
are then employed to determine the masking curve for each block of coded
data. An immediate issue that arises in this approach is making sure that the
DFf data is time-synchronized with the data block being quantized. If it
isn't, the DFf may show too much (or too little) frequency content from
outside of the time region of interest. This issue is usually addressed by
selecting a large enough data block input to the DFf and by centering it on
the data block being quantized. Note also that, as usual, we don't want the
DFf to be corrupted by edge effects so we need to window the data block
prior to performing the DFf. Any of the windows we discussed in Chapter 5
can be used for this purpose, with the Hanning window a common choice
(see for example the description of ISOIIEC MPEG Psychoacoustic Models
1 and 2 in ISOIIEC 11172-3 and in Chapter 11).

Having performed a DFf with adequate frequency resolution, we can use
our frequency-domain masking models to determine the masking level at
each DFf frequency line. The most straightforward approach for doing this
is to loop over all signal frequency content represented on a bark scale,
compute the masking curve from each signal component, and appropriately
sum up the curves. Recall from Chapter 7 that the masking curve from a
single component is created by convolving that component with an
appropriate spreading function (i.e., by applying the spreading function
shape to the component level at its frequency location) and then lowering the
resulting curve level by a shift Ll that depends on the tonality of the masker
component and its frequency position. The masking from different signal
components is then added in the appropriate manner and combined with the
hearing threshold, where usually the largest individual curve is used or the
intensities are added.

Applying a straightforward implementation of the masking models takes
order N2 operations to carry out where N is the number of DFf frequency
lines (presumably large). Two different solutions to the runtime problem are

Chapter 9: Building a Perceptual Audio Coder 225

typically used: I) limit the number of maskers, and 2) create the masking
curves using convolutions rather than a loop over maskers.

The first solution to the runtime problem, i.e., to limit the number of
maskers by developing curves only for the main maskers, is based on the
idea that most of the masking is performed by a few strong components,
which, if identified, are the only components that need to have masking
curves created. One way to carry this out is to look for local maxima in the
frequency spectrum and, if they are tonal, i.e., the spectrum drops off fast
enough near them, to use the largest of them as tonal maskers. The
remaining components can then be lumped together into groups, for example
by critical bands or, at high frequencies where critical bands are quite wide,
by 1/3 of a critical band, to use as noise-like maskers. In this manner, the
number of components that need to have masking curves created and
summed is limited to a number that can be computed in reasonable runtime
(see also ISOIIEC MPEG Psychoacoustic Model I description in Chapter
11).

The second solution to the runtime problem is to create the overall
masking curve as a convolution over the entire spectrum (see also
[Schroeder, Atal and Hall 79]) rather than summing separately over all
frequency lines. For example, suppose that the level shift A is independent
of the type of masker, i.e., it does not depend on whether the masker is tonal
or noise-like or on its frequency location, and that the spreading function
shape is independent of the masker level. In this case, the masking curve
from each component could be created by convolving the full spectrum with
an appropriate spreading function and then shifting the result down by a
constant A. The benefit of this approach is that the convolution theorem can
be used to convert this frequency-domain convolution (naively requiring
order N2 operations) into a faster procedure in the time domain. Changing to
and from the time domain requires order N*log2(N) operations while
implementing the convolution as a time-domain multiplication requires order
N operations - leading to a total operation count of order N + 2N*log2(N) =
N*(1 + 2Log2(N» ::::: 2N* Log2(N). This can be a big reduction from order
N2 when N is large! Of course, the problem with this approach is that, as we
saw in Chapter 7, the masking curves are very dependent on whether or not
the masker is tonal. One solution to this problem is to ignore the difference
and compromise by using a single shift A regardless of the masker's tonality.

A clever solution to this problem is adopted in ISOIIEC MPEG
Psychoacoustic Model 2 (see for example 11172-3 or Chapter 11). For each
block of data, Model 2 computes a tonality measure that is then convolved
with the spreading function to create a frequency-dependent "spread"
tonality measure. This spread tonality measure determines how tonal the
dominant maskers are at each frequency location. Notice that also this

226 Introduction to Digital Audio Coding and Standards

second convolution can be carried out as a time-domain multiplication for
order 2N*log2(N) operations. The shift L1 then depends on the spread
tonality measure at each frequency location. In this manner, portions of the
signal spectrum that are mostly masked by tonal components have their
relative excitation patterns shifted downward by a L1 appropriate for tonal
masking. Vice-versa, portions of the signal spectrum mostly masked by
noise-like components have their relative excitation patterns shifted
downward by a L1 appropriate for noise masking (see Chapter 11 for further
details).

Having created the masking curves at each frequency line of the
psychoacoustic OFT stage, we are now faced with the challenge of mapping
them back into signal-to-mask ratios (SMRs) to use for the frequency bands
in the coder's main path time-to-frequency mapping. In a sub-band coder,
for example PQMF, the frequency bands are typically the pass bands of each
of the K modulated prototype filters. In transform coders typically a single
scale factor is used for multiple frequency lines, so that the frequency bands
are the frequency ranges spanned by the sets of lines sharing a single scale
factor. We typically find that the coder's frequency bands are wide
compared to the ear's critical bands at low frequencies, where critical bands
are narrow, and narrow compared to critical bands at high frequencies,
where critical bands are wide. Since masking effects tend to be constant
within a critical band, one way to do the mapping is to choose

a) the average masking level in the critical band containing the
coder's frequency band when the coder's band is narrow compared
with the ear's critical bands

b) the lowest masking level in the coder's frequency band when the
coder's band is wide compared with the ear's critical bands, so that
the masking level represents the most sensitive critical band in that
coder band.

In the second case, the coder's frequency resolution is considered to be sub
optimal since its frequency bands span more than one critical band. It this
case, additional bits may need to be allocated to the coder's bands with
bandwidths larger than critical bandwidths in order to compensate for the
coder's lack of frequency resolution.

Once the masking level is set for the coder's frequency band, we then set
the SMR for that frequency band based on the amplitude of the largest
spectral line in the band, or, if our scale factor is at the maximum value, so
that the quantizer cannot adjust its spacing to any smaller value, based on the
amplitude of a line whose amplitude corresponded to the maximum scale
factor.

Chapter 9: Building a Perceptual Audio Coder 227

3.1 Absolute Sound Pressure Levels

Another issue that needs to be addressed is how absolute sound pressure
levels (SPLs) can be defined based on the computed signal intensity in order
to align the hearing threshold with the signal's spectrum and for intensity
dependent masking models. Although masking depends mostly on the
relative intensities of masker and maskee, the hearing threshold is defined in
terms of absolute SPL. In addition, the shape of the spreading functions is
modeled as depending on the absolute pressure level of the sound.
Unfortunately, the absolute SPL of the signal depends on the gain settings
used on playback - higher volume settings lead to higher SPLs reaching the
listener's ears- which are not known a priori.

Since we can't be assured exactly what gain settings are used on
playback, we are forced to make an assumption about the target playback
gain for the signal. The assumption usually made is that the input PCM data
has been recorded and quantized so that the quantization error falls near the
bottom of the hearing threshold at normal playback levels. In particular, we
usually define a sinusoid with amplitude equal to Y2 the PCM quantizer
spacing as having an SPL equal to 0 dB. Recall that the hearing threshold
has its minimum value at about -4 dB for young listeners, so this definition
implies that some listeners would be hearing a bit of quantization noise in
certain regions of the input PCM signal spectrum.

For 16-bit PCM input data the standard assumption implies that a
sinusoid with amplitude equal to the overload level of the quantizer would
have an SPL of about 96 dB (6 dBlbit * 16 bits). If we define our quantizer
overload level X max to be equal to 1, this assumption implies that the SPL of a
sinusoidal input with amplitude A is equal to:

SPL = 96 dB + 10 logIO(A 2)

Notice how this formula correctly has an SPL of 96 dB when the input
amplitude reaches its maximum for A = I.

Having made an assumption that allows us to define absolute SPLs in our
input signals, we need to be able to translate our frequency-domain
representation into units of SPL. Since our SPLs are defined in terms of the
amplitudes of input sinusoids, translating the frequency-domain
representation into SPL implies being careful with normalization in our
time-to-frequency mappings. This care is needed in both the DFT used for
the psychoacoustic modeling and in the coder main path's time-to-frequency
mapping. In both cases, the choice of window affects the gain of the
transform. Knowing the SPL of the maximum sinusoid (for example 96 dB

228 Introduction to Digital Audio Coding and Standards

for 16 bit PCM), however, allows you to define the correct translation factor
for any particular case.

The basic approach to calculating the translation factor is to use
Parseval's Theorem to relate the spectral density integrated over a frequency
peak to the power of the input sinusoid. For example, by utilizing Parseval's
Theorem for the DFT we have:

N-I N-I

<x2> =-k- Ix[n]2 =~ IIX[k]12
n=O n=O

For a sinusoid with amplitude A the average signal power is V2A2. However,
a sinusoid with amplitude A that is windowed with a window w[n] has an
average signal power approximately equal to V2A2<W2>, assuming that the
window function varies much more slowly in time than the sinusoid itself.
Such a signal has a DFT containing two main peaks with equal spectral
density: one at positive frequencies kl (k l E [0, NI2-1]) and one at negative
frequencies k2 (k2 E [NI2, N-1]). We can use Parseval's Theorem to relate
the sum of spectral density over a single positive frequency peak to the input
signal amplitude as:

~A2 <w2 >= ~2 IIX[k]12
peak

or equivalently:

We can use this formula to substitute for A2 in the SPL formula above to
find:

SPL DFf = 96 dB + 10 log 10 (--,--±-;- "I X[k] 12]
N <w> L..

peak

where IX[k]12 is the computed power spectral density of the input signal.
For a second example, we consider how to estimate SPLs for an MDCT.

The challenge here is the fact that the time-domain aliasing in the transform
does not allow for an exact Parseval's Theorem. However, an approximate
solution can be derived in which:

Chapter 9: Building a Perceptual Audio Coder 229

N 12-1 N 12-1

<X2> = :2 LX[k]2+t L(x[n]x[N/2-I-n]-x[N-I-n]x[N12+n])
n~O n~()

NI2-1

"" :' LX[k]2
n~O

In this case, there is only a single frequency peak for a sinusoid in the
frequency range of k E [0, N/2-I] so we find that this approximate solution
relates the amplitude to the sum of spectral density over a peak through:

A 2 "" -2-8-2-" I X[k] 12
N <w > L..

peak

Again, we can substitute into the SPL formula to find:

SPL MDCT "" 96 dB + IO IOg\o(_,_8_2 "I X[k] 12)
N <w> L..

peak

where X[k] represents the output of the MDCT.
The translation of frequency-domain representation into absolute SPLs

depends on the choice of window utilized in the mapping onto the frequency
domain, since the window choice affects the overall gain of the frequency
representation. The gain factor for any specific window can be computed
using the following definition:

N-I

<w2> =tL w [n]2
n~O

For completeness, we note here the appropriate gain adjustment for some
of the more common windows. Since N is typically fairly large, the gain
adjustments can be calculated as averages over the continuous time versions
of the window. The rectangular window has <w2>=1 assuming that w[n] is
equal to lover its entire length. The sine window has <W2>=Y2 as can be
easily seen since sin2(x) averages to Y2 over a half-integral number of
periods. The Hanning window has <w2>=3/8. The gain factor for the
Kaiser-Bessel window depends on a but can be computed for any specific a
value using the above definition.

230 Introduction to Digital Audio Coding and Standards

4. BITSTREAM FORMAT

The encoded bitstream is the means by which the encoder communicates
to the decoder. This means that the encoded bitstream needs to be able to
tell the decoder both how to decode the data and what the data is. Any
encoded bitstream therefore includes both control data (telling the decoder
what to do) and coded audio data (the signal to be decoded). A bitstream
format needs to be defined in such a way that the decoder knows how to
extract this data from the bitstream.

Normally, a bitstream format begins with a header. The header typically
starts with a code that establishes synchronization of the bitstream and then
it passes the decoder some overall information about the encoded data, for
example sampling rate, data rate, copyrights, etc. To the degree that the
codec has coding options, for example, inpuUoutput bits per sample, number
of audio channels, algorithm used, etc., this also needs to be passed to the
decoder.

After the header establishes what needs to be done, the bitstream includes
the coded audio data. Each block of coded data needs to include 1) bit
allocation information (when applicable) to know how many bits are used to
encode signal mantissas, 2) scale factors defining the overall scale of the
mantissa values, and 3) the mantissas themselves. The bitstream format
defines the layout and the number of bits used for the bit allocation and scale
factors. It also defines the layout of the mantissas. Entropy coding methods
can be used to reduce the bits needed to write out this information. For
example, masking might lead to many frequency lines using zero mantissa
bits - knowing that zero bits is a common bit allocation implies that a short
code should be used to denote this result. Typically, the codebook is
predefined based on "training" the coder on a variety of input signals so that
a decoding table doesn't need to be passed in the bitstream, but it can be
simply stored in the decoder ROM.

In the case of multichannel audio, for example, stereo channels, the
bitstream also needs to define how the different audio channels are laid out
relative to each other in each data block. Sometimes the channels are
interleaved so you get the data for each channel at a given frequency line
before reading the next frequency line's data. Sometimes, however, channel
transformations are made to allow for bit reduction based on similarities
between channels. For example, stereo is sometimes transformed from L
(left) and R (right) channels into sum (M = L + R "Mid") and difference (S =
L - R "Side") channels so the knowledge that S is typically small can be
leveraged into allocating it fewer bits. Likewise, correlations between
channels can be exploited in cases with larger numbers of channels so
various channel matrixing transformations are defined to allow for channel

Chapter 9: Building a Perceptual Audio Coder 231

coding opportunities to save on bits. Note that control data need to be
passed telling the decoder what format the channel data is in if it allows
different options.

The individual blocks of coded data are usually bundled in larger chunks
often called "frames". If the signal is fairly stationary, we would expect
subsequent blocks of data to be fairly similar. Cross-block similarity can be
exploited by sharing scale factors across blocks and/or by only passing
differences in data between subsequent blocks in a frame. The header and
some control data are typically passed on a frame-by-frame basis rather than
on a block-by-block basis, telling the decoder any dynamic changes it needs
to make in decoding the data. If the encoder detected a transient and shifted
to shorter data blocks the decoder needs to be told. In this case, because of
the non-stationary nature of the signal, scale factors are transmitted on a
block -by-block basis.

To render the bitstream format issue more tangible, Figure 3 provides an
example of both a PCM data file format and a file format for a simple
perceptual coder that works on files in batch mode. The PCM data file
begins with a 4-byte code equal to the string "PCM " to make sure that it is a
PCM file. It then includes a 4-byte integer representing the sample rate of
the signal measured in Hz, for example, 44.1 kHz would be equal to 44,100.
Then it has a 2-byte integer representing the number of channels (1 for
mono, 2 for stereo, etc.). The header finishes with a 2-byte integer
representing the number of bits per PCM data sample (8 bits, 16 bits, etc.)
and a 4-byte integer representing the number of samples in the file.
Following the header, the PCM file contains the signal data samples
interleaved by channel, each sample being represented using nSampleBits
bits as a PCM quantization code.

The coded data file in Figure 3 represents a simple perceptual audio
coder. This coder takes PCM input data, loads each channel into data blocks
2*BlockSize long (with BlockSize new data samples for each block),
performs an MDCT for each channel to convert the data block into
BlockSize frequency components. It uses a perceptual model that computes
SMR for each of 25 critical band-based frequency bands, allocates mantissa
bits for each frequency bands, block floating point quantizes each of the
frequency bands using one scale factor per critical band and the allocated
number of mantissa bits per sample, and finally writes each block's result
into a coded file. The coded file format begins with the header, which
includes a 4-byte code equal to the string "CODE". It then includes a 4-byte
integer for the sample rate in Hz, a 2-byte integer for the number of
channels, and a 2-byte integer for the number of PCM bits per sample when
decoded. The control parameters passed in the bitstream include a 2-byte
integer representing the number of scale factor bits used by each of the 25

232 Introduction to Digital Audio Coding and Standards

scale factors, and then has a 2-byte integer representing the number of bits
used to define the bit allocation for each of the 25 frequency bands. A 4-
byte number representing the number of frequency samples in each block of
frequency data and a 4-byte number representing the number of data blocks
in the file is also passed. Following the control parameters, the coded audio
file then has the signal data grouped by data blocks. Each data block starts
with the 25 scale factors (nScaleBits each) and the 25-frequency-band bit
allocations (nBitAllocBits each). Finally, the BlockSize mantissa values for
each channel are interleaved, each one using the number of bits defined for
its frequency band in the bit allocation information.

"PCM" "CODE" "PCM"

Sample Rate Sample Rate Sample Rate

nChannels nChannels nChannels

Bits Per Sample Bits Per Sample Bits Per Sample

nSamples nScaleBits nSamples

I nte rleaved nBitAllocBits Interleaved
Channel
Samples

BlockSize Channel
Samples

nBlocks
(L 1.R1.L2.R2 •...) 25 (L1.R1.L2.R2 •...)

Scale
Factors

25
Bit

Allocations

Interleaved
Mantissas

(L1.R1.L2.R2 •...)

25
Scale

Factors

25
Bit

Allocations

Interleaved
Mantissas

(L1.R1.L2.R2 •...)

...

Figure 3. Very simple peM and coded data file formats

The coded file format in Figure 3 makes clear how simple the underlying
coder is. For example, it doesn't allow for changing block size or to detect
transients and it doesn't employ any cross-channel or cross-block coding

Chapter 9: Building a Perceptual Audio Coder 233

tricks to squeeze out extra bits. The coder doesn't even use entropy coding
based codebooks to reduce redundancy in how it writes out the scale factors,
or mantissas - both pretty easy to implement. However, it does make use of
a perceptual model to allocate bits based on hearing threshold and masking
models, so it quite possibly still does a reasonable job of reducing bitrate
without too many audible artifacts. In subsequent chapters, we study a
number of coders out in the market. In the cases where the bitstream formats
are publicly available, studying the format definition gives a lot of
information about the techniques employed in the encoder to squeeze bits
out of the signal.

5. BUSINESS MODELS AND CODING SECRETS

Once a coder has been developed, the goal is to get it deployed in the
market. At this point, the coder developer needs to decide what is the best
means to achieve market share in the target market space. A variety of
business models have been used to gain market acceptance of perceptual
audio coders.

The most basic business model is to create and sell customer-friendly
encoding and decoding tools. Depending on the application, such tools
could be hardware-based (for example built into a chip) or software-based.
In such cases, the details of the inner workings of the codec (including the
coded file format) are likely to be considered business secrets and details are
going to be kept fairly proprietary (other than what's needed for marketing
purposes). Much effort in such a business is going to be spent in sales
efforts for coding tools and in keeping secret or protecting the intellectual
property behind the coder.

A more recent business model that has arisen is a model wherein money
is made on the encoders while the decoders are free or extremely cheap. The
idea in this business model is to make your decoder ubiquitous in the target
market. In this case, you'd like as many users as possible to be using your
decoder and so you find ways to make that happen. For example, you might
give the decoder away free over the internet or aggressively license your
decoding technology to companies making players for the type of content
you are encoding (for example satellite television receivers, cd/dvd/mp3
players, video game consoles).

Another recent business model that has developed is based on the idea
that better technology can be made by combining the efforts of several
companies in a related field. In this business model, several companies pool
their efforts to develop a joint coding standard. The hope is that the
technology that results is so much better than anything else in the market that

234 Introduction to Digital Audio Coding and Standards

it creates enough profits for each participant to have been better off than
doing it alone. Although far from universally accepted, this last business
model has become an increasingly important one in the world of coders.
One of the first very successful examples of such approach was applied to
the MPEG-2 video standard (see for example [Mitchell, Pennebaker, Fogg
and LeGall 97]). Many of the most popular coders in the market today (MP3
as a notable example), are the result of setting up a standardization
committee and defining an industry-standard codec for certain applications.

In the standards process, participating companies offer up technology to
become part of the standard coder. For example, one company might
provide the structure of the psychoacoustic modellbit allocation routine,
another might provide the transform coding kernel, and yet a third company
might provide the entropy coding codebook for the bit allocations and scale
factors. The specifications of the resulting decoder would then become
publicly available and steps taken so potential users could easily license the
standard coder technology. If a patent pool is set up, typically the resulting
royalties would be shared by the participating companies in some allocation
mutually agreed upon, but in general related to the share of the intellectual
property provided.

Usually only the bitstream format and decoding process become
standardized - the encoder remaining proprietary so that companies can still
compete on having the best sounding coder. An example encoder is
described in the informative part of the standard, but companies can put
together encoders that perform very differently while still conforming with
the mandatory standard specifications. This is not the case with decoders
where, to be compliant with the standard, a decoder must behave exactly as
specified.

Keeping a coder proprietary means that it is hard for students, academics,
and others to learn what's really going on inside the coder. The fact that the
encoder part of a standardized codec remains competitive often means that
the standards documents remain very cryptic, again limiting an outsider's
ability to understand what is going on inside. After all, if you make money
based on having the best encoders it can be in your financial interests to only
layout in the standard what steps need to be taken without explaining why
they must be taken. One of the goals of this book is to help demystify some
of the coding "secrets" that typically remain out of reach to outsiders.

Chapter 9: Building a Perceptual Audio Coder 235

6. REFERENCES

[ISO/IEC 11172-3]: ISO/IEC 11172-3, Information Technology, "Coding of moving
pictures and associated audio for digital storage media at up to about 1.5 Mbit/s, Part
3: Audio", 1993.

[Mitchell, Pennebaker, Fogg and LeG all 97]: 1. Mitchell, W. B. Pennebaker, C. E.
Fogg and D. 1. LeGal I, MPEG Video Compression Standard, Chapman and Hall,
New York, 1997.

[Schroeder, Atal and Hall 79]: M. R. Schroeder, B. S. Atal and 1. L. Hall,
"Optimizing Digital Speech Coders by Exploiting Masking Properties of the Human
Ear", 1. Acoust. Soc. Am., Vol. 66 no. 6, pp. 1647-1652, December 1979.

7. EXERCISES

Class Project:
The class project is to build and tune an MDCT-based perceptual audio
coder. We recommend that students form groups of 2-3 students per group
to work together on the coder. At the end of the course, each group will
present their coder to the rest of the class. The presentations should describe
how each coder works, discuss some of the design choices that were made,
and let the class listen to a variety of sound examples that have been
encoded/decoded at various compression ratios using the group's codec.

Chapter 10

Quality Measurement of Perceptual Audio Codecs

1. INTRODUCTION

Audio coding involves balancing data rate and system complexity
limitations against needs for high-quality audio. While audio quality is a
fundamental concept in audio coding, it remains very difficult to describe it
in objective terms. Traditional quality measurements such as the signal to
noise ratio or the total block distortion provide simple, objective measures of
audio quality but they ignore psychoacoustic effects that can lead to large
differences in perceived quality. In contrast, perceptual objective
measurement schemes, which rely upon specific models of hearing, are
subject to the criticism that the predicted results do not correlate well with
the perceived audio quality. While neither simple objective measures nor
perceptual measures are considered fully satisfactory, audio coding has
traditionally relied on formal listening tests to assess a system's audio
quality when a highly accurate assessment is needed. After all, human
listeners are the ultimate judges of quality in any application.

The inadequacy of simple objective quality measures was made
dramatically clear in the late eighties when J. Johnston and K. Brandenburg,
then researchers at Bell Labs, presented the so-called "13 dB Miracle". In
that example, two processed signals with a measured SNR of 13 dB were
presented to the audience. In one processed signal the original signal was
injected with white noise while in the other the noise injection was
perceptually shaped. In the case of injected white noise, the distortion was a
quite annoying background hiss. In contrast, the distortion in the
perceptually shaped noise case varied between being just barely noticeable
to being inaudible (i.e., the distortion was partially or completely masked by

M. Bosi et al., Introduction to Digital Audio Coding and Standards
© Kluwer Academic Publishers 2003

238 Introduction to Digital Audio Coding and Standards

the signal components). Although the SNR measure was the same for both
processed signals the perceived quality was very different, the second signal
being judged as a very good quality signal (see also [Brandenburg and
Sporer 92]). This example made clear to the audio community that quality
measurements that reflect perceptual effects were needed to assess modern
audio coders.

Throughout this chapter it is important to keep in mind that the perceived
quality of a specific coder depends on both the type of material being coded
and the data rate being used. Different material stresses different aspects of
a coder. For example, highly transient signals such as percussive
instruments will test the coder's ability to reproduce transient sounds
effectively. In contrast, the closeness of spectral lines in a harpsichord piece
will test the frequency resolution of a coder. Because of this dependence on
source material, any quality assessment needs a good set of critical material
for the assessment. Moreover, coding artifacts will become more
pronounced as the coder's data rate is reduced. Any quality assessment
comparing one coder against another needs to take into consideration the
data rates used for each coder when ranking different coding systems.

Quality measurement is not only essential in the final assessment of an
audio coder, but it is also critical throughout the design and fine-tuning of
the different stages of the coding system. Designing an audio coder requires
many decisions and judgement calls along the way, and it is very common to
test and refine coding parameters by performing listening tests. Audio
coding engineers have spent many long hours performing this important but
arduous task! For example, in the development of MPEG-2 Advanced
Audio Coding, AAC (see also Chapter 13), a number of experiments were
carried out to compare technology alternatives by conducting listening tests
in different sites. The results of these experiments were then analyzed and
used to determine which technology was to be incorporated in the standard.
Familiarity with audio coding artifacts and the ability to perform listening
tests are important tools of the trade for anyone interested in developing
audio coding systems.

In this chapter, we present an overview of the methods for carrying out
listening tests. As we shall see in the next sections, formal listening tests
require both sophistication and care to be useful. They require large
numbers of trained subjects listening in a controlled environment to carefully
choreographed selections of material. Although no substitute for formal
listening tests has been found for most critical applications, the difficulty in
doing it well has created great pent-up demand for acceptable substitutes in
more forgiving applications. Coder design decisions are often made based
on simple objective measurements or informal listening tests carried out with
just a few subjects, and objective measures of perceptual quality are a hot

Chapter 10: Quality Measurement of Perceptual Audio Coders 239

topic for many researchers. In the second part of this chapter we discuss the
principles behind objective perceptual quality measurements. The recent
successes of the PEAQ (perceptual evaluation of audio quality) measurement
system provide insurance that objective measurements can be used for
informal assessment and in conjunction with formal listening tests.

Finally we briefly describe what we are listening for during listening tests
and introduce the most commonly found artifacts in perceptual audio coding.

2. AUDIO QUALITY

The audio quality of a coding system can be linked to the perceived
difference between the output of a system under test and a known reference
signal. These differences are sometimes referred to as impairments. In
evaluating the quality of a system, we need to be prepared for test signals
that can range between perfect replicas of the reference signal (for example a
lossless compression scheme) to test signals that bear very little resemblance
to the reference. Depending where we are in this range, different strategies
will be used to assess quality.

A very useful concept in quality assessment is that of "transparency".
When even listeners expert in identifying coding impairments cannot
distinguish between the reference and test signals, we refer to the coding
system under test as being transparent. One way of measuring whether or
not the coding system is transparent is to present both the test and reference
signals to the listener in random order and to have them pick out which is the
test signal. If the coding system is truly transparent, listeners will get it
wrong roughly 50% of the time.

The questions we will want answered about coder quality will differ
greatly depending on whether or not we are in the region of transparency.
When we are in the region of transparency, the "coding margin" of the coder
is an attribute that the test can assess. Coding margin refers to a measure of
how far the coder is from the onset of audible impairments. Normally, we
estimate coding margin using listening tests to find out how much we can
reduce the coder's data rate before listeners can detect the test signal with
statistically significant accuracy. To the degree that perceptual objective
measures can assess how far below the masking curves the coding errors are
positioned, they also can provide estimates of coding margin. For example,
if the objective measure can report the worst-case noise-to-mask ratio in the
signal (where the NMR represents the difference between the signal to mask
ratio, SMR, and the SNR), we can estimate how many fewer bits would start
making the impairments audible.

240 Introduction to Digital Audio Coding and Standards

When we are below the region of transparency, we are interested in
knowing how annoying the audible impairments are for different types of
test signals. In this manner we can determine whether or not the coder is
adequate at the tested data rate for a specific target application. In most
cases, we are most interested in using the coder in or near the transparent
region. In such cases we are concerned with identifying and rating
impairments that are very small. It is exactly for such situations that the
experts in the International Telecommunication Union, Radiocommunication
Bureau, ITU-R, formerly know as International Radio Consultative
Committee, CCIR, designed the five-grade impairment scale and formal
listening test process we present in the next sections.

3. SYSTEMS WITH SMALL IMPAIRMENTS

In this section we review the major features of carrying out a listening
test to evaluate an audio codec producing signals with small impairments
with respect to the reference signal [ITU-R BS. 1116]. The goal is to gain an
appreciation of what's involved in carrying out such a test. For readers
interested in further exploration of this topic, reading the ITU-R reference
material [ITU-R BS.1116 and ITU-R BS. 562-3] is highly recommended.

3.1 Five-Grade Impairment Scale

The grading scale used in BS. 1116 listening tests is based on the five
grade impairment scale as defined by [ITU-R BS.562-3] and shown in
Figure 1. According to BS.562-3, any perceived difference between the
reference and the systems under test output should be interpreted as an
impairment and the discrete five-grade scale measures the degree of
perceptibility of the impairment. In BS.1116, the ratings are represented on
a continuous scale between grades of 5.0 for transparent coding down to 1.0
for highly annoying impairments. The five-grade impairment as defined by
BS.562-3 is related to the five-grade quality scale as shown in Table 1.

Table 1. Relationship between guality and impairment scale [ITU-R BS.S62-3)
Quality Impairment
5 Excellent 5 Imperceptible
4 Good 4 Perceptible, but not annoying
3 Fair 3 Slightly annoying
2 Poor 2 Annoying

Bad Very annoying

Chapter 10: Quality Measurement of Perceptual Audio Coders 241

5.0 Imperceptible

4.0 Perceptible but Not Annoying

3.0 Slightly Annoying

2.0 Annoying

1.0 Very Annoying

Figure 1. ITU-R five-grade impairment scale

Very often, to facilitate the data analysis, the difference grade between
the listener's rating of the reference and coded signal is considered. This
value, called the subjective difference grade, SDG, is defined as follows:

SDG = Gradecoded signal - Gradereference signal

The SDG has a negative value when the listener successfully distinguishes
the reference from the coded signal and it has a positive value when the
listener erroneously identifies the coded signal as the reference. An SDG of
zero means we are in the transparency region and any impairments are
imperceptible, while an SDG of -4 indicates a very annoying impairment.
Table 2 shows the relationship between the five-grade impairment scale and
the subjective difference grades.

Table 2. Subjective Difference Grades (SDGs) and their relationship with the ITU-R 5-grade
impairment scale (assuming that the reference signal is identified correctly).
Impairment Description ITU-R Grade SDG

Imperceptible 5.0 0.0

Perceptible, but not annoying

Slightly annoying

Annoying

Very annoying

3.2 Test Method

4.0

3.0

2.0

1.0

-1.0

-2.0

-3.0

-4.0

The test method most widely accepted for testing systems with small
impairments is the so-called "double-blind, triple-stimulus with hidden
reference" method. In this method the listener is presented with three signals
("stimuli"): the reference signal, R, and then the test signals A and B. One
of the two test signals will be identical to the reference signal and the other

242 Introduction to Digital Audio Coding and Standards

will be the coded signal. The test is carried out "double blind" in that neither
the listener nor the test administrator should know beforehand which test
signal is which. The assignments of signals A and B should be done
randomly by some entity different from the test administrator entity so that
neither the test administrator nor test subject has any basis for predicting
which test signal is the coded one.

The listener is asked to assess the impairments of A compared to R, and
of B compared to R according to the grading scale of Figure 1. Since one of
the stimuli is actually the reference signal, one of them should be receiving a
grade equal to five while the other stimulus may receive a grade that
describes the listener's assessment of the impairment. If the system under
test produces an output whose quality is in the transparency region, the
listener will perceive no differences between the stimuli. In this case, one
may decide to vary the data rate of the system to derive an estimate of the
coding margin of the system. In addition to the basic quality assessment, the
listener may be asked to grade spatial attributes such as stereophonic image,
front image, and impression of surround quality separately for stereo and
other multichannel material.

The double-blind, triple-stimulus with hidden reference method has been
implemented in differt ways. For example, the system under test can be a
real-time hardware implementation or a software simulation of the system.
The stimuli can be presented with a tape-based reproduction or with a play
back system from computer hard disk. Preferably, only one listener is
performing the test at one time. The listener is allowed to switch at will
between R, A or B and to loop through the test sequences. In this fashion,
the cognitive limitation of utilizing only echoic and short-term memory for
judging the impairments in the relatively short sequence are mitigated (see
also the description of the selection of critical material later in this chapter).
The inclusion of the hidden reference in each trial provides an easy mean to
check that the listener does not consistently make mistakes and therefore
provides a control condition on the expertise of the listener.

The double-blind, triple-stimulus with hidden reference method has been
employed worldwide for many formal listening tests of perceptual audio
codecs. The consensus is that it provides a very sensitive, accurate, and
stable way of assessing small impairments in audio systems.

3.3 Training and Grading Sessions

A listening test usually consists of two separate parts: a training phase
and a formal grading phase. The training phase or "calibration" phase is
carried out prior to the formal grading phase and it allows the listening panel
to become familiar with the test environment, the grading process, and the

Chapter 10: Quality Measurement of Perceptual Audio Coders 243

codec impairments. It is essential for the listening panel to be familiar with
the artifacts under study. A small unfamiliar distortion is much more
difficult to assess than a small familiar distortion. This phenomenon is also
known as informational masking, where the threshold of a complex maskee
masked by a complex masker can decrease on the order of 40 dB after
training [Leek and Watson 84]. Although the effects of the training phase in
the assessment of perceptual audio coding have not been quantified, it is
believed that this phase considerably reduces the informational masking that
might occur.

Since the tests present the listener with the rather difficult task of
recognizing very small impairments, it is common practice to introduce a
"low anchor". A low anchor is an audio sequence with easily recognizable
artifacts. The purpose of the low anchor is to help the listener in identifying
artifacts.

An example of a test session grading sheet is shown in Figure 2. The
sheet shown comes from one of the listening tests carried out during the
development of the MPEG AAC coder. This particular example was used in
the core experiment to assess the quality of reference model three (RM3) in
1996. The same core experiment was conducted in several test sites
worldwide, including AT&T and Dolby Laboratories in the US, Fraunhofer
Gesellschaft in Germany, and Sony in Japan. The particular core experiment
described by the grading sheet of Figure 2 was carried out through ST AX
headphones at Dolby Laboratories in San Francisco. The test material was
presented to the subject via tape and consisted of two sessions of nine trials
each. In Tape 1, Session 1, Trial 1, for example, the subject recognized A as
being the hidden reference and B being the better than "perceptible but not
annoying" system under test output.

MPEG-2 Audio NBC RM3 Test

Figure 2. Example of a grading sheet from a listening test

244 Introduction to Digital Audio Coding and Standards

3.4 Expert Listeners and Critical Material

The demanding nature of the test procedures is justified by the fact that
the aim is to reveal any impairment in the system under test. These
impairments may be recognized initially as very subtle, but may become
more obvious after extensive exposure under different conditions once the
system has been introduced to the general public. In general, a test is
successfully designed if it can isolate the worst-case scenario for the system
under study. In order to be able to accomplish this goal, only expert listeners
and critical material that stresses the system under test are employed in
formal listening tests.

The term expert listener applies to listeners who have recent and
extensive experience of assessing impairments of the type being studied in
the test. Even in cases where professional listeners are available, the training
phase is very important. The expert listener panel is typically selected by
employing pre-screening and post-screening procedures. An example of
pre-screening procedures is given by an audiometric test. Post-screening is
employed after the resulting data from the test are collected. Post-screening
is based on the ability of the listener to consistently identify the hidden
reference versus the system under test output sequence. There has been a
long debate on the benefits versus the drawbacks of applying pre and post
screening procedures (see also [Ryden 96]). A demanding screening
procedure may lead to the selection of a small number of expert listeners
limiting the relevance of the results. On the other hand, the efficiency of the
test may increase in doing so. In general, the size of the panel depends on
the required resolution of the test, the desired representativity, etc.
Typically, the number of expert listeners involved in a formal test varies
between twenty and sixty.

The selection of critical material is an important aspect of the test
procedure. While a database of difficult material for perceptual audio
codecs has been collected over the past ten years with the work of MPEG
and ITU-R (see also [Soulodre et al. 98] and [Treurniet and Soulodre 00]), it
is impossible to create a complete list of such material. Critical material
must be sought for each codec to be tested. Typically, an exhaustive search
and selection by an expert group is conducted prior to the formal
presentation of the test. If truly critical material cannot be found, the test
fails to reveal differences among the systems and therefore is inconclusive.
Generally, other than synthetic signals that deliberately break the system
under test, any potential broadcast material or dedicated recordings that
stresses the system under test is examined during the critical material
selection stage. If more than one system is studied, then it is recommended
to have an average of at least 1.5 audio excerpts for each codec under test

Chapter 10: Quality Measurement of Perceptual Audio Coders 245

with a minimum of five excerpts. Each excerpt should be relatively short,
typically lasting about 10 seconds.

3.5 Listening Conditions

In order to be able to reliably reproduce the test, the listening conditions
and the equipment need to be precisely specified. In [ITU-R BS.1116] the
listening conditions include the characteristics of the listening room (such as
its geometric properties, its reverberation time, early reflections, background
noise, etc.), the characteristics and the arrangement of the loudspeakers in
the listening room, and the reference listening area. In Table 3 a summary of
the characteristics of reference monitors and the listening room as per
BS.l116 is shown. In Figure 3 the multichannel loudspeaker configuration
and the reference and worst case listening positions are shown. Typically, for
mono and stereo program material, testing with both headphones and
loudspeakers is recommended. Experience has shown that headphones
highlight some types of artifacts better than loudspeakers and vice versa.

In addition, in [ITU-R BS.1l16] specific listening levels are defined.
Some listeners strongly prefer to have direct control on the absolute listening
level. In general, arbitrary variations in the listening levels are not
recommended since they may introduce unpredictable offsets in the masked
thresholds and therefore increase the variance.

Finally, it should be noted that one of the most difficult criteria to meet in
the ITU-R BS.l116 room specifications is the background noise. The Dolby
listening room utilized in the MPEG-2 AAC core experiments exhibits a
background noise defined by the NC 20 curve, while ITU-R BS.l116
requires the background noise to be contained between NR 10 and NR 15, in
any case not to exceed NR 15.4

4 Noise criterion, NC [Beranek 57], and noise rating, NR [Kosten and Van as 62 and ISO
1996-1, ISO 1996-2, ISO 1996-3] are standardized curves of maximum permissible noise
as a function of frequency.

246 Introduction to Digital Audio Coding and Standards

Table 3. Reference monitor and room specifications as per ITU-R 8S.1116
Parameter 8S.1116 Specifications
Reference loudspeaker monitors amplitude vs.

frequency response

Reference loudspeaker monitors directivity index

40 to 16 kHz

(113 octave, free-field)

± 10° frontal axis ±3 dB re 0°

± 30° frontal axis ±4 dB re 0°

3.5.1.1 0 dB sdirectivity index s12 dB

40- 10000 Hz

Reference loudspeaker monitors

distortion at 90 dB SPL

non-linear < -30 dB @ 40 to <250 Hz

< -40 dB @ 250 to 16 kHz

Reference monitors time delay

Height and orientation of loudspeakers

Loudspeaker configuration

Room dimensions and proportions

Room reverberation time (1;.,)

Room early reflections

Operational room response

Background noise

(equipment & HVAC on)

< 100 I1S between channels

< 20 I1S for headphones

1.10 m above floor

reference axis at listener's ears

Distance between loudspeakers

2 t03 m

Angle to loudspeakers 0°, ± 30°, ± 110°,

Distance from walls> I m

20 to 60 m2 area for mono/stereophonic

reproduction

30-70 m2 for multichannel reproduction

l.l w/h s IIh s (4.5 w/h-4)

IIh < 3 w/h < 3

where: I is length, w is width, h is height

Tm I, ~ 0.3(V 1100)113 for 200Hzsfrequencys4kHz

where: V = volume of the room

the following limits apply:

o to 578 ms @ 63 Hz

428 to 228 ms @ 125 Hz

328 to 228 ms @ 200 to 4000 Hz

178 to 378 ms @ >8000 Hz

<-lOdB forts 15 ms

s +3 dB, -7 dB @ 50 Hz

s +3 dB, -5 dB @ 125 Hz

$ +3 dB, @ 250 - 2000 Hz

s +3 dB, -4.5 dB @ 4000 Hz

s +3 dB, -6.0 dB @ 8000 Hz

s +3 dB, -7.5 dB @ 16000 Hz

<NRI5

Chapter 10: Quality Measurement of Perceptual Audio Coders

Reference lislenlng posilioll w
I I Won! case listening positions

L°";

B: loudspeaker base width
D: Listening dislance

Figure 3. Multichanneiioudspeakers configuration from [ITU-R BS.ll16]

3.6 Data Analysis

247

After the expert listeners grades are collected, the data analysis starts. It
is important to stress that the grades do not represent a physical
measurement, but rather the individual interpretation of the grading scale.
For example, it appears that the distances between steps of the five-grade
impairment scale are different for different languages [Ryden 96]. Some
experts have argued that given the nature of the quality of the scale
employed, only non-parametric methods should be applied. On the other
hand, provided that the assumptions underlying the parametric methods are
met, these methods are considered very sensitive and powerful. Assuming
that the tests have been conducted according the strict rules specified in
[ITU-R BS.1116], then it is likely that each step of the grading scale is
approximately of equal size to all the others. A variance model such as the
ANOVA (ANalysis Of VAriance) method is most commonly used. The
appropriate basis for a detailed statistical analysis is the difference grade
(SDG) as defined earlier in this chapter, not the absolute grade because of
the interdependence of any pair of observations. The results of the data

248 Introduction to Digital Audio Coding and Standards

analysis should be able to give a measure of the average performance of the
system under test and, if more than one system is examined, the differences
between the systems under tests.

The resolution achieved by the listening test is reflected in the confidence
interval. This interval contains the SDG values with a specified degree of
confidence, 1- a, where a represents the probability that inaudible
differences are labeled as audible. In practice a value of 0.05 is chosen for
a, which corresponds to a 95% confidence interval. In Figure 4 an example
of test results presentation is shown from [ISO/IEC MPEG N1420). The
specific test result shown corresponds to formal listening tests of MPEG-2
NBC (non backward compatible coder, later renamed MPEG-2 AAC) in the
multichannel configuration at a data rate of 320 kb/s per five channel carried
out at the BBC, UK in June 1996. Figure 4 shows an assessment of the
average quality of MPEG-2 NBC for ten critical items. The data were
derived from the grades relative to the ten critical sequences analyzed with
ANOV A and a confidence interval of 95%.

Finally, it should be mentioned that someone could argue that the strictly
controlled test environment as described in this section not only is far from
the reality of our living rooms, but also, in some cases a bit more forgiving.
For example, consumer type of reproduction devices could reveal more
artifacts than may be detected by professional equipment. Due to
imperfections in the reproduction devices, such as notches in some
frequency ranges, unmasking effects may occur. A listening area different
from the one specified in [ITU-R BS.1116], may also enable the listener to
distinguish distortion that was originally masked if the listener was at a
certain distance and angle from the loudspeakers. Although these and other
issues were debated by a number of experts, the general consensus was that
one of the fundamental objectives in the design of listening test procedures
was the reproducibility of the results, and this can only be obtained by a
well-controlled procedure.

In general formal listening tests have shown very good reliability in the
evaluation of audio coding systems and high correlation in their results, see
for example [lSOIIEC MPEG 94/063, ITU-R 10/51, ITU-R 1012-23,
ISOIIEC MPEG 91/010]. In general they have proven to be a very effective
tool in evaluating high-quality audio systems with small impairments.

Chapter 10: Quality Measurement of Perceptual Audio Coders

2l

BBC results: NBC at 320 kbitls
mean and 95% confidence intervals

0.5 1---1

~ ·0.5

"* ~ ·1r------LJ-----------~~------------------------~
-g
-g ·1.5 1---1
u

~ ·21---1
~
,g' ·2.5 1---1
'6

.3r---~

·3.5 1---1
·4L-----------------------________________________ --J

Cast Clannet Eliot Glock Harp Mane Pipe Station Thai Tria

Figure 4. Example of formal listening test results from [ISO/IEC MPEG N1420]

3.7 The MUSHRA Method

249

1

While ITU -R BS.1l16 is very effective in evaluating high quality audio
systems with small impairments, other methods can be used for systems with
intermediate quality. For example, for speech signals in telephone
environments recommendations [ITU-T P.800, ITU-T P.810 and ITU-T
P.830] provide guidelines for assessment. If one wishes to provide relative
ranking between two systems in the region far from transparency, then [lTU
R BS.1284] provides appropriate guidelines. In this case the seven-grade
comparison scale is also recommended (see also Table 4).

Table 4. Seven-grade comparison scale
Grade Comparison

3 Much better

2 Better

Slightly better

0 The same

-\ Slightly worse

-2 Worse

-3 Much worse

For systems where limitations are known a priori, such as, for example,
digital transmission with reduced bandwidth, internet and mobile
multimedia, etc., a new method, nicknamed MUSHRA, (MUltiple Stimulus

250 Introduction to Digital Audio Coding and Standards

with Hidden Reference and Anchors) was recently recommended by the
ITU-R [ITU-R BS. 1534].

MUSHRA is a double-blind multi-stimulus test method with hidden
reference and one or more hidden anchors as opposed to BS.1116's "double
blind triple-stimulus test method with hidden reference" test method. At least
one of the anchors is required to be a low-passed version of the reference
signal. The presence of the anchor(s) is meant as an aid in the task of
weighing the relative annoyance of the various artifacts.

While there are common requirements with BS.1116 such as the
selection of expert listeners, training phase, pre and post-screening of the
listeners, listening conditions, in BS.1534 the subject is allowed to adjust the
play-back level and the grading scale is modified since the grading of
systems of intermediate quality would tend to cover mostly the lower half of
the five-grade impairment scale.

According to the MUSHRA guidelines the subjects are required to score
the stimuli according to a continuous quality scale divided in five equal
intervals labeled, from top to bottom, excellent, good, fair, poor and bad (see
for example [ITU-R BT.71O)). The scores are then normalized in the range
between 0 and 1 00, where 0 corresponds to the bottom of the scale (bad
quality).

The data analysis is performed as the average across subjects of the
differences between the score associated to the hidden reference and the
score associated to each other stimulus. Typically a 95% confidence interval
is utilized. Additional analysis, such as ANOV A etc., may also be
calculated depending on the goal of the tests. The interested reader should
consult [ITU-R BS 1534] for further details.

While listening tests have shown very good reliability in the evaluation
of audio codecs, their cost can be high and sometimes the required level of
effort might be impractical. Perceptual objective measurements have been
studied since the late seventies and successfully applied to speech coding
systems (see for example [ITU-T P.861] and [ITU-T P.862)). In recent years
perceptual objective measurements for audio coding systems have reached a
level of reliability and correlation with subjective listening tests that makes
them an important complement in the assessment of audio coding systems.
We turn next to the description of the underlying principles in perceptual
objective measurements and the description of PEAQ, the ITU-R standard
for such measurements.

Chapter 10: Quality Measurement of Perceptual Audio Coders 251

4. OBJECTIVE PERCEPTUAL MEASUREMENTS
OF AUDIO QUALITY

The aim of objective perceptual measurements is to predict the basic
audio quality by using objective measurements incorporating
psychoacoustics principles. Objective measurements that incorporate
perceptual models have been introduced since the late seventies [Schroeder
79] for speech applications. More recently, psychoacoustics models have
been exploited in the measurements of perceived quality of audio coding
systems, see for example [Karjalainen 85], [Brandenburg and Sporer 92],
[Beerends and Stemerdink 92], [Paillard, MabilIeu, Morissette and
Soumagne 92], and [Colomes, Lever, Rault and Dehery 93]. The
effectiveness of objective quality measurements can only be assessed by
comparison with corresponding scores obtained from subjective listening
tests. One of the first global opportunities for correlating the results of these
different audio objective subjective evaluations with informal subjective
listening test results arose in 1995 in the early stages of the development of
the MPEG-2 AAC codec. The need to test different reference models in the
development of MPEG-2 AAC led to the study of objective subjective tests
as a supplement and as an alternative to listening tests. Unfortunately, none
of the objective subjective techniques under examination at that time showed
reliable correlation with the results of the listening tests [ISO/IEC MPEG
95/201]. Similar conclusions were reached at the time within the work of
ITU-R.

The recent adoption by ITU-R of PEAQ in BS.1387 [ITU-R BS.1387,
Thiede et aI.OO] came in conjunction with data that corroborated the
correlation between PEAQ objective difference grades, ODGs, with the
SDGs obtained averaging the results of previous formal subjective listening
tests [Treurniet and Soulodre 00]. While PEAQ is based on a refinement of
generally accepted psychoacoustics models, it also includes new cognitive
components to account for higher-level processes that come to playa role in
the judgment of audio quality.

4.1 Different Approaches in Perceptual Objective
Measurements

Before describing PEAQ, it is interesting to briefly review the two basic
approaches used in perceptual objective measurements: the masked
threshold method [Schroeder, Atal and Hall 79, Brandenburg and Sporer 92]
and the internal representation method [Karjalainen 85, Beerends and

252 Introduction to Digital Audio Coding and Standards

Stemerdink 92, Paillard, MabiIleu, Morissette and Soumagne 92, Colomes,
Lever, Rault and Dehery 93].

In the masked threshold method the error signal, computed as the
difference between the original and the processed signal, is compared to the
masked threshold of the original signal (see Figure 5). The error at a certain
time and frequency is labeled as inaudible if its level falls below the masked
threshold. Key to use of this method is an accurate model of masking.

Device Under Test Reference

Threshold Estimation

Comparison

Figure 5. Block diagram of the masked threshold method

In the internal representation method, excitation patterns of the cochlea
are estimated by modeling the signal transformations that take place in the
human ear. The excitation patterns of the reference and of the output of the
device under test are then compared to see if any differences in the excitation
pattern can be discerned by the auditory system (see Figure 6). The internal
representation method seems to be closer to the physiology of human
perception than the masked threshold method previously described and it has
the capacity of modeling more complex auditory phenomena. Key to the use
of this method is a good description of the ability of the auditory system to
discern changes in cochlear excitation patterns.

Chapter 10: Quality Measurement of Perceptual Audio Coders

Device Under Test

Excitation Pattern
Estimation

Comparison

Reference

Excitation Pattern
Estimation

Figure 6. Block diagram of the internal representation method

4.2 Perceptual Evaluation of Audio Quality, PEAQ

253

PEAQ takes advantage of both masked threshold and internal
representation methods [Thiede et al. 00]. In PEAQ's advanced version the
peripheral ear is modeled both through a DFT and a bank of forty pairs of
linear-phase filters with center frequencies and bandwidths corresponding to
the auditory filters bandwidths. The model output values (MOYs) are based
partly on the masked threshold method and partly on the internal
representation method. The cognitive model compares the internal
representations and calculates variables that summarize the behavior of the
psychoacoustic activity over time. The MOYs include partial loudness of
linear and non-linear distortion, noise to mask ratios, alteration of temporal
envelopes, harmonic errors, probability of error detection, and proportion of
signal frames containing audible distortions. Selected MOYs are used to
predict the subjective quality rating (e.g., SDG) that would be assigned to the
systems under test through formal listening tests. The MOYs are mapped to
an objective difference grade (ODG) via an artificial neural network. The
ODGs represent a prediction of the SDG values. The mapping of the ODGs
derived from the MOYs was optimized by minimizing the difference
between the ODG distribution and the corresponding distribution of mean
SDGs from a number of formal listening tests.

254 Introduction to Digital Audio Coding and Standards

In Figure 7 the block diagram for the advanced version of PEAQ is
shown. In contrast, the basic version utilizes the DFf-based peripheral ear
model only. In general the correlation between subjective and objective
quality evaluations are slightly higher for the advanced model than for the
basic version. The pattern for the two versions, however, is similar
[Treurniet and Soulodre 00].

PEAQ was used to generate objective quality measurements for audio
data previously utilized in formal listening tests of state-of-the-art perceptual
audio codecs. The performance of PEAQ was evaluated in different ways.
The objective and mean subjective ratings were compared for each critical
audio item used in formal tests. Then, the objective and subjective overall
system quality measurements were compared by averaging codec quality
measurements over critical items. The correlation between subjective and
objective results proved very good and analysis of SDG and ODG showed
no significant statistical differences [Treurniet and Soulodre 00]. The
accuracy of the ODG demonstrated the capacity of PEAQ to correctly
predict the outcome of the formal listening tests including the ranking of the
codecs in terms of measured quality. PEAQ was also tested as a tool in
aiding the selection of critical material for formal listening tests. On the
basis of quality measurement, the PEAQ set of critical material included
more than half the critical sequences used in the formal listening test under
exam [Treurniet and Soulodre 00].

Device Under Test Reference Device Under Test Reference

Figure 7. Block diagram of the advanced version of PEAQ [Thiede et al.OOI

Chapter 10: Quality Measurement of Perceptual Audio Coders 255

5. WHAT ARE WE LISTENING FOR?

In the previous sections, we have described how we can assess perceptual
audio codecs. Formal listening tests and perceptual objective measurements
are the most appropriate tools to assist us in this task. In this section we now
address the question: "What is that we are listening for?". To inexperienced
ears different versions of a codec may sound equally good. The more
familiar one becomes with coding artifacts, the easier it is to recognize the
codec impairments and to distinguish between different versions. In addition
to general distortion due to bit starvation, there are a number of less obvious
artifacts commonly encountered in audio coding. In this section, we briefly
describe some of the most common coding artifacts that one may expect
when listening to perceptual audio coding systems. For detailed sound
examples, the reader can refer to [AES CD-ROM On Perceptual Audio
Coders 200 1].

5.1 Pre-echo

We saw in Chapter 9 that the first stage in perceptual audio coding is
typically a time to frequency mapping stage. In this stage, one would like to
maximize the time-frequency resolution of the signal representation. Block
size values go up to 2048 time samples in state-of-the-art audio coders. In
Chapter 6, we described how temporal masking effects cover a range of the
order of few ms before the onset of the signal (backward or pre-masking)
and few 100 ms after the onset of the masker (forward or post -masking). In
the case of signals with sharp attacks, like for example castanets, some of the
quantization noise may spread before the onset of the masker through the
input block length in a time region where it is not masked (see also Figure 8
in Chapter 6). In this case, the spreading in time of quantization noise
results in the artifact known as pre-echo. Pre-echo effects dampen the
sharpness and clarity of the attacks, resulting in what some call "double
attacks". As mentioned in Chapter 5, pre-echo can be mitigated by trading
off frequency resolution for time resolution of the filter bank, that is by
applying block switching.

5.2 Aliasing

If the filter bank is implemented as a set of sub-band filters (see also
Chapter 4), like for example the PQMF utilized in the MPEG Audio coders,
one may expect that aliasing effects due to the nature of these filters may
introduce artifacts. It appears that, in normal conditions, this artifact is
hardly audible [Erne 01]. Analogously, in the MDCT approach, although

256 Introduction to Digital Audio Coding and Standards

the overall system is a perfect reconstruction system in absence of
quantization, coarse quantization may impede full time-domain aliasing
cancellation resulting in audible artifacts. In general, this is not a problem in
normal conditions.

5.3 "Birdies"

This artifact arises when, at low data rate for spectrally demanding
signals, the highest frequency bands bit allocation changes from block to
block. Consequently, some spectral coefficients may temporarily appear and
disappear. The resulting effects cause a very noticeable change in timbre at
high frequencies, sounding almost like a chirp, therefore the name "birdies".
A potential solution to this problem is to low-pass the signal prior to coding
in order to prevent bit allocation in this region. The resulting signal will
sound band-limited, but this effect is in general much less disturbing than the
birdies artifact. Even when the signal is band-limited, however, there is still
the possibility that this artifact may occur. Ideally, a higher data rate should
be selected in order to maintain high quality.

5.4 Speech Reverberation

Typically, audio coders are not tuned to any specific sound source, like
for example speech coders, but, on the contrary, try to address general wide
band audio signals. For general audio coders speech is a very demanding
signal since it requires both high frequency resolution, for example for
highly tonal segments like vowels, and high time resolution for fricatives
and plosives. If a large block size is employed for the filter bank at low data
rates, the speech may sound unnaturally reverberant with a "metallic" quality
to it. This artifact sometimes referred to as "speech reverberation" can be
mitigated by adopting a filter bank which dynamically adapts its resolution
to the characteristics of the input signal.

5.5 Multichannel Artifacts

Multichannel artifacts arise from differences in the perceived sound field
of the coded signal. Spatial attributes such as stereophonic image, front
image, and impression of surround quality may exhibit differences in the
coded version. Some of the most common artifacts include a loss or a shift
in the stereo image and changes in the signal envelope at high frequencies, a
phenomenon related to the effects of binaural masking. Joint stereo coding
strategies such as MIS coding and intensity stereo coding are currently

Chapter 10: Quality Measurement of Perceptual Audio Coders 257

employed for multichannel coding. Of the two approaches, MIS tends to be
lossless or nearly lossless, while intensity stereo coding may introduce quite
noticeable artifacts at low data rates. Intensity stereo coding reconstructs the
output multichannel signal above a certain frequency from a single channel
by appropriately scaling it. If the signal is not stationary for the duration of
the input block and has different envelopes in different channels the recovery
will introduce artifacts. A particularly revealing excerpt for these types
artifacts is the applause sample in [AES CD-ROM On Perceptual Audio
Coders 2001].

6. SUMMARY

In this chapter, we discussed the importance of subjective listening tests
in the assessment of perceptual audio coding. The more controlled are the
parameters in the test, the more reliable are the test results. The double
blind, triple stimulus with hidden reference method as per the ITU-R
BS.1116 specifications has proven to generate reliable results. Although test
sites for formal listening tests need to be fully compliant with BS.l116, the
basic guidelines are also useful for carrying out informal listening tests.
Performing listening tests plays a central role not only in the final
assessment of an audio coder, but also during its development by providing
invaluable feedback for the fine-tuning of different parameters. Subjective
listening test results provide a measure of the degree of transparency of the
perceptual codecs under tests and the reliability of differences between the
different codecs. In recent years, perceptual objective measurements have
also been developed such as PEAQ that show good correlation with
subjective tests results. These also represent an important tool in the
development of audio coders.

This chapter concludes the first part of this book devoted to a discussion
of the underlying principles and implementation issues in perceptual audio
coding. In the remaining chapters we review how these basic principles are
applied in state-of-the-art perceptual audio coders such as the MPEG and the
Dolby families of audio coders, and how different implementation strategies
have affected the final results.

7. REFERENCES

[AES CD-ROM On Perceptual Audio Coders 20011: "Perceptual Audio Coders:
What to Listen For", AES 200 I.

258 Introduction to Digital Audio Coding and Standards

[Beerends and Stemerdink 92]: J. G. Beerends and J. A. Stemerdink, "A Perceptual
Audio Quality Measure Based on a Psychoacoustic Sound Representation", J. Audio
Eng. Soc., Vol. 40, no. 12, pp. 963-978, December 1992.

[Beranek 57]: L. L. Beranek, "Revised Criteria for Noise in Buildings", Noise
Control, Vol. 3, pp. 19-27, 1957.

[Brandenburg and Sporer 92]: K. Brandenburg and T. Sporer, "NMR and Masking
Flag: Evaluation of Quality Using Perceptual Criteria," Proc. of AES 11th IntI.
Conf., Portland, May 1992.

[Colomes, Lever, RauIt and Dehery 93]: C. Colomes, M. Lever, J.B. Rault and Y.F.
Dehery, "A Perceptual Model Applied to Audio Bit Rate Reduction," presented at
the 95th AES Convention, Preprint 3742, New York, October 1993.

[Erne 01]: M. Erne, " Perceptual Audio Coders: What to Listen For," presented at
the ll1th AES Convention, New York, November 2001.

[ISO 1996-1]: ISO 1996, "Acoustics - Description and Measurement of
Environmental Noise - Part I: Basic Quantities and Procedures", Geneva 1982.

[ISO 1996-2]: ISO 1996, "Acoustics - Description and Measurement of
Environmental Noise - Part 2: Acquisition of Data Pertinent to Land Use", Geneva
1987.

[ISO 1996-3]: ISO 1996, "Acoustics - Description and Measurement of
Environmental Noise - Part 3: Applications to Noise Limits", Geneva 1987.

[ISO/IEC MPEG 91/010]: ISO/lEC JTC 1/SC 29IWG II MPEG 91/010, "The
MPEG/AUDIO Subjective Listening Test" Stockholm, April/May 1991.

[ISO/lEC MPEG 94/063]: ISO/lEC JTC 1/SC 29/WG 11 MPEG 94/063, "Report on
the MPEG/Audio Multichannel Formal Subjective Listening Tests", 1994.

[ISO/lEC MPEG 951201]: ISO/lEC JTC I/SC 29/WG 11 MPEG 951201,
"Chairman's Report on the Work of the Audio ad Hoc Group on Objective
Measurements" Tokyo, July 1995.

[ISO/lEC MPEG NI420]: ISO/lEC JTC 1/SC 29/WG 11 N1420, "Overview of the
Report on the Formal Subjective Listening Tests of MPEG-2 NBC Multichannel
Audio Coding", 1996.

[ITU-R 1012-23]: International Telecommunications Union, Radiocommunication
Sector 1O/2-23-E, "Chairman Report of the Second Meeting of the Task Group
10/2", Geneva 1992.

Chapter 10: Quality Measurement of Perceptual Audio Coders 259

[ITU-R lOIS I]: International Telecommunications Union, Radiocommunication
Sector 1O/SI-E, "Low Bit Rate Multichannel Audio Coder Test Results", Geneva
1995.

[ITU-R BS.1116]: International Telecommunications Union, Radiocommunication
Sector BS.1116 (rev. I), "Methods for the Subjective Assessment of Small
Impairments in Audio Systems Including Multichannel Sound Systems ", Geneva
1997.

[ITU-R BS.1284]: International Telecommunications Union, Radiocommunication
Sector BS.1284, "Methods for the Subjective Assessment of Sound Quality -
General Requirements", Geneva 1997.

[ITU-R BS.l387]: International Telecommunications Union, Radiocommunication
Sector BS.l387, "Method for the Objective Measurements of Perceived Audio
Quality", Geneva 1998.

[ITU-R BS.lS34]: International Telecommunications Union, Radiocommunication
Sector BS.IS34, "Method for the Subjective Assessment of Intermediate Quality
Level Coding Systems - General requirements", Geneva 2001.

[ITU-R BS.S62-3]: International Telecommunications Union, Radiocommunication
Sector BS.S62-3, "Subjective Assessment of Sound Quality", Geneva 1978-1982-
1984-1990.

[ITU-R BT.710]: International Telecommunications Union, Radiocommunication
Sector BT.71O, "Subjective Assessment Methods for Image Quality in High
Definition Television", Geneva 1998.

[ITU-T P.800]: International Telecommunications Union, Telecommunication
Sector P.800, "Methods for Subjective Determination of Transmission Quality",
Geneva 1996.

[ITU-T P.81O]: International Telecommunications Union, Telecommunication
Sector P.81O, "Modulated noise reference unit (MNRU)", Geneva 1994.

[ITU-T P.830]: International Telecommunications Union, Telecommunication
Sector P.830, "Subjective Performance Assessment of Telephone Band and Wide
Band Digital Codecs", Geneva 1996.

[ITU-T P.861]: International Telecommunications Union, Telecommunication
Sector P.861, "Objective Quality Measurement of Telephone Band (300-3400 Hz)
Speech Codecs", Geneva 1998.

[ITU-T P.862]: International Telecommunications Union, Telecommunication
Sector P.862, "Perceptual Evaluation of Speech Quality (PESQ), an Objective

260 Introduction to Digital Audio Coding and Standards

Method for End-to-End Speech Quality Assessment of Narrowband Telephone
Networks and Speech Codecs", Geneva 2001.

[Karjalainen 85]: M. Karjalainen, "A New Auditory Model for the Evaluation of
Sound Quality of Audio Systems", Proc. of ICASSP, pp. 608-611, March 1985.

[Kosten and van Os 62]: Kosten and van Os, "Community Reaction Criteria for
External Noises", National Physical Laboratory Symposium No. 12, P. 377, London
H. M.S.O. 1962.

[Leek and Watson 84]: M. R. Leek and C. S. Watson, "Learning to Detect Auditory
Pattern Components", 1. Acoust. Soc. Am., Vol. 76 no. 4, pp. 1037-1044, October
1984.

[Paillard, Mabilleu, Morissette and Soumagne 92]: B. Paillard, P. Mabilleu, S.
Morissette and J. Soumagne, "PERCEVAL: Perceptual Evaluation of the Quality of
Audio Signals," 1. Audio Eng. Soc., pp. 21-31, vol. 40, January/February 1992.

[Ryden 96]: T. Ryden, "Using Listening Tests to Assess Audio Codecs", in
Collected Papers on Digital Audio Bit-Rate Reduction, N. Gilchrist and C. Gerwin
(ed.) pp. 115-125, AES 1996.

[Schroeder, Atal and Hall 79]: M. R. Schroeder, B. S. Atal and J. L. Hall,
"Optimizing Digital Speech Coders by Exploiting Masking Properties of the Human
Ear", J. Acoust. Soc. Am., Vol. 66 no. 6, pp. 1647-1652, December 1979.

[Soulodre et al. 98]: G. A. Soulodre, T. Grusec, M. Lavoie, and L. Thibault,
"Subjective Evaluation of State-of-theArt Two-Channel Audio Codecs", J. Audio
Eng. Soc., Vol. 46, no. 3, pp. 164-177, March 1998.

[Thiede et al. 00]: T. Thiede, W. Treurniet, R. Bitto, C. Schmidmer, T. Sporer, 1.
Beerends, C. Colomes, M. Keyhl, G. Stoll, K. Brandenburg and B. Feiten" "PEAQ
The ITU Standard for Objective Measurement of Perceived Audio Quality", 1.
Audio Eng. Soc., Vol. 48, no. 1I2, pp. 3-29, January/February 2000.

[Treurniet and Soulodre 00]: W. C. Treurniet and G. A. Soulodre, "Evaluation of the
ITU-R Objective Audio Quality Measurement Method", J. Audio Eng. Soc., Vol. 48,
no. 3, pp. 164-173, March 2000.

Chapter 10: Quality Measurement of Perceptual Audio Coders 261

8. EXERCISES

Listening Test:
In this exercise you will perform a listening test to compare the coders you
built in Chapters 2 and 5 on a variety of test samples. You will rate the
coders using the ITU-R five-grade impairment scale.
1. Prepare a set of short test signals to be used for your listening test. Make

sure that the set includes 1) human speech, 2) highly tonal music (e.g.,
flute), and 3) music with sharp attacks (e.g., drum solo).

2. Encode/decode each of your test signals using I) your coder from
Chapter 2 with 4-bit midtread uniform quantization, 2) your coder from
Chapter 5 with three scale bits and five mantissa bit midtread floating
point quantization, 3) your coder from Chapter 5 with N = 2048 and 4-
bit midtread uniform quantization, 4) your coder from Chapter 5 with N
= 2048 and three scale bit and five mantissa bit floating point
quantization, and 5) your coder from Chapter 5 with N = 256 and three
scale bit and five mantissa bit floating point quantization.

3. Grade each of your encoded/decoded test signals using the ITU-R five
grade impairment scale. Summarize the performance of your coders.

4. Team with a classmate to perform a double-blind, triple-stimulus with
hidden reference listening test using several of your friends and
classmates as test subjects to evaluate your encoded/decoded test signals.
For each coder, prepare a graphical summary of the results showing the
highest/lowest/mean SDG score for each sound test signal. Summarize
the results. Do your classmates (who are hopefully trained listeners at
this point) give significantly different ratings than your other (untrained)
friends?

PART II: AUDIO CODING STANDARDS

Chapter 11

MPEG-l Audio

1. INTRODUCTION

After the introduction of digital video technologies and the CD format in
the mid eighties, a flurry of applications that involved digital audio/video
and multimedia technologies started to emerge. The need for
interoperability, high-quality picture accompanied by CD-quality audio at
lower data rates, and for a common file format led to the institution of a new
standardization group within the joint technical committee on information
technology (JTC 1) sponsored by the International Organization for
Standardization (ISO) and the International Electrotechnical Commission
(1EC). This group, the Moving Picture Experts Group (MPEG), was
established at the end of the eighties with the mandate to develop standards
for coded representation of moving pictures, associated audio, and their
combination [Chiariglione 95].

MPEG-l was the initial milestone achieved by this committee after over
three years of concurrent work. MPEG-l Audio represents the first
international standard that specifies the digital format for high quality audio,
where the aim is to reduce the data rate while maintaining CD-like quality.
Other compression algorithms standardized prior to MPEG-I addressed
either speech-only applications or provided only medium-quality audio
performance. The success of the MPEG standard enabled the adoption of
compressed high-quality audio in a large range of applications from digital
broadcasting to internet applications. Everyone is now familiar with the
MP3 format (MPEG Layer III). The introduction of MPEG Audio
technology radically changed the perspective of digital distribution of music,

M. Bosi et al., Introduction to Digital Audio Coding and Standards
© Kluwer Academic Publishers 2003

266 Introduction to Digital Audio Coding and Standards

touching diverse aspects of it, including copyright protection, business
models, and ultimately our every-day life.

In this chapter and Chapters 12, 13, and 15, we discuss different audio
coding algorithms standardized by MPEG. In this chapter, after presenting a
brief history of the MPEG standards with emphasis on the MPEG Audio
goals and objectives, we discuss in depth the layered approach and attributes
of MPEG-l Audio.

2. BRIEF HISTORY OF MPEG STANDARDS

The Moving Pictures Experts Group (MPEG) was established with the
mandate to develop standards for coded representation of moving pictures,
associated audio, and their combination. The original group of about 25
people met for the first time in 1988. Later MPEG become working group
11 of ISOIIEC JTC 1 sub-committee 29. Any official document of the
MPEG group can be recognized by the ISO/IEC JTC lISC 29/WG 11
header. There were originally three work items approved for MPEG:

• The MPEG-l standard [ISOIIEC 11172] coding of synchronized
video and audio at a total data rate of about 1.5 Mb/s was
finalized in 1992.

• The MPEG-2 standard [ISOIIEC 13818] coding synchronized
video and audio at a total data rate of about 10 Mb/s was
finalized in 1994.

• The third work item, MPEG-3, addressing coding of
synchronized video and audio at a total data rate of about 40
Mb/s was dropped in July 1993, after being deemed redundant
since its attributes were incorporated in the MPEG-2
specifications.

After the initial work started, a proposal for audiovisual coding at very
low data rates with additional functionalities, such as scalability, 3-D,
synthetic/natural hybrid coding, was first discussed in 1991 and then
proposed in 1992 [ISOIIEC MPEG N271]. This phase of MPEG
standardization was called MPEG-4 giving origin to the somewhat
disconnected numbering of subsequent phases of MPEG. MPEG-4 was
finalized in 1998 as [ISOIIEC 14496]. The MPEG-l, 2,4 standards address
video, audio compression as well as synchronization, compliance, and
reference software issues. Although MPEG Audio is often utilized as a
stand-alone standard, it is one component of a multi-part standard, where
typically "part one" describes the system elements (i.e. synchronization of
video and audio stream, etc.) of the standard, "part two" the video coding
elements, and "part three" the audio coding elements. After MPEG-4 the

Chapter J J: MPEG-J Audio 267

work of MPEG started focusing more and more towards coding-related
technology rather than coding technology per se. MPEG-7, whose
completion was reached in July 2001 [ISO/IEC 15938], addresses the
description of multimedia content for multimedia database search. Currently
in the developmental stage (only three parts of the standard have been
approved), MPEG-21 is addressing the many elements needed to build an
infrastructure for the usage of multimedia content, see for example [ISO/IEC
MPEG N4318].

The goal of MPEG-l Audio was originally to define the coded
representation of high quality audio for storage media and a method for
decoding high quality audio signals. Later the algorithms specified by
MPEG were tested within the work of ITU-R for broadcasting applications
and recommended for use in contribution, distribution, commentary, and
emission channels [ITU-R BS.1115]. Common to all phases of MPEG was
the standardization of the bitstream and decoder specifications only, but not
of the encoder. A sample encoder algorithm is described in an "informative"
part of the standard, but following the sample algorithm is not required to be
compliant with the standard. This approach, while allowing for
interoperability between implementation from different manufacturers, also
allowed encoder manufactures to retain control on the core intellectual
property and know-how that contributed to the success of the coding system.
The input of the MPEG-l audio encoder and the output of the decoder are
compatible with existing PCM standards such as the CD and the digital
audio tape, DAT, formats. MPEG-l audio aimed to support one or two main
channels, depending on the configuration (see more details on channel
configuration in the next sections) and sampling frequencies of 32 kHz, 44.1
kHz, and 48 kHz.

In MPEG-2 Audio the initial goal was to define the multichannel
extension to MPEG-l audio (MPEG-2 BC, backwards compatible) and to
define audio coding systems at lower sampling rates than MPEG-l, namely
at 16 kHz, 22.5 kHz and 24 kHz. This phase of the work of the MPEG
audio sub-group was partially motivated by the debut of multichannel de
facto standards in the cinema industry such as Dolby AC-3 (currently known
also as Dolby Digital, see also Chapter 14) and the need for lower data rates
for the emerging internet applications. After a call for proposals in late
1993, the work on a new aspect of multichannel audio, the so-called MPEG-
2 non-backwards compatible, NBC (later renamed MPEG Advanced Audio
Coding, AAC), was started in 1994. The objective was to define a higher
quality multichannel standard than achievable with MPEG-l extensions. A
number of studies highlighted the burden in terms of quality, or equivalently
in terms of increased data rates demands, suffered by the design of a
multichannel audio system when the backwards compatibility requirement

268 Introduction to Digital Audio Coding and Standards

was enforced (see for example [Bosi, Todd and Holman 93 and ISO/IEC
MPEG N1229] and see also next chapter for a detailed discussion on this
issue). As a result of this phase of work, MPEG-2 AAC was standardized in
1997 [ISO/IEC 13818-7]. In a number of subjective tests MPEG-2 AAC
shows comparable or better audio quality than MPEG-2 Layer II BC
operating at twice the data rate, see for example [ISO/IEC MPEG N1420].

The MPEG-4 Audio goals were to provide a high coding efficiency,
where the data rates introduced ranging from 200 b/s to 64 kb/s reach lower
values than the data rates defined in MPEG-1 or 2. In addition to general
audio coding technology MPEG-4 also accommodates:
- speech coding technology
- error protection
- content-based interactivity such as flexible access and manipulation, for

example pitch/speed modifications;
- universal access, for example access to a subset of data or scalability
- support for synthetic audio and speech, such as in structured audio, SA,

and text to speech, TTS, interfaces;
- additional effects such as post-processing (reverberation, 3D, etc.) and

scene composition.
From its onset, the MPEG standardization process played a very relevant

role in promoting technology across the boundaries of a single organization
or country. As a result, teams around the world joined forces and expertise
to design algorithms that incorporated the most advanced technology
available given a certain range of applications. In the first phases of the
MPEG work, the focus was centered on coding technologies. In this chapter
and in Chapters 12 , 13 and 15 a detailed description of the audio coding
algorithms developed during the MPEG-1 through 4 phases are presented.
In particular, the next sections of this chapter present the details of the
MPEG-I Audio algorithms.

3. MPEG-IAUDIO

MPEG-1 is a compression standard that addresses the compression of
synchronized video and audio at a total data rate of 1.5 Mb/s. It includes
systems, video, and audio specifications. MPEG-1 became a standard in
1992, and is also known as [ISO/IEC 11172]. [IS0/IEC 11172-3] specifies
the audio portion of the MPEG-I standard. It includes the syntax of the
audio coded bitstream and a description of the decoding process. In
addition, reference software modules and a set of test vectors for assessing
the compliance of the decoder are also provided by the standard
specifications. The MPEG-I audio encoder structure is not a mandatory part

Chapter lJ: MPEG-l Audio 269

of the standard specifications and its description is an informative annex to
the standard. While the mandatory nature of the syntax and decoding
process ensures interoperability, the encoder implementation is left to the
designers of the system, leaving a large degree of differentiation within the
boundaries of the standard specifications. The MPEG-l standard describes a
perceptual audio coding algorithm that is designed for general audio signals.
There is no specific source model applied as, for example, in speech codecs.
It is simply assumed that the statistics of the input signal are quasi
stationary. The audio signal is then represented by its spectral components
on a frame-by-frame basis and encoded exploiting perceptual models. The
aim of the algorithm is to provide a perceptually lossless coding scheme.
The MPEG-l Audio standard specifications were derived from two main
proposals: MUSICAM [Dehery, Stoll and Kerkhof 91] presented by
CCETT, IRT and Philips, which is the basis for the low-complexity first two
layers (see also next sections), and ASPEC (see [Brandenburg and Johnston
90] and [Brandenburg et al. 91]) presented by AT&T, FhG, and Telefunken
which is the basis for layer III. The quality of the audio standard was tested
by extensive subjective listening tests during its development. The resulting
data, see for example [ISO/IEC MPEG 91/010], showed that, under strictly
controlled listening conditions, experts listeners were not able to distinguish
between coded and original sequences with statistical significance at typical
codec data rates. Typical data rates for the coded sequences were 192 kb/s
per channel for MPEG Layer I, 128 kb/s per channel for Layer II and Layer
III (see detailed description of the different MPEG-l Audio Layers later in
this chapter and also the MPEG public documents at [MPEG]).

3.1 Main Features of MPEG-l Audio

The sampling rates supported by MPEG-1 are 32, 44.1, and 48 kHz. The
channel configurations encompass one or two channels. In addition to a
monophonic mode for a single audio channel configuration, a dual
monophonic mode for two independent channels is included. A stereo mode
for stereophonic channels, which shares the available bit pool amongst the
two channels but does not exploit any other spatial perceptual model, is also
covered. Moreover, joint stereo modes that take advantage of correlation
and irrelevancies between the stereo channels are described in the standard.
The data rates vary between 32 and 224 kb/s per channel allowing for
compression ratios ranging from 2.7 to 24: 1 depending on the sampling rate.
In addition to the pre-defined data rates, a free format mode can support
supplementary, fixed data rates.

MPEG-l Audio specifies three layers. The different layers offer
increasingly higher audio quality at slightly increased complexity. While

270 Introduction to Digital Audio Coding and Standards

Layers I and II share the basic structure of the encoding process having their
roots in an earlier algorithm also known as MUSICAM [Dehery, Stoll and
Kerkhof 91], Layer III is substantially different. The Layer III algorithm
was derived from the merge of ASPEC [Brandenburg et al. 91] with the
Layer I and II filter bank, the idea being that a Layer III decoder should be
able to decode Layer I and II bitstreams. Layer I is the simplest layer and it
operates at data rates between 32 and 224 kb/s per channel. The preferred
range of operation is above 128 kb/s. Layer I finds an application, for
example, in the digital compact cassette, DCC, at 192 kb/s per channel.
Layer II is of medium complexity and it employs data rates between 32 and
192 kb/s per channel. At 128 kb/s per channel it provides very good audio
quality. A number of applications take advantage of Layer II including
digital audio broadcasting, DAB, [ETS 300 401 v2] and digital video
broadcasting, DVB [ETS 300421, ETS 300429, ETS 300744]. Layer III
exhibits the highest quality of the three layers at an increased complexity.
The data rates for Layer III are lower than the rates for Layers I and II and
they vary between 32 and 160 kb/s per channel. Layer III displays very
good quality at rates below 128 kb/s per channel. Applications of Layer III
include transmission over ISDN lines and internet applications. A
modification of the MPEG Layer III format at lower sampling frequencies
gave origin to the ubiquitous MP3 file format.

In spite of the differences in complexity, single-chip, real-time decoder
implementations exist for all three layers. It should be noted that, in addition
to the main audio data, all three layers provide a means of including
auxiliary data within the bitstream syntax. Finally it should be mentioned
that, MPEG-l Layers II and III were also selected by lTU-R task group, TG,
10/2 for broadcasting applications in recommendation BS.l11S. In ITU-R
BS.l1 15, Layer II is recommended for emission at the data rate of 128 kb/s
per channel, and for distribution and contribution at data rates above 180
kb/s per channel. Layer III is also recommended in BS.l I 15 for
commentary broadcasting at data rates of about 60 kb/s per channel.

The main building blocks of the MPEG-I audio coding scheme are
shown in Figure 1 and Figure 2. The basic building blocks include a time to
frequency mapping stage followed by a bit or noise allocation stage. The
input signal also feeds a psychoacoustic model block whose output
determines the precision of the allocation stage. The bitstream formatting
stage interleaves the representation of the quantized data with side
information and optional ancillary data. The decoder interprets the
bitstream, restores the quantized spectral components of the signal and
finally reconstructs the time domain representation of the audio signal from
its frequency representation.

Chapter 11: MPEG-J Audio

Audio
PCM Time to

Frequency
Allocation Bitstream

Mapping and Coding ,--. Formatting
, , , , , , , , ,

Psychoacoustic
, ,

'-----..
,

Model t-- Ancillary Data

Figure 1. MPEG-l Audio encoder basic building blocks

Encoded
Bitstream

Quantized
Subband
Data and

Scale Factors

Reconstructed
SUb-band

Data

Bitstream
Unpacking -,

Frequency
Sample
Reconstruction

L...-___ --' : L...-____ -'

, ..
Ancillary
Data

Frequency
to Time
Mapping

Figure 2. MPEG-l Audio decoder basic building blocks

3.2 Different Layers Coding Options

271

Encoded
tstream Bi

~

Decoded
PCM
Audio

The general approach to the coded representation of audio signals is the
same for all layers. Based on the time to frequency mapping of the signals
with a source model design based on statistics of generic audio signals, they
share the basic building blocks and group the input peM samples into
frames of samples for analysis/synthesis. There are, however, a number of
differences in the different layers' algorithms going from the simple
approach of Layer I to the more sophisticated approach of Layer III at
increased complexity. In Figure 3 and Figure 4 the block diagrams of Layers
I, II, and III in single channel mode are shown.

272 Introduction to Digital Audio Coding and Standards

3.2.1 Layers I and II

For Layers I and II, the time to frequency mapping is performed by
applying a 32-band PQMF (see also Chapter 4) to the main audio path data.
The frequency representation of the signal is scaled and then quantized with
a uniform midtread quantizer (see also Chapter 2) whose precision is
determined by the output of the psychaocustic model. Typically,
Psychoacoustic Model 1 (see also next sections) is applied, where the
psychoacoustic analysis stage is performed with a 512-point FFT (Layer I)
or 1024-point FFT (Layer II). In order to further reduce the data rate, Layer
II applies group coding of consecutive quantized samples certain levels (see
also next sections).

Coded
Audio

Bitstream 0 ta
Formatting

Figure 3. Block diagram of Layers I and II (single channel mode)

3.2.2 Layer III

For Layer III the output of the PQMF is fed to an MDCT stage (see also
Chapter 5). In addition, the Layer III filter bank is not static as in Layers I
and II, but it is signal adaptive (see next sections). The output of this hybrid
filter bank is scaled and then non-uniformly quantized with a midtread
quantizer. Noiseless coding is also applied in Layer III. In an iterative loop
that performs the synthesis of the Huffman-encoded, quantized signal and
compares its relative error levels with the masked thresholds levels, the
quantizer step size is calculated for each spectral region. The quantizer step
is once again determined by the output of the psychoacoustic model,
however, the nature of the psychoacoustic model (Model 2, see next
sections) applied to Layer III is substantially different from the model
applied for Layers I and II. Figure 4 highlights one of the differences, the
analysis stage, which is performed by applying two, 1024-point FFTs. In all
layers the audio data together with the side information such as bit allocation

Chapter J J: MPEG-J Audio 273

and control parameters are multiplexed with the optional ancillary data and
then stored or transmitted.

Figure 4. Block diagram of Layer III (single channel mode)

Coded
Audio

Birstream . fa
Fonnaning

In the next sections, we describe the common characteristics of the audio
coding algorithms in the three layers.

4. TIME TO FREQUENCY MAPPING

A PQMF filter bank (see also Chapter 4) is part of the time to frequency
mapping stage for all three MPEG layers. This filter divides the frequency
spectrum into 32 equalIy spaced frequency sub-bands. For Layers I and II
the output of the PQMF represents the signal spectral data to be quantized.
The frequency resolution of the Layer I and II fiIterbank is 750 Hz at a 48
kHz sampling rate. For Layer III, the PQMF is cascaded with an 18
frequency-line MDCT for a total of 576 frequency channels in order to
increase the filter bank resolution.

4.1 Layer III Hybrid Filter Bank

The block diagram of Layer III filter bank analysis stage is shown in
Figure 5. After the 32-band PQMF filter, blocks of 36 sub-band samples
(for steady state conditions) are overlapped by 50 percent, multiplied by a
sine window and then processed by the MDCT transform (see also Chapter
5). It should be noted that, in addition to the potential frequency aliasing
introduced by the PQMF, the OTDAC transform introduces also time
aliasing that cancels out between adjacent time-blocks in absence of
quantization in the overlap-add stage of the decoder process. In order to
lessen some of the artifacts potentially introduced by the overlapping bands
of the PQMF, for long blocks (steady state conditions) the Layer III filter
bank multiplies the MDCT output by coefficients that reduce the signal
aliasing [Edler 92].

274

Input peM

Introduction to Digital Audio Coding and Standards

Sub-band 3

,
Long,
Short,
Start,
Stop

• __ Long/Short BlockControl Parameters
(From psychoacoustic Moldel)

Figure 5. MPEG Audio Layer III analysis filter bank structure

In the decoder, the inverse aliasing reduction process is applied prior to
the IMDCT in order to provide the correct sub-band samples for the PQMF
synthesis stage for aliasing cancellation (see Figure 6). A pure sine wave
signal processed by the hybrid PQMFIMDCT filter bank without aliasing
reduction can present a spurious component as high as -12 dB with respect
to the original signal. After the aliasing reduction process, the spurious
component magnitude is reduced significantly. It should be noted, however,
that, although the aliasing reduction process greatly improves the frequency
representation of the signal, residual aliasing components might still be
present. In the synthesis stage, the IMDCT is applied prior to the
reconstruction PQMF. After the de-quantization of the spectral components
and, when applicable, the joint stereo processing of the signal, the inverse
aliasing reduction is applied. Next, the IMDCT is employed followed by the
windowing process, where the windows applied are defined in the same
manner as the analysis windows. The first half of the current windowed
block is overlapped and added to the second half of the windowed samples
of the previous block. For the long block the output of the overlap and add
stage consists of 18 samples for each of the 32 synthesis PQMF sub-bands.

Chapter 11: MPEG-I Audio

::: inIMDCTI
W' d ,I, Sub-band 0-

"L In ow
;.
~IMDCTI Window Sub-band 1

V>

5'
OQ

:;0 · · · · · l1>
0..

'" $4 · · · · o·
::I

? · · · · · 0
::I

OQ

ttl · · · · · 0"
r>
:>;"

~

""T1IMDCTI
J. .ISub-band 31

Window .. ,
Long,

Long/Short Block Control Parameters --. Short,
Start,
Stop

'"1:)
!:)
~
'"r1
en
'< :::: ::r
(1)

~.
'"

'--

Output

Figure 6. MPEG Audio Layer III synthesis filter bank structure

4.1.1 Block Switching

275

PCM

The total block size processed by the Layer III filter bank is given by 32
* 36 = 1152 time-samples. This block length ensures a frequency resolution
of about 41.66 Hz at 48 kHz sampling rate. The increased frequency
resolution for Layer III is much better suited to accommodate allocation of
the bit pool based on psychoacoustic models. One drawback of this
approach is that quantization errors can now be spread over a block of 1152
time-samples. For signals containing transients, such as castanet excerpts,
this translates into unmasked temporal noise, specifically pre-echo. In the
case of transient signals, the Layer III filter bank can switch to a higher time
resolution in order to avoid pre-echo effects. Namely, during transients,
Layer III utilizes a shorter block size of 32 * 12 = 384 time samples,
reducing the temporal spreading of quantization noise for sharp attacks. The
short block size represents a third of the long block length. During
transients, a sequence of three short windows replaces the long window,
maintaining the same total number of samples per frame. In order to ensure
a smooth permutation between long and short blocks and vice versa, two
transition blocks, long-to-short and short-to-long, which have the same size
as the long block are employed. This approach was first presented by Edler
[Edler 89] and, based on the shape of the windows and overlap regions, it

276 Introduction to Digital Audio Coding and Standards

maintains the time domain aliasing cancellation property of the MDCT (see
also Chapter 5). In addition, the frame size is kept constant during the
allowed window size sequences. This characteristic ensures the subsistence
of a simple overall structure of the algorithm and bitstream formatting
routines.

4.1.1.1 Window Sequence
In Figure 7 a typical window sequence from long to short windows and

from short to long windows is shown together with the corresponding
amount of overlapping between adjacent windows in order to maintain the
time-domain aliasing cancellation for the transform. The basic window,
w[n], utilized by Layer III is a sine widow. The different windows are
defined as follows:

w[n] =Sin(3~ (n+±))

w[n] = SinC~ (n +±))

Sin(3~(n+±))

1

n = 0, ... ,35 (long window)

n = 0, ... ,11 (short window)

n =0, ... ,17

n = 18, ... ,23 w[n] = (start window)

SinC~ (n -18+±)) n = 24, ... ,29

° n = 30, ... ,35

° n =0, ... ,5

w[n]=
SinC~ (n -6+±))

1

n = 6, ... ,11

n = 12, ... ,17
(stop window)

Sin(3~ (n + ±)) n = 18, ... ,35

It should be noted that the Layer III filter bank allows for a mixed block
mode. In this mode, the two lower frequency PQMF sub-bands are always
processed with long blocks, while the remaining sub-bands are processed
with short blocks during transients. This mode ensures high frequency

Chapter JJ: MPEG-l Audio 277

resolution at low frequencies where it IS most needed and high time
resolution at high frequencies.

1.2

0.8

0.6

0.4

0.2

0
0 16 32 48 64 80 96

n

1.2

0.8

0.6

0.4

0.2

0
0 16 32 48 64 80 96

n

Figure 7. Typical Layer III window sequence: top for steady state signal, bottom for
transients occurring in the time region between n = 45 and n = 60

4.1.2 Hybrid Filter Bank Versus PQMF Characteristics

The Layer III hybrid filter bank provides much higher frequency
resolution than the Layers I and II PQMF. The time resolution, however, is
decreased. At 48 kHz sampling rate, the time resolution for Layers I and II
is 0.66 ms, for Layer III is 4 ms. The decreased time resolution renders
Layer III more prone to pre-echo. A number of measures to reduce pre-echo
are incorporated in Layer III including a detection mechanism in the

278 Introduction to Digital Audio Coding and Standards

psychoacoustic model and the ability to "borrow" bits from the bit reservoir
(see also next sections) in addition to block switching. The inherent filter
bank structure with long impulse response of 384 + 512 = 896 samples even
in the short block mode, however, makes the encoding of transients a
challenge for Layer III.

In summary, the Layer III hybrid filter bank approach offers advantages
such as high frequency resolution, a dynamic, adaptive trade-off between
time and frequency resolution, and full compatibility with Layers I and II.
The shortcomings include potential aliasing effects exposed by the MDCT
stage and long impulse response filters. Both shortcomings are reduced in
the standard specifications by adopting procedures to mitigate them. The
complexity of the Layer III filter bank is increased with respect to the
complexity of Layers I and II. In addition to the PQMF, the MDCT stage
contributes to its complexity. In general, fast implementations of the MDCT
exploit the use of FFTs. It should be noted that the size of the MDCT is
non-power of two, therefore the implementation via FFT requires a
decomposition to a power-of-two length sequence if a radix-2 FFT is
utilized. Considering the different stages of the filter bank implementation
and assuming that the MDCT is implemented via an FFT, the complexity for
a long window is given by (18 + 9 + 18) additional complex multiplications
and additions per sub-band block with respect to the PQMF alone, or
equivalently a little over 1 additional multiplication and addition per sub
band sample.

5. MPEG AUDIO PSYCHOACOUSTIC MODELS

The goal of MPEG Audio is to provide perceptually lossless quality. In
other words, the output of the MPEG coder should be a signal statistically
indistinguishable from its input. In order to achieve this objective at
relatively low data rates, MPEG Audio exploits the psychoacoustic
principles and models we discussed in Chapter 7. During the encoding
process, the input signal is analyzed on a frame-by-frame basis and the
masking ability of the signal components is determined. For each frame,
based on the computed masked thresholds, the bits available are distributed
through the signal spectrum in order to best represent the signal. Although
the encoder process is not a mandatory part of the MPEG standard, two
psychoacoustic models are described in the informative part of its
specifications. Either model works for all layers, but typically Model 1 is
applied to Layers I and II and Model 2 to Layer III. There is a large degree
of freedom in the psychoacoustic model implementation. At high data rates,
the psychoacoustic model can be completely bypassed, leaving the task of

Chapter 11: MPEG-I Audio 279

assigning the available resource to the iterative process in the allocation
routines simply based on the strength of the signal spectral components.

5.1 Psychoacoustic Models Analysis Stage

The input to the psychoacoustic model is the time representation of the
audio signal over a certain time interval and the corresponding outputs are
the signal to mask ratios (SMRs) for the coder's frequency partitions. Based
on this information, the bit (Layers I and II) and noise (Layer III) allocation
is determined for each block of input data (see Chapter 8 for a discussion on
perceptual bit allocation). In order to provide accurate frequency
representation of the input signal, a discrete Fourier transform is computed
in parallel to the main audio path time to frequency mapping stage. One
might argue that the output of the PQMF or the hybrid filter bank could be
utilized for this purpose in order to simplify the structure of the algorithm.
In the case of the evaluation of the masking thresholds, the aim is to have
maximum accuracy in the signal representation. While issues like critical
sampling etc. playa fundamental role in the design of the time to frequency
mapping in the main audio path, they are irrelevant in the frequency
representation of the audio signal for analysis only purposes. On the other
hand, inadequate frequency resolution and potential aliasing can
irremediably confound the evaluations of the psychoacoustic model. It
should be noted that different approaches are found in the literature. For
example, in Dolby AC-3 [Fielder et al. 96] and PAC [Sinha, Johnston,
Dorward and Quackenbush 98] the output of the MDCT is employed for the
psychoacoustic analysis; in the advanced PEAQ version the DFT analysis is
employed along with a filter bank that mirrors the auditory peripheral filter
bank [Thiede et al. 00].

The first step in both MPEG psychoacoustic models is to time-align the
audio data used by the psychoacoustic model stage with the main path audio
data. This process must take into account the delay through the filter bank
and the time offset needed so that the psychoacoustic analysis window is
centered on the current block of data to be coded. For example, in Layer I
the delay through the filter bank is 256 samples and the block of data to be
coded is 384 samples long (see also next section). The analysis window
applied to Layer I data in Psychoacoustic Modell is 512 samples long. The
offset to be applied for time alignment is therefore 256 + (512 - 384)/2 =
320 samples.

280 Introduction to Digital Audio Coding and Standards

5.2 Psychoacoustic Modell

The block diagram for Psychoacoustic Model I is shown in Figure 8.
The first stage, the analysis stage, windows the input data and performs an
FFf. The analysis window is a Hanning window of length N equal to 512
samples for Layer I and 1024 for Layers II and III. The overlapping between
adjacent windows is N/16. Since Layers II and III utilize a 1152 sample
frame, the 1024 sample analysis window does not cover the entirety of the
audio data in a frame. If, for example, a transient occurs at the tail end of the
main path audio frame, the relative sudden energy change would be
undetected in the Psychoacoustic Model 1 analysis window. In general,
however, the 1024 sample analysis window proved to be a reasonable
compromise.

5.2.1 SPL Computation

After applying the FFf, the signal level is computed for each spectral
line k, Lk as follows

where X[k] represents the FFf output of the time-aligned, windowed input
signal and N equals 512 for Layer I and 1024 for Layers II and III. The
signal level is normalized so that the level of an input sine wave that just
overloads the quantizers, here defined as being at x[n] = ±1.0, has a level of
96 dB when integrated over the peak. In this equation, the factor of IIN2
comes from Parseval's theorem, one factor of 2 comes from only working
with positive frequency components, another factor of 2 comes from the
power of a unit amplitude sinusoid being equal to Y2, and the factor of 8/3
comes from the reduction in gain from the Hanning window (see also
Chapter 9). Since the description of Model 1 in the standard absorbs the
factor of 8/3 into the Hanning window definition, a natural way to take the
other factors into account is to include a factor of 2IN in the forward
transform of the FFf.

The sound pressure level in each sub-band m, Lsb[m] is then computed as
the greater of the SPL of the maximum amplitude FFf spectral line in sub
band m and the lowest level that can be described with the maximum scale
factor for that frame in sub-band m as follows:

Chapter 11: MPEG-i Audio 281

where Lk represents the level of the kth line of the FFr in sub-band m with
the maximum amplitude and scfmax is the maximum of the scale factors for
sub-band m (see the next section for a discussion on MPEG Layers I and II
"scale factors" which differ somewhat from the scale factors discussed in
Chapter 2 in that these "scale factors" represent the actual factor that the
signal is scaled by as opposed to the number of factors of 2 in the scaling).
In Layers I and II coders, the scale factors range from a very small number
up to 2.0 so the multiplication by 32,768 just normalizes the power of the
scale factor so that the largest possible scale factor corresponds to a level of
96 dB. The -10 dB term is an adjustment to take into consideration the
difference between peak and average levels. The reason for taking the scale
factor into account in the above expression can be explained by closely
examining the block floating quantization process, since block floating point
quantization cannot scale the signal to lower amplitudes than can be
represented by the scale factors themselves. This implies that for low
amplitude frequency lines the quantization noise is of a size determined by
the maximum scale factor.

5.2.2 Separation of Tonal and Non-Tonal Components

Having found the sound pressure level in the sub-band, we next compute
the masking threshold in order to calculate the signal to mask ratio (SMR)
for the sub-band. Since noise is a better masker than tones, a search for tonal
maskers in the signal is performed in Modell. This evaluation is based
upon the assumption that local maxima within a critical band represent the
tonal components of the signal. A local maximum Lb is included in the list
of tonal components if Lk - Lk+j ;? 7 dB where the index j varies with the
center frequency of the critical band examined. If Lk represents a tonal
component, then the index k, the sound pressure level derived from the sum
of three adjacent spectral components centered at k, LT, and a tonal flag
define the tonal masker.

282 Introduction to Digital Audio Coding and Standards

Input Signal

To Bit Allocation

Figure 8. Block diagram of MPEG Psychoacoustic Modell

The noise maskers in the signal are derived from the remaining spectral
lines. Within a critical band, the power of the spectral components
remaining after the tonal components are removed is summed to form the
sound pressure level of the noise masker, LN, for that critical band. The
noise masker components for each critical band are centered at the geometric
mean of the FFf spectral line indices for each critical band.

Chapter 1I: MPEG-/ Audio 283

5.2.3 Maskers Decimation

Having defined the tonal and noise maskers in the signal, the number of
maskers is then reduced prior to computing the global masked threshold.
First, tonal and non-tonal maskers are eliminated if their levels do not exceed
the threshold in quiet. Second, maskers extremely close to stronger maskers
are eliminated. If two or more components are separated in frequency by
less than 0.5 bark, only the component with the highest power is retained.
The masking thresholds are then computed for the remaining maskers by
applying a spreading function and shifting the curves down by a certain
amount of dB which depends on whether the masker is tonal or noise-like
and the frequency position of the masker. To keep the calculation time
manageable, the masking thresholds are evaluated at only a sub-sampling of
the frequency lines. The number of sub-sample lines depends on which
layer is being implemented and on the sampling rate, ranging from 102 to
108 sub-sample lines in Layer I and ranging from 126 to 132 sub-sample
lines in Layer II.

5.2.4 Model 1 Spreading Function and Excitation Patterns

The spreading function used in Model I is defined as follows:

B(dz, L) = -17 dz + O.ISL (dz -I) 8(dz - 1) for dz ~ 0

B(dz, L) = -(6 + OAL) Idzl- (11 - OAL) (Idzl-I) 8(ldzl- 1) for dz < 0

where 8(x) = 1 for x ~ 0 and 0 otherwise; L represents the sound pressure
level of the masker; dz represents the distance in bark between the maskee
and the masker. Notice that dz assumes positive values when the masker is
located at a lower frequency than the maskee and negative values when the
masker is located at a higher frequency than the maskee. The two-piece
linear spreading function for upper and lower frequencies in Model 1 seems
to be consistent with the masking data for tones masking tones (see also
Chapter 6). The excitation patterns for a signal positioned at 8 bark with
different sound pressure levels, L = 20, 40, 60, 80, 100 dB, is shown in
Figure 9. As shown in Figure 9 the excitation patterns are level dependent,
being nearly symmetrical for levels below 40 dB and increasingly spreading
towards high frequencies at higher levels.

284 Introduction to Digital Audio Coding and Standards

MPEG Psychoacoustic Modell

100

80
-Lm=20

-Lm=40

-Lm=60

-Lm=60

60 m
"0 40

20 -Lm=l00

0
0 3 6 9 12 15 18 21 24

Bark

Figure 9. MPEG Psychoacoustic Model I excitation patterns for different SPLs

5.2.5 Masking Thresholds

In order to derive the masking threshold relative to the masker of level L,
one needs to shift the excitation pattern relative to the masker by an
appropriate amount. This shift depends on the tonal versus noise-like
characteristics of the masker, since we know from experimental data that
noise is a better masker than tones. In Model 1 the shift 11 is defined as
follows:

dr(Z) = -6.025 - 0.275 Z dB

dN(Z) = -2.025 - 0.175 Z dB

where l1T represents the shift for tonal maskers and l1N represents the shift for
noise-like maskers, and z is the frequency index of the masker in the bark
scale. The masking threshold M relative to a masker of level L at a
frequency equal to bark z can be expressed as:

Where Zj is the bark index of the masker and Zi is the bark index of the
maskee, 11 = l1T for tonal maskers and 11 = l1N for noise-like maskers. In
Figure 10 the masking curve relative to a 70 dB noise-like masker centered
at bark 8 is shown.

Chapter 11: MPEG-l Audio

Model 1 Noise Masking Curve

70
60
50

~ 40
30
20
10
o

o 3

i
I \

! I
1 /
! /
i/
!/

6 9

'" " " t'-..
'" 12 15 18 21 24

Bark

285

Figure 10. MPEG Psychoacoustic Model I masking curve for a noise-like masker centered at
8 Bark with a sound pressure level of 70 dB

5.2.6 Masked Threshold

The global masked threshold MG(Zj) at the bark location Zj of each sub
sampled frequency line is then computed in Model I by summing the power
of the individual masking thresholds and the threshold in quiet as follows:

~~ m MTj(Lj,Zi,Zj) n MNk(Lk'Zi'Zk)

MG(zi)=lOlog\O[lO \0 +~)O 10 +~)O 10

j=1 k=1

where Mq represents the threshold in quiet at the bark location Zj, MTj the
masking threshold from the lh tonal masker, MNk the masking threshold from
the kth noise-like masker, m is the total number of tonal maskers, and n is the
total number of noise-like maskers.

5.2.7 SMR Computation

Since at low frequency some of the main path PQMF sub-bands span
more than one critical band, the masking level MGmin(sb) in each sub-band,
sb, is determined based on the minimum masking level at the sub-sampled
lines in that sub-band and used to determine the signal to mask ratio
SMR(sb) to be transmitted to the bit allocation routine:

SMR(sb) = L(sb) - MGmin(sb)

286 Introduction to Digital Audio Coding and Standards

where L(sb) is the signal level for sub-band sb.

5.2.8 An Example

To help clarify the Model I calculations, Figure 11 through Figure 13
give an example taken from [Pan 95]. Figure 11 shows the frequency
spectrum of an input signal consisting of a single tonal component
overlaying a shaped noise spectrum. The top part of Figure 12 shows the
signal level of each masker identified in the signal and its associated
frequency location (measured in terms of the k index in the N = 1024 FFf).
The tonal masker is clearly visible as are the noise maskers from each
critical band. The middle part of Figure 12 shows the maskers remaining
after eliminating maskers below the threshold in quiet or too close to
stronger maskers. The bottom part of Figure 12 shows the resulting global
masked threshold at each of the sub-sampled frequency locations. The top
of Figure 13 shows the resulting SMRs calculated for each of the 32 critical
bands from the input signal spectrum and the masked curve. The bottom of
Figure 13 shows the resulting decoded data after being quantized using bit
allocations determined by the SMRs in the top of the figure at a data rate of
64 kb/s.

140

120

Figure 11. Low-pass filtered noise plus 11.250 kHz sine wave at a sampling rate of 48kHz;
the abscissa represents the FFf frequency line indices, the ordinate the strength of the signal

in dB. (From [Pan 95] © 1995 IEEE.)

Chapter 11: MPEG-l Audio

70

60
50

40

30

20
10

o

70

60
50

40

30
20
10

o

70

80

50

40

30

20

10

• non-lanal I

I a d,cUonal

29 57 85 113141 169 197 225 253 281 309 337 365 393 421 4<l94n 50S

o~~~~~~~~~~~~~~~~~~_
15 22 29 36 43 50 57 64 71 78 85 92 99 106 113 120 127

Figure 12. MPEG Psychoacoustic Model I processing from [Pan 95] © 1995 IEEE.

287

288 Introduction to Digital Audio Coding and Standards

30
20
10

29 31
·10
·20
·30
-40
·50
·60

140

120

100

80

60

40

20

·20

Figure 13. MPEG Psychoacoustic Model I SMRs (top) and coded audio data (bottom) at 64
kb/s. (From [Pan 95] © 1995 IEEE.)

5.3 Psychoacoustic Model 2

Model 2's process and calculations differ substantially from those of
Model 1. A block diagram of Model 2 is shown in Figure 14. Notice that
there are now two parallel calculation paths: that of the masking energy and
that of the tonality index. In addition, Model 2 does not have a masker
decimation stage.

5.3.1 Model 2 Analysis Stage

As discussed in Model 1, Model 2 also applies a Hanning-windowed FFT
to the time-aligned signal samples. The size of the FFT window is now 1024
for all Layers, however for Layers II and III this model computes two FFTs
for each frame. The centers of the FFT input blocks are aligned with the
center of the first and second half of the main data path input block. Model
2 uses the output of the FFT analysis to calculate the masking curves and
their associated signal to mask ratios for the coder sub-bands. The higher of
the two resulting signal to mask ratios, or the lower of the two masked
thresholds, are then selected per each sub-band.

Chapter J J: MPEG-J Audio 289

5.3.2 SPL Computation

In Model 2 the frequency-lines are grouped into "threshold calculation
partitions" whose widths are roughly 113 of a critical band or one FFf line,
whichever is wider at that frequency location. For each partition, one single
masker SPL is derived from the sum of energy densities in the partition.

The total masking energy for the signal frame is computed by first
convolving a spreading function with each of the maskers in the signal. This
process is equivalent to spreading in frequency the energy of each masker
and adding up the relative energies. The spreading function used in Model 2
differs from that used in Modell and is a variant of the Schroeder spreading
function we discussed in Chapter 7.

Unpredictability
Levels

Spread
Unpredictability

Levels

Input Signal

To Bit Allocation

Figure 14. Block diagram of MPEG Psychoacoustic Model 2

290 Introduction to Digital Audio Coding and Standards

5.3.3 Model 2 Spreading Function and Excitation Patterns

The basic spreading function B(dz) measured in dB used by Model 2 is
(see also Figure 15):

B(dz) = 15.81 I 1389 + 7.5 * (1.05 * dz + 0.474) - 17.5 * ~1.0 + (1.05 * dz + 0.474)2

+ 8 * MIN(O, (1.05 * dz - 0.5)2 - 2 * (1.05 * dz - 0.5))

where dz is the bark distance between the maskee and the masker. Notice
that dz < 0 has the masker at a higher frequency than the maskee. Notice
also that, other than a minor factor of 1.05, the first line is exactly equalt to
Schroeder's spreading function. The second line lowers the curve for values
of dz between 0.5 and 2.5, causing somewhat of a two-sloped shape for
positive dz (see Figure 15). Furthermore, notice that this spreading function
is not level dependent in contrast with the clear level dependence seen in
experimental data (see also Chapter 6).

In Model 2 the spreading function is modified by a normalization that
preserves power near zero frequency and the upper frequency limit.
Namely, a flat spectrum over the positive frequency range of the FFT is
convolved with B(dz). The power of the convolved flat spectrum drops at
the edges of the positive frequency range due to a lack of spectrum energy
outside this range. The spreading function B(dz) is adjusted to remove this
drop by dividing the convolved signal power by the power of the convolved
flat spectrum. Given the behavior of the threshold in quiet at the boundaries
of the human audible range (see Chapter 6), this normalization may not be
essential. In order to derive the global masked threshold, this convolved,
normalized signal energy is then lowered in each partition by an amount that
depends on the tonality of the spectrum in that partition.

Chapter 11: MPEG-l Audio 291

Mode/2 Spreading Function

100

80
-Schroeder

-Mlde12

-Layer III

III
60

'tJ 40

20

0
0 3 6 9 12 15 18 21 24

Bark

Figure 15. Basic spreading function used by MPEG Psychoacoustic Model 2 compared with
the Schroeder spreading function and with the modified version utilized in Layer III.

5.3.4 Tonality Index

The tonality index in each partitIon is calculated based on how
predictable the signal is from the frequency lines in the two prior frames, see
also [Brandenburg and Johnston 90]. For each frame m and for each
frequency line k, the signal amplitude, Am[k], and phase, <j>m[k], are predicted
by linear extrapolation from the two prior values as follows:

A ~ [k] = A m_1 [k] + {A m_1 [k] - A m-2 [k]}

q>~ [k] = q>m-l [k] + {q>m-l [k] - q>m-2 [k]}

where A'm[k], and <j>'m[k] represent the predicted values. The predicted
values are then mapped into an "unpredictability measure" defined as:

where em[k] is equal to zero when the current value is exactly predicted and
equal to 1 when the power of either the predicted or actual signal is
dramatically higher than the other.

The unpredictability measure is first weighted with the energy in each
partition, deriving a partition unpredictability measure. This partition

292 Introduction to Digital Audio Coding and Standards

unpredictability measure is then convolved with the spreading function.
The result of this convolution is normalized using the signal energy
convolved with the spreading function and then mapped onto a tonality
index which is a function of the partition number and whose values vary
between zero and one. The tonality index has the property that high
unpredictability goes towards zero and low unpredictability goes towards
one. Notice that, since the unpredictability measure is convolved using the
spreading function that determines the masking energy at a certain frequency
location, the resulting tonality index at a frequency location reflects the
tonality of the dominant maskers at that frequency location.

5.3.5 Masking Thresholds

The tonality indices for each partition created by this calculation process
are utilized to determine the shift Ll(z) in dB of the re-normalized convolved
signal energy that converts it into the global masking level. The values for
Ll(z) are linearly interpolated based on the tonality index from the value of
5.5 dB for zero tonality (a noise masker) to a frequency-dependent value
defined in the standard for tonality index equal to one (a tonal masker). The
interpolated Ll(z) is then compared with a frequency-dependent minimum
value, also defined in the standard, that controls stereo unmasking effects
(see also Section 8 later in this chapter) and the larger value is used for the
shift.

5.3.6 SMR Computation

The masking levels in each threshold calculation partition are compared
with the threshold in quiet for that partition and the larger is used. Note that
this differs from the addition of masking power from the threshold in quiet to
that of the maskers in Modell. This curve represents the masked threshold.
For each partition, the masking energy is evenly mapped to each frequency
line by dividing the partition masking threshold values by the number of
frequency lines in that partition. Finally, the masked threshold and the
corresponding power spectral densities are mapped onto the coder scale
factors sub-bands (see next section) to calculate the signal to mask ratios
(SMRs) for each sub-band. These SMRs are then sent to the allocation
routine to determine the number of bits allocated to each sub-band.

5.3.7 An Example

In Figure 16 and Figure 17, an example of Model 2 processing for the
signal shown in Figure 11 is illustrated from [Pan 95]. In Figure 16, the

Chapter 11: MPEG-1 Audio 293

signal level and its spread level (top) and the tonality index (bottom) are
shown versus the 62, approximately one-third critical-band frequency
partitions. The masked threshold is plotted in Figure 17 (top) as derived
from the convolved energy and the tonality index versus the FFf frequency
lines. Figure 17 (center) shows the SMR values for each coder scale factor
band. Finally, in Figure 17 (bottom) the coded audio data at 64 kb/s is
shown. Note that the dB values shown differ by roughly 50 dB from those
in the Model 1 example due to a different choice of normalization in the SPL
calculations. This can be most easily seen by comparing the level of the
tonal peak in both cases.

'40

'20

'00 ±..,.~~~~'!?'-~~~
80

60

40

20

0.'
0.8

0.7

0.6

05

0."
0.3

0.2

0.1

• 5 9 Il 17 2' 25 29 33 37 .. <5 .0 53 57 81

1--.,
(a)

-...,.

o~~~~~~~~~~~~~

(b)

Figure 16. MPEG Psychoacoustic Model 2 processing: the abscissa represents the partition
index and the ordinate the signal energy and spread energy in dB (top) and the tonality index

(bottom). (From [Pan 95] © 1995 IEEE.)

294

130

<0

20

·20

.<0

·130

·80

·100

cnCfn

Introduction to Digital Audio Coding and Standards

--multiaJ lllreshold --threshold+&twhrd I

'.~ IW

100

'0
61)

40

20

.;~

Figure 17. MPEG Psychoacoustic Model 2 processing: original signal and computed masking
thresholds (top); SMRs (center); coded signal at 64 kb/s. (From [Pan 95] © 1995 IEEE.)

5.3.8 Model 2 Applied to Layer III

Model 2 is slightly altered when applied to Layer III to take into account
the different nature of the Layer III algorithm including the hybrid filter
bank and the block-switching capability of Layer III. The main changes are:
- The model is calculated twice in parallel - once for using a long block

FFf and once using a short block FFf, where the short block consists of
256 samples.

- The results of both FFfs are combined in calculating the unpredictability
measures.

- The spreading function (see Figure 15) is changed to drop off faster.
Terms of 1.05*dz in the spreading function are replaced with terms of
l.5*dz for negative dz (masker frequency location lower than maskee
frequency location) and 3.0*dz for positive dz (masker frequency
location higher than maskee frequency location).

Chapter J J: MPEG-J Audio

- The noise-masking-tone drop has been changed from 5.5 dB to 6.0 dB
and the tone-masking-noise drop has been changed from a frequency
dependent table lookup to a constant 29.0 dB.

295

- Pre-echoes are reduced by comparing the masking threshold with scaled
versions of the last 2 frames' thresholds and setting the current masking
threshold to the smallest of these before comparing it with the threshold
in quiet. (Twice the previous frame's value is used and 16 times the
value of the frame before that.) This serves to reduce the masking
thresholds following very quiet signals.
Attacks are detected based on a "psychoacoustic entropy" or perceptual

entropy, PE (see also Chapter 7), calculation [Johnston 88] equal to the
logarithm of a geometric mean of the threshold-weighted energy across the
block. The exact formula as described in the informative section of the
standard is

PE = 2> b log 2 (1. + Jenergy b I threshold b)

partition b

where nb is the number of frequency lines in partition b, energYb is the
aggregate signal energy in partition band thresholdb is the energy relative to
the masked threshold in partition b. The PE as described above measures the
minimum number of bits per block required to achieve transparency in a
signal given a masking curve. Psychoacoustic entropy above a certain
trigger (PE > 1800 bits from [lSO/IEC 11172]) signals an attack. The PE is
effectively a measure of the perceptual flatness of the frequency spectrum
since it effectively measures the geometric mean of the spectral energy
(normalized by the masking threshold). Recall from Chapter 8 that a high
geometric mean signifies a flat spectrum. A flat spectrum is associated with
a sharp attack in this model since sudden changes lead to broad frequency
content. Detection of an attack determines which window-type is used
according to Figure J 8. Signal-to-mask ratios are computed for each scale
factor partition, rather than for each PQMF sub-band, corresponding to the
chosen window-type.

296 Introduction to Digital Audio Coding and Standards

Figure 18. Block switching state diagram for Layer JII from [ISO/lEe 11172-3]

6. MPEG-l AUDIO SYNTAX

The MPEG Audio bitstream provides periodically spaced frame headers
to identify the coded data. In Figure 19 the· audio data frame structure is
shown for all Layers. For Layer I the frame size consists of 12 * 32 = 384
samples. For Layers II and III, three granules of 12 samples per sub-band
are grouped into a frame for a total of 1152 samples. The 32-bit MPEG
Audio header is shown in Figure 20. After a 12-bit string of 1 which
represents the synch word, there is an MPEG ID bit (= 1 implies an MPEG-l
Audio bitstream) and the layer identification (two bits). The error protection
bit, the bitrate index (four bits), the sampling frequency bits (two), padding
and private bit and mode (stereo, joint stereo, dual channel, single channel),
mode extension, etc., follow. The frame format of the three layers is shown
in Figure 21. In order to understand the underlying structure of the MPEG
Audio layers syntax, we now examine the details of different coding options
adopted by the layers.

Chapter 11: MPEG-I Audio

12 Samples i12 Sa~ples 12 samPlesi.
A. , A. ,r A. -.;

I Sub-band filter 0

12 Samples il2 SaAmples 12 Samples!

A. -vr----' ~r A. -.;
Sub-band filter I

Audio
12 Samples! 12 Sa~ples 12 Samples i

Samples ----+----/ Sub-band filter 2 In L-_____ -'

A ~ A. ,r A ,

• • •

Sub-band filter 31

• • • ;

• • •
• • •

12 Samples 112 Samples 12 Samples

A \t A."), A

Layer I i
Frame

Layer II.'" Frame

Figure 19. Data frame structure for MPEG-I Audio Layers r, n, and III

padding_bit emp1asis
synchword layer bitrate index I mode copyright

11111111111111111111111tj~Qj III trmQDWJ

LAYER I

LAYER II

LAYER III

I error_protection I private_bit I original/copy

10 (l=MPEG) mode_extension
sampling_frequency

Figure 20. MPEG- I Audio Header

Side Information
(130-246)

Samples

Main Data (May start at a previous frame)

Figure 21. MPEG-l Audio frame format

297

298 Introduction to Digital Audio Coding and Standards

6.1 Layer I

Layer I encodes the audio samples in groups of 384 samples. The audio
data in each frame represent 8 ms of audio at a 48 kHz sampling rate. The
encoded audio data is described in terms of bit allocation information, scale
factors, and quantized samples. In addition to the header and the audio data,
each Layer I frame contains (see top part of Figure 21) a 16-bit optional
cyclic redundancy code (eRC) error check word, and optional ancillary data.

Code scale fa::tors

\
Format bitstream

Coded Bitstream

Figure 22. Basic structure of the encoding process for MPEG-l Audio Layers I and II from
[ISOlIEe 11172-3]

6.1.1 Scale Factors Computation

The Layer I (and Layer II) encoding process is shown in Figure 22. The
analysis PQMF stage is followed by the computation of scale factors for
each sub-band. One scale factor is computed for each 12 sub-band
frequency samples (called a "granule") and it is represented using 6 bits.
The maximum absolute value of the 12-sample granule is determined and
mapped to a scale factor value via a look up table defined in the standard and
shown in Table I. The samples in the granule are divided by the scale factor

Chapter 11: MPEG-l Audio 299

prior to the quantization stage. The dynamic range covered by the scale
factors is 120 dB.

The scale factor is transmitted only if the bit allocation for that band is
non-zero. The maximum number of bits used in a Layer I frame to transmit
scale factors (in the case the where the bit allocation for each sub-band is
non-zero) is 6*32*2 = 384 bits for stereo mode and 6*32 = 192 bits for
mono mode.

Table 1. MPEG Audio La~ers I and II Scale Factors [ISO/lEe 11172-3]
Scale Factor Scale Factor Value Scale Factor Scale Factor Value
Index Index
0 2.00000000000000 32 0.00123039165029

1.58740105196820 33 0.00097656250000
2 1.25992104989487 34 0.00077509816991
3 1.00000000000000 35 0.00061519582514
4 0.79370052598410 36 0.00048828125000
5 0.62996052494744 37 0.00038754908495
6 0.50000000000000 38 0.00030759791257
7 0.39685026299205 39 0.00024414062500
8 0.31498026247372 40 0.00019377454248
9 0.25000000000000 41 0.00015379895629
10 0.19842513149602 42 0.00012207031250
11 0.15749013123686 43 0.00009688727124
12 0.12500000000000 44 0.00007689947814
13 0.09921256574801 45 0.00006103515625
14 0.07874506561843 46 0.00004844363562
15 0.06250000000000 47 0.00003844973907
16 0.04960628287401 48 0.00003051757813
17 0.03937253280921 49 0.00002422181781
18 0.03125000000000 50 0.0000 1922486954
19 0.02480314143700 51 0.00001525878906
20 0.01968626640461 52 0.00001211090890
21 0.01562500000000 53 0.00000961243477
22 0.01240157071850 54 0.00000762939453
23 0.00984313320230 55 0.00000605545445
24 0.00781250000000 56 0.00000480621738
25 0.00620078535925 57 0.00000381469727
26 0.00492156660115 58 0.00000302772723
27 0.00390625000000 59 0.00000240310869
28 0.00310039267963 60 0.00000190734863
29 0.00246078330058 61 0.00000151386361
30 0.00195312500000 62 0.00000120155435
31 0.00155019633981

300 Introduction to Digital Audio Coding and Standards

6.1.2 Bit Allocation and Quantization

The number of bits available to quantize audio samples in each frame is
determined by the data rate less the bits needed to transmit the header, CRC,
bit allocations, scale factors, and any ancillary data.

The number of bits that can be used to quantize sub-band samples in
Layer I ranges between zero and 15, excluding the allocation of 1 bit
because of the nature of the midtread quantizer (see also Chapter 2). The bit
allocation for each sub-band of each channel is communicated through a
four-bit code where, other than a code of zero representing zero bits, the
value of the four-bit code is equal to one less than the number of allocated
bits. For example, a code of 5 indicates six bits for that sub-band. A code
value of 15 is forbidden. The number of bits used to transmit bit allocation
information is equal to 4*32 = 128 bits for single channel mode and 4*32*2
= 256 bits for stereo mode.

The bit allocation routine is an iterative process where, after initializing
the process by setting all bit allocation codes to zero and assuming no bits
are needed to transmit scale factors, in each iteration additional bits are
allocated to the sub-band with the highest noise-to-mask ratio (NMR) until
there are not enough additional bits left for the next iteration pass.

The NMR for each sub-band is calculated as the difference between the
signal-to-mask ratio (calculated in the psychoacoustic model) and the signal
to-noise ratio (estimated from a table lookup based on the number of bits
allocated to the sub-band). In each iteration, an additional quantization bit is
allocated to the sub-band with the highest NMR that can still accept an
additional bit (i.e. has less than 15 bits already). If a sub-band that has not
already been given any bits is the one with the highest NMR, that sub-band
is given two bits and bits are also set aside to transmit the scale factor for
that sub-band.

Once the bit allocations are determined, each sub-band sample is divided
by its scale factor and quantized using a midtread uniform quantizer having a
number of steps determined by the bit allocation for that sub-band.

6.2 Layer II

The Layer II algorithm builds on the basic structure of Layer I (see
Figure 22). The frame size is increased for Layer II to 3 granules of 12 sub
band samples corresponding to a total of 12*3*32 = 1152 input samples per
frame so that one can take advantage of commonality between consecutive
granules. The audio encoded data in each frame represent 24 ms of data at a
48 kHz sampling rate.

Chapter 11: MPEG-1 Audio 301

6.2.1 Scale Factors and Scale Factors Select Information

The scale factors in Layer II can be shared among the three consecuti ve
granules. The scale factors are computed in the same manner as in Layer I
(see Table 1). When the values of the scale factors for the consecutive
granules are sufficiently close or when temporal post-masking can hide
distortion, only one or two scale factors need to be transmitted.

The scale factor select information, SCFSI (see mid portion of Figure
22), is coded with two bits and determines whether one, two, or three scale
factors will be transmitted for the three consecutive granules in the frame. A
SCSFI equal to zero corresponds to three scale factors, a SCSFI equal to one
corresponds to transmitting two scale factors (the first for the first two
granules and the second for the third granule), a SCSFI equal to two
corresponds to transmitting a single scale factor to be used for all granules,
and a SCSFI equal to three corresponds to transmitting two scale factors
(where the first is used for the first granule and the second is used for the last
two granules).

Both SCFSI and scale factors are transmitted only if the bit allocation is
different from zero for that sub-band. The bits used for SCFSI vary between
zero and 30 * 2 * 2 = 120 bits for each frame and the bits used for scale
factors vary between zero and 6 * 3 * 30 * 2 = 1080 bits per frame. (Note:
Layer II does not allow any bits to be allocated to the two highest sub-bands
so there are at most only 30 sub-bands that are allocated bits. See [ISO/IEC
11172-3].)

6.2.2 Bit Allocation and Quantization

The psychoacoustic model and bit allocation process are computed in a
similar manner for Layer II as for Layer I, but they are now computed
relative to a frame of 36 sub-band samples. Also, bit allocation tables are
now specified in the standard that determine the possible quantization levels
that can be used to quantize the samples in any sub-band. As in Layer I,
quantization is carried out by dividing each sub-band sample by its scale
factor and then using a uniform mid-tread quantizer with the prescribed
number of steps.

Bit allocations are coded based on tables specified in the standard that
depend on the sample rate and the target data rate. Bit allocation codes
range from zero to four bits per sub-band, where a greater number of bits are
used to code the bit allocations of lower frequency sub-bands. In all cases,
no bits are allocated to the two highest frequency sub-bands in Layer II. In
other sub-bands, the number of quantization levels can reach that of 16-bit
quantization. The total number of bits employed to describe the bit

302 Introduction to Digital Audio Coding and Standards

allocation for one frame of the stereo signal varies between 26 and 188
depending on which table is applicable.

An example of a Layer II bit aIlocation table is shown in Table 2. This
particular table is valid for sample rates of 44.1 and 48 kHz when they are
running at data rates of 32 or 48 kb/s per channel. The first column
represents the sub-band number and the second column represents the
number of bits used to transmit that sub-band's bit aIlocation. The
successive columns in each row represent the possible number of
quantization levels that can be used to quantize the 36 samples in that
frame's sub-band. The numbers in the top row indicate the bit allocation
code corresponding to that number of quantization steps. Notice that four
bits are used to encode the bit alIocation for the first two sub-bands, three
bits are used to encode the bit alIocation for the next six sub-bands, and no
bits are allocated to any higher frequency sub-bands in this particular bit
allocation table. For this bit allocation table, the total number of bits
employed to describe the bit allocation is equal to 26.

Table 2. Example of MPEG Audio Layer II bit allocation table [ISOIIEe 11172-3]
B N 0 2 3 4 10 II 12 13 14 15

3 5 9 15 31 63 127 255 511 1023 2047 4095 8191 16383 32767

3 5 9 15 31 63 127 255 511 1023 2047 4095 8191 16383 32767

3 5 9 15 31 63 127

3 5 9 15 31 63 127

3 5 9 15 31 63 127

3 5 9 15 31 63 127

3 5 9 15 31 63 127

3 5 9 15 31 63 127

10

II

12

13

14 0

15

16 0

17 0

18

19 0

20 0

21 0

22

23 0

24

25 0

26 0

Chapter 11: MPEG-J Audio 303

B NOl234 10 II 12 13 14 15

27 0

28 0

29

30

31

Notice also that the bit allocation table shown in Table 2 has entries with
numbers of levels not usually seen in midtread quantizers. Recall that an N
bit mid-tread quantizer usually has 2N -1 levels. For example, a 4-bit
quantizer would have 15 levels. In contrast, this table has cases with 5 and 9
levels. A 5-step midtread quantizer needs 3 bits to encode its values (2 bits
can only count up to 4 levels) while a 9-step quantizer needs 4 bits to encode
its values (3 bits can only count up to 8 levels). At first blush, it seems quite
wasteful of bits to allow such quantizers, however, grouping of consecutive
samples allows for quite efficient packing of the quantized data.

In the cases of 3, 5, and 9-step quantization, three consecutive samples
are (vector) coded with one single code word, v, consisting of 5, 7, 10 bits
respectively as follows:

V3 = 9z + 3y + X

V5 = 25z + 5y + X

V9 = 81z + 9y + x

where x, y, z, are the quantization levels corresponding to three consecutive
sub-band samples (counting from zero up to Nevels-I). The result of this
vector coding is that quantization can be carried out with few quantizer
levels without wasting too many bits.

This vector coding approach saves bits by allocating bits to enumerate
possible triplets of coded values rather than allocating bits to each quantized
value individually. For example, 3 consecutive samples using a 3-step
quantizer would require 3*2 = 6 bits but are here encoded using only 5 bits.
This packing can be achieved since there are only 3*3*3 = 27 possible code
triplets for 3 samples - a number of possibilities that easily can be
enumerated with a 5-bit code (which can enumerate up to 32 items).
Similarly, 3 consecutive 5-step quantized values would require 3*3 = 9 bits
but the 5*5*5 = 125 possible code triplets can be enumerated with a 7-bit
code (which can enumerate up to 128 items). Finally, 3 consecutive 9-step
quantized values could require 3*4 = 12 bits while the 9*9*9 = 729 possible
triplets can be enumerated with a lO-bit code (which can enumerate up to
1024 items).

In general Layer II represents bit allocation, scale factors, and quantized
samples in a more compact way than Layer I, so that more bits are available

304 Introduction to Digital Audio Coding and Standards

to represent the coded audio data. In general, Layer II provides higher
quality than Layer I at any given data rate.

6.3 Layer III

In addition to the differences in the filter bank and psychoacoustic model
computation (see previous sections), Layer III core allocation/quantization
routines are more complex. Moreover, a locally variable data rate is
employed in Layer III to respond to the demand of difficult signals. The
mechanism employed to dynamically provide additional bits is defined in the
standard as a bit reservoir mechanism. The frame size for Layer III is 1152
samples as in Layer II, but the coded audio data may expand beyond the
current frame, their starting point being identified by a backwards pointer in
the bitstream.

6.3.1 Scale Factors

The basic Layer III algorithm (in the single channel mode) feeds the
output of the hybrid filter bank to the quantization and coding stage (see also
Figure 4). The spectrum is subdivided in 21 or 12 scale factor bands (rather
than the 32 PQMF sub-bands as in Layers I and II) for long blocks and short
block respectively, where the width of these bands loosely follows the
critical bandwidth rate and is specified in look-up tables in the standard. In
Table 3 and Table 4 an example of Layer III scale factors partition at 48 kHz
for long and short blocks is shown.

Table 3. MPEG Audio Layer III scale factors partition for long blocks, Fs = 48 kHz [ISOIIEC
l1172-3)
Scale factor band Width Start End
0 4 0 3

4 4 7
2 4 8 11
3 4 12 15
4 4 16 19
5 4 20 23
6 6 24 29
7 6 30 35
8 6 36 41
9 8 42 49
10 10 50 59
11 12 60 71
12 16 72 87
13 18 88 105
14 22 106 127

Chapter Jl: MPEG-I Audio 305

Scale factor band Width Start End
15 28 128 155
16 34 156 189
17 40 190 229
18 46 230 275
19 54 276 329
20 54 330 383

Table 4. MPEG Audio Layer III scale factors partition for short blocks, Fs = 48 kHz
[ISO/lEe 11172-3]
Scale factor band Width Start End
0 4 0 3
1 4 4 7
2 4 8 11
3 4 12 15
4 6 16 21
5 6 22 27
6 10 28 37
7 12 38 49
8 14 50 63
9 16 64 79
10 20 80 99
11 26 100 125

The scale factors in Layer III are employed to modify the quantization
step size to ensure that the resulting quantization noise level falls below the
computed masked threshold [Brandenburg 87 and Johnston 89], see also
next section. Layer III scale factors differ from Layers I and II scale factors
in that they are not the result of a normalization process. A set of scale
factor select information is coded every two granules, where for Layer III a
granule is defined as 576 frequency lines. The SCFSI in Layer III is
represented by one bit for each sub-band, which is set to 0 if different scale
factors are transmitted for each granule, or to 1 if the scale factor transmitted
for the first granule is valid also for the second. If the coder operates in short
block mode, then different scale factors are always transmitted for each
granule. In addition to the sub-band scale factors, a global gain scale factor
for the entire granule determines the overall quantization step size.

6.3.2 Non-Uniform Quantization and Huffman Coding

A non-uniform midtread quantizer is used in Layer III. The quantizer
raises its input to the 3/4 power before applying a midtread quantizer (see
also Chapter 2). In the decoder before inverse quantizing, the quantized
values are re-linearized by raising them to the 4/3 power. In this fashion,

306 Introduction to Digital Audio Coding and Standards

bigger values are quantized with less accuracy than smaller values,
increasing the signal to noise ratio at low level input.

In addition, in Layer III static Huffman coding is also employed. The
encoder subdivides the quantized spectral values into three regions and each
region is coded with a different set of Huffman code tables tuned for the
statistics of that region. At high frequencies, the encoder identifies a region
of "all zeros'. The size of this region can be deduced from the size of the
other two regions and does not need to be coded, the only restriction being
that it must contain an even number of zeros since the other two regions
group their values in even numbered sequences. The second region, called
"count I" region, contains a series of contiguous values consisting only of -
1, 0, + 1. In this region, four consecutive values are Huffman encoded at the
same time and the size of this region is a multiple of four. Finally the third
and last region, the "big values" region, covers the remaining spectral values
which are encoded in pairs. This region is further subdivided in three parts
each covered by a separate Huffman table. A set of 16 different Huffman
code tables is utilized. For each partition, the Huffamn table which best
matches the signal statistics is selected during the encoder process. This
dynamic search allows for both an increased coding efficiency and a
decreased error sensitivity. The largest Huffman table carries 16 by 16
entries. Larger values are accommodated by using an escape mechanism.

The encoder iteratively quantizes the spectral values based on the data
rate available, computes the number of Huffman codes needed to represent
the quantized spectral values, and derives the distortion noise. If the
distortion noise in certain scale factor bands is above the masked threshold
values estimated in the psychoacoustic model, it varies the quantizer step
size for each scale factor band by amplifying the relative scale factor. The
quantization process is repeated until none of the scale factor bands have
more than the allowed distortion, or the amplification for any band exceeds
the maximum allowed value.

6.3.3 Bit Reservoir

The mechanism put in place in Layer III bitstream formatting routine
allows for donating bits to the bit reservoir when the signal analyzed at a
certain time requires less than the average number of bits to code a frame or
utilizing bits from the reservoir for peak demands. In this fashion, the
bitstream formatting routine is designed to support a locally-variable data
rate. This mechanism not only allows to respond to local variations in the bit
demand, but also is utilized to mitigate possible pre-echo effects. Although
the number of bits employed to code a frame of audio data is no longer
constant, its long term average is. The deviation from the target data rate is

Chapter 11: MPEG-I Audio 307

always negative, i.e. the channel capacity is never exceeded. The maximum
deviation from the target bit rate is fixed by the size of the maximum
allowed delay in the decoder. This value is fixed in the standard by defining
a code buffer limited to 7680 bits. For the data rate of 320 kb/s at 48 kHz
sampling rate the average number of bits per frame is

Number of bits per frame = 1152* 320/48 = 7680

In this case, no variation is allowed. The first element in the Layer III
audio data bitstream is a 9-bit pointer (main_data_begin) which indicates the
location of the starting byte of the audio data for that frame. In Figure 23 an
example of the Layer III frame structure is shown.

Frame 1 Frame 2

main_dala_begin
for Frame I

main_data_begin
for Frame 2

LEGEND:

Frame I Data !~~~
Frame 2 Data ~
Frame 3 Data t?il&!~~\!~n;m

main_data_begin
for Frame 3

Figure 23. Example of Layer III frame structure from [ISOIIEC 11172-3]

7. STEREO CODING

Spatial redundancies and irrelevancies are exploited in joint stereo coding
in order to further reduce the audio coding system data rates. While for most
stereo signals there is little correlation between the time representation of the
left and the right channels, typically for the signal power spectra strong
correlations exist [Brandenburg 98]. Regarding stereo irrelevancies, we
know that at high frequencies the ability of the human auditory system to
discriminate the exact source location is decreased [Blauert 83]. Above
about 2 kHz, for each critical band the human auditory system bases its

308 Introduction to Digital Audio Coding and Standards

perception of stereo imaging from power maxima in space rather than the
signal fine temporal structure.

In general, jointly coding the left and right channel provides higher
coding gains. There are instances, however, in which stereo coding data
rates may exceed twice the rate needed to transparently code one mono
signal. In other words, the artifacts masked in single channel coding may
become audible when presented as a stereo signal encoded as a dual mono.
This effect is related to differences between the masked threshold recorded
when the signal is presented as a single channel signal and the masked
threshold under binaural conditions. This difference is called the binaural
masking level difference (BMLD) [Blauert 83] and it is most pronounced at
low frequencies. An example of this effect is related to "the cocktail party
effect", where a listener is capable to focus on a conversation in spite of the
louder background noise. If the listener plugs one ear, suddenly the same
level conversation becomes more difficult to understand. The conversation
is less effectively masked when the subject listens to it binaurally than when
the subject listens to it monaurally. Applying these findings to stereo
coding, one may find that coding artifacts that are masked in single channel
mode can become unmasked when presented simultaneously in two
channels, i.e. in a dual mono system.

The basic idea in joint stereo coding is to appropriately rotate the stereo
plane for each critical band into the main axis direction of the input stereo
signal. Applying this idea in audio coding means transmitting side
information to convey the direction parameters. This sometimes translates
into a large amount of additional side information with no net coding gain.
Simplified approaches can be found in literature such as mid/sum, MIS, and
intensity stereo coding [Johnston and Ferreira 92 and van der Waal and
Veldhuis 91]. While these approaches have some overlapping, their main
focus is very different.

MIS stereo coding focuses mainly on redundancies removal and it is a
transparent process in absence of quantization and coding. In MIS stereo
coding only two directions are considered. Instead of transmitting separately
the left and the right signal, the normalized sum and difference signals are
transmitted. These signals are also referred to as the middle or mid (sum)
and side (difference) signals. The coding gain achieved by utilizing MIS
stereo coding is signal dependent. The maximum gain is reached when the
left and right signals are equal or phase shifted by 1t. MIS stereo processing
can be applied to the full signal spectrum since it is a lossless process and, in
particular, it preserves the spatial attributes of the signal. In some cases,
however, stereo irrelevancy effects can also be utilized in this approach.

Intensity stereo coding focuses mainly on irrelevancy removal, where at
high frequencies the signal is coded with reduced spatial resolution. This

Chapter 11: MPEG-I Audio 309

approach is based on the fact that the human auditory system detects
direction at high frequency primarily based upon relative intensity in each
ear rather than using phase cues. In intensity stereo coding, only one
channel resulting from the combination of the right and left channel is
transmitted for each critical band. The directional information is conveyed
with independent scale factors for the left and the right channels. While the
main spatial cues are retained in this method, some details may be missing.
Intensity stereo coding preserves the energy of the stereo signal, but some of
the signal components may not be properly transmitted, resulting in a
potential loss of spatial information. In general, the loss of spatial
information is considered less annoying than coding artifacts from bit
starvation. For this reason, intensity stereo coding is employed mainly at
low data rates. It is important to emphasize that intensity stereo coding is
applied for high frequency only. Extending this approach to low frequencies
may cause severe distortion such as a major loss in spatial information.
Assuming that intensity coding is applied to half of the signal spectrum, a
saving of about 20% in the system data rate can be achieved [Brandenburg
98]. Finally it should be mentioned that extensions to multichannel of the
general intensity coding technique were developed in more recent years and
different flavors are known as coupling channels [Davis 93], dynamic
crosstalk [Stoll et al. 94] or generalized intensity coding (see also next
chapter for more details).

7.1 MPEG Audio Stereo Coding

In MPEG-I audio coding mid/sum, MS, stereo coding and intensity
stereo coding techniques are applied. MIS stereo coding is employed in
Layer III only, while intensity stereo coding is employed in all MPEG-I
Audio layers. In the joint stereo mode (bits 24 and 25 in the MPEG Audio
header) the sum of the left and right sub-band samples is transmitted with
scale factors for the left and the right channels for selected sub-bands. First
an estimate of the required data rate for the left and right channels is
performed. If the data rate exceeds the target data rate, a number of sub
bands are set to intensity stereo mode. Depending on the data rate, the
allowed set of sub-bands for intensity coding is specified in the standard
(bits 26 and 27 in the MPEG Audio header). For the quantization of the
combined sub-bands, the higher of the bit allocation for the left and right
channel is used. The combined sub-bands are coded in the same fashion as
the independent sub-bands. In addition to the common scale factors,
directional scale factors are unique to the sub-bands coded in the joint stereo
mode and they are transmitted in the bitstream.

310 Introduction to Digital Audio Coding and Standards

7.1.1 MIS Stereo Coding

MIS stereo coding is applied in Layer III when in joint stereo mode
when:

51 I 51 I

I(l~ -r~)<O.8I(l~ +r~)
k=O k=O

Where lk and rk correspond to the FFT spectral line amplitudes computed in
the psychoacoustic model. The values M j and Sj are transmitted, instead of
the left and right channel values Lj and Rj , where Lj and Rj correspond to the
hybrid filter bank spectral line amplitudes as follows:

M. = Rj +Lj
1 .fi

and S = L j -R j

1 .fi

In order to code the MIS signals, specially tuned thresholds are computed in
the psychoacoustic model and utilized in the allocation routines.

8. SUMMARY

In this chapter we reviewed the main features of MPEG-I Audio.
MPEG-I is the first international standard of high quality audio and opened
the door to a variety of applications from digital audio broadcasting to
internet distribution of music. Organized in three layers of increasing
sophistication and complexity design, the basic building blocks consist of a
time to frequency mapping stage, psychoacoustic model, quantization and
coding and bitstream formatting. MPEG-I allows for audio coding between
32 and 448 kb/s per channel targeting perceptually lossless quality. In the
next chapters, we discuss further developments in MPEG Audio including
MPEG-2 and MPEG-4.

9. REFERENCES

[Blauert 83]: J. Blauert, Spatial Hearing, MIT Press, Cambridge, MA 1983.

[Bosi, Todd and Holman 93]: M. Bosi, C. Todd and T. Holman, "Aspects of Current
Standardization Activities for High-Quality, Low Rate Multichannel Audio Coding,"

Chapter 11: MPEG-l Audio 311

Proc. of the 1993 IEEE Workshop on Applications of Signal Processing to Audio
and Acoustiscs, 2a.3, New Paltz, New York, October 1993.

[Brandenburg 87]: K. Brandenburg, "OCF-A New Coding Algorithm for High
Quality Sound Signals", in Proc. ICASSP, pp. 141-144, May 1987.

[Brandenburg 98]: K. Brandenburg, "Perceptual Coding of High Quality Digital
Audio", in Applications of Digital Signal Processing to Audio and Acoustics, M.
Kahrs and K. Brandenburg (ed.), pp. 39-83, 1998.

[Brandenburg and Johnston 90]: K. Brandenburg and J. D. Johnston, "Second
Generation Perceptual Audio Coding: The Hybrid Coder", presented at the 88th AES
Convention, Preprint 2937, Montreux 1990.

[Brandenburg et al. 91]: K. Brandenburg, J. Herre, 1. D. Johnston, Y. Mahieux, and
E. F. Schroeder, "ASPEC-Adaptive Spectral Perceptual Entropy Coding of High
Quality Music Signals", presented at the 90th AES Convention, Preprint 3011, May
1991.

[Chiariglione 95]: L. Chiariglione, "The development an integrated audio-visual
coding standard", Proceedings of the IEEE, Vol. 83 n. 2, pp. 151-157, February
1995.

[Davis 93]: M. Davis, "The AC-3 Multichannel Coder", presented at the 95th AES
Convention, Preprint 3774 New York, October 1993.

[Dehery, Stoll and Kerkhof 91]: Y. F. Dehery, G. Stoll and L. v.d. Kerkhof,
"MUSICAM Source Coding for Digital Sound", In Symp. Rec. Broadcast Sessions
of the 17th lnt. Television Symp., pp. 612-617, Montreux Switzerland, June 1991.

[Edler 92]: B. Edler, "Aliasing reduction in sub-bands of cascaded filter banks with
decimation", Electronics Letters, Vol. 28, pp. 1104-1105, 1992.

[Edler 89]: B. Edler, "Coding of Audio Signals with Overlapping Transform and
Adaptive Window Shape" (in German), Frequenz, Vol. 43, No.9, pp. 252-256,
September 1989.

[ETS 300 401 v2]: The European Telecommunications Standards Institute (ETSI),
ETS 300401 v2, "Radio Broadcasting Systems; Digital Audio Broadcasting (DAB)
to Mobile, Portable and Fixed Receivers", 1995-1997.

[ETS 300421]: The European Telecommunications Standards Institute (ETSI), ETS
300421, "Digital Video Broadcasting (DVB); Framing Structure, Channel Coding
and Modulation for 11112 GHz Satellite Services", August 1997.

312 Introduction to Digital Audio Coding and Standards

[ETS 300429]: The European Telecommunications Standards Institute (ETSI), ETS
300 429, "Digital Video Broadcasting (DVB); Framing Structure, Channel Coding
and Modulation for Cable Systems", August 1997.

[ETS 300744]: The European Telecommunications Standards Institute (ETSI), ETS
300 744, "Digital Video Broadcasting (DVB); Framing Structure, Channel Coding
and Modulation for Digital Terrestrial Television", August 1997.

[Fielder et at. 96]: L. D. Fielder, M. Bosi, G. A. Davidson, M. Davis, C. Todd, and
S. Vernon" AC-2 and AC-3: Low Complexity Transform-Based Audio Coding," in
N. Gielchrist and C. Grewin (ed.), Collected Papers on Digital Audio Bit-Rate
Reduction, pp. 54-72, AES 1996.

[ISOIIEC 11172]: ISO/IEC 11172, Information Technology, "Coding of moving
pictures and associated audio for digital storage media at up to about 1.5 Mbit/s",
1993.

[ISOIIEC 11172-3]: ISO/IEC 11172-3, Information Technology, "Coding of moving
pictures and associated audio for digital storage media at up to about 1.5 Mbit/s, Part
3: Audio", 1993.

[ISOIIEC 13818]: ISO/IEC 13818, Information Technology, "Generic coding of
moving pictures and associated audio", 1994-1997.

[ISO/IEC 13818-7]: ISO/IEC 13818-7, Information Technology, "Generic coding of
moving pictures and associated audio, Part 7: Advanced Audio Coding", 1997.

[ISOIIEC 14496]: ISO/IEC 14496, Information Technology, "Coding of audio
visual objects", 1999-2001.

[ISO/lEC 15938]: ISOIIEC 15938, Information Technology, "Multimedia content
description interface", 2001.

[ISO/IEC MPEG 911010]: ISOIIEC JTC IISC 29/WG 11 MPEG 91/010, "The
MPEG/AUDIO Subjective Listening Test" Stockholm, April/May 1991.

[ISO/lEC MPEG NI229]: ISO/IEC JTC lISC 29/WG 11 N1229, "MPEG-2
Backwards Compatible CODECS Layer II and III: RACE dTTb Listening Test
Report" Aorence, March 1996.

[ISO/IEC MPEG NI420]: ISOIIEC JTC IISC 29/WG II N1420, "Overview of the
Report on the Formal Subjective Listening Tests of MPEG-2 AAC multichannel
audio coding" Maceio', November 1996.

[ISO/lEC MPEG N4318]: ISO/IEC JTC IISC 29/WG II N4318, "MPEG-21
Overview" Sydney, July 2001.

Chapter II: MPEG-I Audio 313

[ISO/lEC MPEG N271]: ISO/lEC JTC I/SC 29/WG II N271, "New Work Item
Proposal for Very-Low Bitrates Audiovisual Coding" London, November 1992.

[ITU-R BS.1115]: International Telecommunication Union BS.1115, "Low Bitrate
Audio Coding", Geneva, 1994.

[Johnston 88]: J. D. Johnston, "Estimation of Perceptual Entropy Using Noise
Masking Criteria", in Proc. ICASSP, pp. 2524-2527, May 1988.

[Johnston 89]: J. D. Johnston, "Transform Coding of Audio Using Perceptual Noise
Criteria", in IEEE J. Select. Areas Common., vol. 6, pp. 314-323, 1989.

[Johnston and Ferreira 92], J. D. Johnston and A. 1. Ferreira, "Sum-Difference
Stereo Transform Coding", in Proc. ICASSP pp. 569-571, May 1992.

[MPEG]: MPEG Home Page, http://mpeg.telecomitalialab.com/.

[Pan 95]: D. Pan, "A Tutorial on MPEG/Audio Compression", in IEEE Multimedia,
pp. 60-74, Summer 1995.

[Searing 91]: S. Searing, "Suggested Formulas for Audio Analysis and Synthesis
Windows", ISO/IEC JTC l/SC 29/WG II MPEG 91/328, November 1991.

[Sinha, Johnston, Dorward and Quackenbush 98]: D. Sinha, J. D. Johnston, S.
Dorward and S. R. Quackenbush, "The perceptual Audio Coder (PAC)", in The
Digital Signal Processing Handbook, V. Madisetti and D. Williams (ed.), CRC
Press, pp. 42.1-42.18, 1998.

[Stoll et a1. 94]: G. Stoll, G. Theile, S. Nielsen, A. Silzle, M. Link, R. Sedlmayer and
A. Breford, "Extension of ISO/MPEG-Audio Layer II to Multi-Channel Coding: The
Future Standard for Broadcasting, Telecommunication, and Multimedia
Applications", presented at the 94th AES Convention, Preprint 3550, Berlin 1994.

[Thiede et al. 00]: T. Thiede, W. Treurniet, R. Bitto, C. Schmidmer, T. Sporer, J.
Beerends, C. Colomes, M. Keyhl, G. Stoll, K. Brandenburg and B. Feiten" "PEAQ
The lTV Standard for Objective Measurement of Perceived Audio Quality", J.
Audio Eng. Soc., Vol. 48, no. 1/2, pp. 3-29, January/February 2000.

Chapter 12

MPEG-2 Audio

1. INTRODUCTION

This chapter describes the MPEG-2 Audio coding family which was
developed to extend the MPEG-l Audio functionality to lower data rate and
multichannel applications. First we will discuss MPEG-2 LSF and "MPEG-
2.5" systems in which lower sampling frequencies were used as a means to
reduce data rate in MPEG-l audio coding. (The MP3 audio format as
usually implemented as the MPEG-2.5 extension of Layer III.) Next we will
discuss the MPEG-2 BC system which extended the MPEG-l Audio coders
to multichannel operation while preserving backwards compatibility so that
MPEG-2 BC data streams would be playable on existing MPEG-I players.
In the next chapter, we will discuss the MPEG-2 AAC system which made
use of all of the advanced audio coding techniques available at the time to
reach higher quality in a multichannel system than was achievable while
maintaining compatibility with MPEG-l players.

2. MPEG-2 LSF, "MPEG-2.S" AND MP3

Motivated by the increase of low data rate applications over the Internet,
the goal of MPEG-2 LSF was to achieve MPEG-I or better audio quality at
lower data rates [ISO/IEC 13818-3]. One way to achieve this goal without
requiring major modifications in the MPEG-l system was to decrease the
sampling rate of the audio signals which is the approach taken by MPEG-2
LSF. Instead of the 48, 44.1, and 32 kHz sampling rates seen in MPEG-I,

M. Bosi et al., Introduction to Digital Audio Coding and Standards
© Kluwer Academic Publishers 2003

316 Introduction to Digital Audio Coding and Standards

the sampling rates for MPEG-2 LSF are 24,22.05, and 16 kHz. Of course,
reducing the sampling rate by a factor of 2 also reduces the audio bandwidth
by a factor of 2. This loss in high frequency content was deemed an
acceptable compromise for some target applications in order to reduce the
data rate by a factor of 2.

The MPEG-2 LSF coder and its bitstream have a very similar structure to
that of MPEG-I Audio. The three audio "layers" of increasing complexity
are again defined almost identically to the layers of MPEG-I Audio. Single,
dual channel, stereo, and joint stereo modes are again supported in MPEG-2
LSF. The bitstream header for MPEG-2 LSF differs from that of MPEG-I
Audio solely in the settings of a single bit (see Figure 1). The 13th bit (called
the "ID bit") is set equal to zero for MPEG-2 LSF while it was equal to one
for MPEG-l. The bit setting for MPEG-2 LSF signals the use of different
tables for sampling rates and target data rates.

The main difference in the MPEG-2 LSF implementation is the set of
allowed sampling rate and data rate pairings in its operation. An additional
difference is the adaptation of the psychoacoustic parameters for the lower
sampling frequencies. The frame size is reduced from 1152 samples to 576
samples in Layer III to make the audio frame more manageable for
packetizing in internet applications. (Table I lists the duration of the audio
frame for the different sampling rates and layers of MPEG-2 LSF.)

The resulting data rates in MPEG-2 LSF are lower than the data rates for
MPEG-l. The nominal operating rates for MPEG-l are from 32 kb/s up to
224 kb/s but good quality is usually found around 128 kb/s per channel. In
contrast, MPEG-2 LSF typically produces adequate quality for various
applications throughout its operating range from 32 to 128 kb/s per channel
for Layer I, and from 8 to 80 kb/s per channel for Layers II and III.

padding_bit emp~asis

synchword layer bitrate_index I mode copyright I

[J['['['['['['['I'['['I'~ [II rn:tj:Qrn:PJ
I errocprotection

10 (O=LSF)
I private_bit I original/copy

mode_extension
sampling_frequency

Figure 1. MPEG-2 Audio LSF header

Chapter 12: MPEG-2 Audio 317

Table 1. MPEG-2 LSF audio frame duration [ISO/fEe 13818-3)

Layer Sampling Frequency in kHz
16 22.05 24

24ms 17.41 ms 16 ms
II 72 ms 52.24 ms 48 ms
III 36 ms 26.12 ms 24 ms

The decrease in data rates, especially for Layer III, made MPEG-2 LSF
useful for low bandwidth Internet applications. This led the audio group at
the Fraunhofer Institute to create an even lower sampling rate modification
of Layer III that they named "MPEG-2.5" (see also [Brandenburg 99]).
"MPEG-2.5" reduced the sampling rates by another factor of 2 from MPEG-
2 LSF Layer III. In "MPEG-2.5" the allowed sampling rates are 12 kHz,
11.025 kHz, and 8 kHz. The addition of these extensions allow Layer III
coders to range from samples rates of 8 kHz ("MPEG-2.5") up to 32 kHz
(MPEG-I).

To allow "MPEG-2.5" decoders to work with the same bitstream format
as used in MPEG-l Audio and MPEG-2 LSF, they removed the final bit
from header synchword and merged it with the ID bit into a 2-bit ID code.
The result was that "MPEG-2.5" decoders work with an II bit synchword
(rather than 12 bit) but have 2 bits to identify the bitstream format. The
"MPEG-2.5" ID codes are [00] for "MPEG-2.5", [I I] for MPEG-I, [10] for
MPEG-2 LSF, and [01] reserved for future extensions. Notice that using a
[1] as the first bit of the two-bit ID code bit for the prior formats leads to
compatibility with the MPEG-I and MPEG-2 formats. Hence, the "MPEG-
2.5" bitstream is identical to that of MPEG-I Audio and MPEG-2 LSF when
those formats are being encoded.

The high quality of the Layer III encoder coupled with the wide range of
sample rates and data rates that can be encoded using the MPEG-2 LSF and
"MPEG-2.5" extensions made Layer III a natural choice for Internet
applications. The so-called "MP3" file format is typically implemented as
MPEG-l Layer III with both of these extensions supported. Low bandwidth
users typically use the 16 kHz sampling rate (for a bandwidth of roughly 8
kHz) and encode stereo sound at 32 kb/s. Compared with the CD format
(44.1 kHz stereo at 16 bits/sample), this represents a data rate reduction of
over a factor of 40 and allows for an entire CD's worth of music (about 800
MB) to be stored in under 20 MB. Higher bandwidth users are more likely
to operate with the full CD 44.1 kHz sample rate at 128 kb/s for "near CD
quality" sound at a data rate reduced by more than a factor of ten from the
CD format.

The use of MP3 files for sharing audio over the Internet has spread so
widely that it has become the de facto standard for Internet audio. In

318 Introduction to Digital Audio Coding and Standards

addition, MP3 players and portable devices are in widespread use for
listening to audio and home audio digital components (e.g. CD players,
DVD players) increasingly tout MP3 format playback as one of their
features.

3. INTRODUCTION TO MULTICHANNEL AUDIO

Since the main focus of the MPEG-2 Audio work evolved around
multichannel audio, a brief introduction on the evolution of spatial
representation of sound is presented in this section. Starting with
monophonic technology, and partially pushed by the progress in the film
industry, the art of multichannel sound developed towards stereophonic,
quadraphonic, and more.

3.1 History and Channel Configurations

The cinema industry embraced multichannel formats [Holman 91]
because of their flexibility and the greater enveloping experience they
provided. In the eighties, with the introduction of the CD format,
stereophonic sound became well established, while a few artists were
mastering in quadraphonic and a very small audience had access to
reproduction systems with more than two channelsat home. During the
nineties when the migration from the cinema halls to the living rooms started
to take place, the pace was set for standards like that of high definition
television in North America [ATSC A/S21l0] and the DVD [DVD-Video]
standards. In the early nineties the focus of the audio standardization efforts
shifted from mono and stereo audio signals to multichannel audio signals.
Today, the general evolution of digital technology and a steady growth in
transmission bandwidth and storage capacity have made multichannel audio
a more realistic option for widespread audio reproduction.

MPEG-2 Audio was one of the first audio coding standards embracing
the S.I-channel audio configuration. This now widely adopted multichannel
configuration encompasses five full-bandwidth (20 kHz) channels and a low
frequency enhancement channel, LFE, covering frequencies below 200 Hz
(hence the .1 denomination since the LFE channel covers less than 10% of a
20-kHz bandwidth signal). The 5.1 configuration was first introduced by
SMPTE in 1987 [Holman 91] and later adopted by a number of
standardization bodies including ITU-R, MPEG, the North American
HDTV,DVD.

Chapter 12: MPEG-2 Audio

LS

Reference loudspeaker arrangement with
loudspeakers UGRand LS/RS

Screen I HDTV - Reference distance = 3 H (2P, = 33°

Screen 2 = 2 H (2P 2 = 48°

H: height of screen

B: loudspeaker base width

Loudspeaker Horizontal angle from Height Inclination
centre (degrees) (m) (degrees)

C 0 1.2 0

L, R 30 1.2 0

LS, RS 100 ... 120 ;>: 1.2 0 .. 15 down

Figure 2. 3/2 multichannel configuration from [ITU-R BS.77S-1]

319

The 5.1-channel audio configuration is often referred to as the 3/2/.1
configuration, since three loudspeakers are typically placed in front of the
listener, and two in the sidelrear (see Figure 2). This arrangement is
described in detail in the ITU-R recommendation BS.775-1 [ITU-R BS.775-
1]. According to the ITU-R specifications, the five full-bandwidth
loudspeakers are placed on the circumference of a circle centered on the
reference listening position(see Figure 2). Three front loudspeakers are

320 Introduction to Digital Audio Coding and Standards

placed at angles from the listener axis of _300 (left channel, L), +300 (right
channel, R), and 0° (center channel, C); the two surround loudspeakers are
placed at angles between -1000 and -120° (left surround channel, LS) and
+ 100° and + 1200 (right surround channel, RS). The LFE speaker is typically
placed in the front, although its exact location is not specified in the ITU-R
layout, since the human auditory system does not take strong localization
cues from one single low frequency sound channel. The purpose of the LFE
channel is to enable high-level sounds at frequencies below 200 Hz without
overloading the main channels. In the cinema practice, this channel has 10
dB more headroom than the main channels.

In the following sections of this book, we will be generally referring to
the 5.1-channel configuration unless otherwise specified. If more than 5.1
channels are employed, the basic ideas and main principles we present still
hold true, but even greater compression requirements for the coding
technology should be adopted.

3.2 System Demands

Going from stereophonic to multichannel sound reproduction adds to the
demands on storage and delivery media. If we consider the CD format, that
is PCM sampled at a frequency of 44.1 kHz and quantized using uniform
quantization with of 16 bits per sample, the total data rate for the 5.1
multichannel configuration is 3.598 Mb/s. An hour of multichannel music in
the CD format requires 1.62 GB, way above the CD storage capacity of
about 800 MB per disk. If we consider current multichannel applications
such as digital broadcasting, internet audio and electronic music distribution,
in each case bandwidth/capacity are serious challenges.

As in the monophonic and stereo case, the challenge of multichannel
audio coding is to minimize the data rate without sacrificing audio quality.
While PCM is a well-understood and well-established coding method that
offers very low-complexity implementations, it requires very high
capacitylbandwidth to provide high-quality audio signals. One should also
notice that CD format audio signals may suffer from some degradation. It
was shown in [Fielder 87] by comparing the hearing threshold with the CD
signal resolution levels and typical 16-bit converters, that audible
quantization noise can be introduced in the mid-range frequencies. The
implication is that, expensive as it may be, one may need to increase the
PCM sample precision, going for example from R=16 to R=24.

In addition to the augmented sample precision, we are witnessing a new
trend to adopt higher sampling rates, going from Fs = 44.1 kHz or Fs = 48
kHz to Fs = 96 kHz, and Fs = 192 kHz. While there is no scientific evidence
or published experimental results to the authors' knowledge that

Chapter J 2: MPEG-2 Audio 321

unequivocally prove the advantages of adopting higher sampling
frequencies, many recording engineers and industry "golden ears" feel that
adopting sampling frequencies of 96 kHz or higher and the equivalent audio
sample word length of 24 bits, and multichannel audio are essential in
providing the end user with high quality audio and a truly enveloping
experience. This leads to different choices as how to balance the emerging
market desire for high resolution audio with current delivery media
restrictions. Table 2 shows examples of different approaches in the
marketplace to multichannel high-resolution audio.

At high sampling rates media restrictions become even more binding,
prohibiting multichannel audio even for emerging new high-capacity
technologies like, for example, DVD-Audio applications [DVD-Audio]. If
we consider 5 full-bandwidth channels sampled at 96 kHz with 24-bit
precision, the total throughput is 11.52 Mb/s, which exceeds the maximum
9.6 Mb/s throughput of DVD-Audio.

Table 2. Different al2l2roaches to multichannel in the marketl2lace
MPEG-2 BC AC-3 MPEG-2AAC DVD-Audio

Audio Channels 1-5.1 1-5.1 1-48 1-6

Fs (kHz) 32,44.1,48 32,44.1,48 8-96
44.1,48,88.2,
96, 176.4, 192

R (bits/sample) 16-24 16-24 16-24 16-20-24

I (kb/s) 32-1,130 32-640
Up to 576 per

9600
channel

Frame (samples) 384-1152 1536 1024

4. MPEG-2 MULTICHANNEL BC

MPEG-2 multichannel BC audio coding provides a multichannel
extension to MPEG-l Audio which is backwards compatible with the
MPEG-l bitstream, where backwards compatibility implies that an MPEG-l
decoder is able to decode MPEG-2 encoded bitstreams. The audio sampling
rates in MPEG-2 BC for the main channels are the same as in MPEG-l,
however, the channel configuration supports up to five full-bandwidth main
audio channels plus a low frequency enhancement, LFE, channel whose
bandwidth is less than 125 Hz. The sampling frequency of the LFE channel
corresponds to the sampling frequency of the main channels divided by 96.

There are different strategies for achieving backward compatibility with
monophonic and two-channel systems. One procedure is to provide both
monophonic and two-channel information concurrently with the
multichannel data stream (simulcast). The advantage of this situation is that

322 Introduction to Digital Audio Coding and Standards

no constraints are imposed in the multichannel technology, and the
monophonic/two-channel services can simply be discontinued at a given
time. The disadvantage of this scenario is an increase in the data capacity
required (at least initially). Another approach is to embrace backward
compatible matrixing techniques. In this approach, the left and right
channels contain the down-mixed multichannel information. The MPEG-2
BC audio coding standard follows this second approach. In general, the
advantage of this approach is that little additional data capacity is required
for the multichannel service. The disadvantage is that this approach greatly
constrains the design of the multichannel coder, which in turns limits quality
of the multichannel reproduction for certain classes of signals ata given data
rate. In particular, this approach may lead to unmasking of quantization
noise in the decoder after the de-matrixing stage [Bosi, Todd and Holman
93]. As we discussed in the introduction to this chapter, the backwards
compatibility with the MPEG-I bitstream requirement plays a very
important role in the design of the MPEG-2 BC system [ISO/IEC 13818-3].
In this section we discuss this approach in detail.

Since the MPEG-l equivalent left and right channels need to carry a
complete description of the MPEG-2 main multichannel signal, the five
channel information is down-mixed into two channels as follows, see also
[Ten Kate 92]:

Lo = c (L + aC + bLs)

Ro = c (R + aC + bRs)

Where L represents the left channel, R the right channel, C the center
channel, and Ls and Rs the left and right surround channels respectively. Lo
and Ro represent the MPEG-I compatible left and right channels (see Figure
3). The down-mix coefficients are specified in the standard. For example,
commonly used values for the down-mix coefficients are given by:

1
a=b=-

J2
and 1

c=--
1+J2

While the basic MPEG-2 BC bitstream structure is essentially the same
as in MPEG-I (see also Figure 4 and Figure 5), additional channels (see
Figure 3), T3, T4, Ts (corresponding to C, L" and Rs respectively) and LFE
channels are stored along with the multichannel header as an optional
extension bitstream in the ancillary data field.

Chapter 12: MPEG-2 Audio

L

R

C

Ls

Rs

Lo = L +xC+yLs

Ro = R+xC+yRs

matrix I---,T-=-3_=-=-C_~
T4 = Ls MC-

I---'T--'-5-= -=RS'--~ encoder

LFE --------~

MPEG-1
stereo

decoder

MPEG-2
multichannel

decoder

323

Lo'

Ro'

L'
R'

C'
Ls'
Rs'

L..-___----,..-LFE'

Figure 3. MPEG-2 multichannel Be configuration from [Stoll 96]

For Layers I and II the LFE channel is coded using block floating point.
For Layer III the LFE channel is coded following a simplified MPEG-I
Layer III encoding process which includes Huffman coding and operates
only in the MDCT short block mode (see also Chapter 11). The audio
sample precision adopted in MPEG-2 BC is higher than the precision
adopted in MPEG-I with an equivalent word precision of up to 24 bits per
sample. The overall data rate may be increased above that specified by the
MPEG-I standard by using the extension bitstream field so that the MPEG-2
encoded data are still compatible with the MPEG-I data specifications. The
maximum data rates at 48 kHz sampling rate are 1.13 Mb/s for Layer I,
1.066 Mb/s for Layer II, 1.002 Mb/s for Layer III. Notice that for Layers II
and III the multichannel extension is encoded as a Layer II or III extension
respectively; for Layer I, however, only Layer II extensions are allowed.

In the decoder, the corresponding de-matrixing process takes place as
follows:

L = LJe - aC - bLs

R = Role - aC - bRs

During the de-matrixing process quantization noise that was masked in
certain channels in the encoder stage may appear as audible quantization
noise in different channels in the decoder stage. An example that illustrates
this point is given when a signal in a particular channel is derived from two
channels with signals out of phase, i.e. canceling each other. If the
corresponding quantization noise is not out of phase, then it becomes audible
since the masking portion of the signal is canceled out. This is obviously an

324 Introduction to Digital Audio Coding and Standards

extreme case, but, in general, partial unmasking of quantization noise may
occur frequently after the de-matrixing process. To compensate for this
effect an increase in the coding margin (and therefore in the global data rate)
is required to maintain perceptual lossless coding.

In addition to the 5.1 or 3/2/.1 configuration, other channel
configurations supported in MPEG-2 include the 311, 3/0, 2/2, 211, 2/0, 1/0
configurations, where the number before the slash symbol indicates the
number of channels in the frontal plane, and the number after the slash
symbol indicates the number of channels in the rear plane (see also [ITU-R
BS.775-1]). Different combination of audio input channels are encoded and
transmitted. The first two channels represent always the two basic channels
compatible with the MPEG-l specifications. In general the up to three
additional channels or their combination can be dynamically selected to be
conveyed in the transmission channels of the ancillary data field.

4.1 Bitstream Format

MPEG-2 Be uses the ancillary data field in the MPEG-l format to store
the additional multichannel information. Figure 4 shows the structure of an
MPEG-2 audio frame. The first section of the frame is identical to the
MPEG-l audio frame. The second section, the multichannel field, is stored
in the ancillary data portion of the MPEG-l bitstream, along with the
ancillary data. After the MPEG-l header, eRe, and audio data, in the
MPEG-l ancillary data field, the multichannel (MC) header (see also Figure
6), Me eRe, Me composite status information (see also Figure 8), Me
audio data, multilingual (see next section) and ancillary data follow. If the
multichannel data rate exceeds the MPEG-l data rates, the extension bit in
the Me header is set. In this case, in addition to the MPEG-l compatible
part of the audio frame, an extension part (see Figure 5) consisting of the
extension (Ext) header, (see also Figure 7, namely Ext synchronization
word, Ext eRe, Ext length, and Ext ID bit), Ext Me audio data, and
multilingual and Me ancillary data are also present.

Chapter 12: MPEG-2 Audio 325

Multilingual Additiooal
AnciUary Data

MPEG-2 Multichannel ___ +/
Extension Data

Ancillary Data

L.,IR" Basic Signal

MPEG-l LAYER II Frame ---------.... ,.

Figure 4. MPEG-2 multichannel bitstream backwards compatible with MPEG-I Layer II
from [ISO/lEC 13818-3]

MCCOlIllosile

Header

MPEG-l Audio Data

~ MPEG-I COlJllatiblePartofMPEG-2Frarre

AnciUary
Data ExtCRC

EXlensim Part

AnciUary
Data

Multilingual

Data

Figure 5. MPEG-2 multichannel extension from [ISO/IEC 13818-3]

As described above, the extension bitstream is utilized when the
multichannel and the multilingual information does not fit in one basic
MPEG-I frame. The first bit in the multichannel header indicates whether or

326 Introduction to Digital Audio Coding and Standards

not the extension field in the MPEG-2 frame exists. If the extension
bitstream exists, then an eight-bit unsigned value describes the length in
bytes of the ancillary data field. The other bits in the multichannel header
convey information on the multichannel channels, de-matrix procedure, and
multilingual channels (see next section), etc. For example, the center bits
indicate whether or not the center channel is present and if its bandwidth is
limited, i.e. phantom coding of the center channel is applied. The number of
multilingual channels, their sampling rate and the multilingual layer is also
specified in the multichannel header.

In the composite status information field, the multichannel coding
employed such as transmission channel allocation, crosstalk, and prediction
are specified. For Layer III the MDCT block size and the beginning of the
multichannel data is also indicated in this field via an 11 bits value, since
Layer III maintains a locally variable data rate structure.

Ext B itstream Present

Extension ynch word

o 1 1 1 1 1 1 1 1 1 1 1

Center
~f--

LFE De-matrix
.--- .---

I--r- I--

Cop right ID
MLFs

I-- I--

L-. '-

Surround # ML C~annels Copyright ID start

Audio Mix ML Layer

Figure 6. MPEG-2 multichannel header

Extension Length
I

Extension CRC
I'

Extension Bit ID

Figure 7. MPEG-2 multichannel extension header

Chapter 12: MPEG-2 Audio 327

Dyn Crosstk LR

Me prediction select info

Dyn Crosstk Mode Me prediction in use

TC alloe

Figure 8. MPEG-2 Layers I and II multichannel composite status information

4.2 Multilingual Channels

In addition to the main audio channels, MPEG-2 Be supports
multilingual audio. Up to seven multilingual channels can be transmitted
along with the main audio channels (see Figure 9). The sampling frequency
of the multilingual channels can be the same as or half the sampling
frequency of the main channels. When the main channels are coded with
Layer I the multilingual extension is always coded with the Layer II
algorithm. When the main channels are coded with Layers II and III, the
multilingual extension can be coded either with Layer II or Layer III by
appropriately setting the multilingual layer bit in the multichannel header.

R

C

Ls

Rs

TO
Lo = L+O.71C+yLs

T1
Ro = R+O.71C+yRs

malrix T2
T3

T4

LFE ----------l~

MC
encoder

[/L<.&J..iJ.~u..u..i..L<.."'"

basic slereo(Lo/Ro)
MPEG-1 plus
MC-extension

information

dematrix

Figure 9. MPEG-2 multichannel Be with multilingual channels from [Stoll 96]

328 Introduction to Digital Audio Coding and Standards

4.3 Encoding Process

In Figure 10 a block diagram of the MPEG-2 multichannel Layer II
coding scheme is shown. If we compare it with the coding scheme of the
encoding process for MPEG-I shown in Figure 3 and Figure 22 of Chapter
11, we notice that the basic structure, i.e. the sub-band filter analysis, scale
factors computation, psychoacoustic modeling, basic quantization and
coding stays the same. The main difference is that instead of a single or
stereo channel in MPEG-2 multiple channels are considered and composite
channel coding techniques are applied.

Each channel of input signal is first fed to the PQMF sub-band filter and
then matrixed. The scale factors calculation, transmission channel
allocation, dynamic crosstalk and multichannel prediction stages follow next
(see below). In parallel, Psychoacoustic Model I (see Chapter II) is
computed. The corresponding SMR values are then modified to take into
consideration the prediction values for the sub-band samples. The prediction
coefficients are quantized and the prediction error signals are then computed.
Finally, the quantized sub-band samples, scale factors, bit allocation values,
multichannel control parameters, etc., are multiplexed and formatted into the
MPEG-2 bitstream.

MPEG-2 BC adopts composite channel coding techniques such as
dynamic crosstalk, adaptive multichannel prediction, and the phantom
coding of the center channel, see also [Stoll 96]. The dynamic crosstalk
technique exploits the same principles utilized in intensity stereo coding
wherein the high frequency content of a stereo signal is transmitted as a
single audio signal along with scaling information describing how the
intensity is split between the two channels. Similarly, in dynamic crosstalk
mode only one audio signal is sent in the high frequency region and scaling
coefficients define how to split it between each channel. Dynamic crosstalk
encoding can be done independently for several different frequency regions.
Adaptive multichannel prediction reduces redundancies by exploiting
statistical correlations between channels. Rather than of transmitting the
actual signal in each channel, only the prediction error from an adaptive
predictor is sent for the center and surround channels. In MPEG-2 BC a
predictor of up to the 2nd order with delay compensation is employed [Fuchs
93]. Finally, above a certain frequency, the center channel signal can be
split and added to the left and right main channels creating a phantom image
of the center signal being anchored in the center by the two side speakers.

Chapter 12: MPEG-2 Audio 329

Multichannel PCM Audio Input

ISOllEe 13818-3 Multichannel Bitstream

Figure 10. MPEG-2 Layer II multichannel encoding process block diagram

The multilingual section of the MPEG-2 bitstream is encoded as an
MPEG-I bitstream if the sampling frequency employed is the same as for
the main channels. In this case, however, no intensity coding mode is
allowed. If the sampling rate is half the sampling rate employed for the main
channels, the encoding of the multilingual channel is done according to the
MPEG-2 LSF specifications allowing a significant gain in coding efficiency
to be achieved at the expense of a reduction in the channel bandwidth. Since
in speech signals usually have bandwidth below 10kHz, this limitation does
not typically cause a strong degradation in quality.

330 Introduction to Digital Audio Coding and Standards

4.4 Applications and Quality Evaluation

MPEG-2 multichannel BC applications involve mostly Layer II
implementations. MPEG-2 Layer II was selected as a standard
recommendation by ITU-R for digital broadcasting applications including
digital radio and digital television. It is currently in use in the digital audio
broadcasting, DAB, standard [ETS 300 401 v2] and the digital video
broadcasting, DVB, standard [ETS 300421] worldwide. Layer II was also
adopted for DVD-Video applications in selected countries.

A number of subjective tests were carried out according to the ITU-R
BS.ll16 specifications (see also Chapter 13) to evaluate MPEG-2 Layer II
performance [ISO/IEC MPEG N1229]. For MPEG-2 Layer II very good
quality is achieved for data rate in average of 640 kb/s in the 5.1
multichannel configuration.

5. SUMMARY

In this chapter we reviewed the main features of the MPEG-2 Audio
standard. Initially the goals of MPEG-2 were to address low sampling
frequencies and multichannel extensions to MPEG-l. MPEG-2 LSF,
motivated by the demands of very low data rates applications, found
widespread penetration with one of its derivate, the MP3 format. MPEG-2
multichannel BC was deployed to secure compatibility with an installed base
of mono/stereo systems. Based on this requirement, constraints on the
multichannel design lead to further investigation on non backwards
compatible multichannel systems and the development of MPEG-2
Advanced Audio Coding, AAC. In the next chapter we discuss the main
features of MPEG-2 AAC.

6. REFERENCES

[ATSC A/52/1O]: United States Advanced Television Systems Committee Digital
Audio Compression (AC-3) Standard, Doc. Al52/10, December 1995.

[Bosi et al. 97]: M Bosi, K. Brandenburg, S. Quackenbush, L. Fielder, K. Akagiri,
H. Fuchs, M. Dietz, J. Herre, G. Davidson and Y. Oikawa, "ISO/IEC MPEG-2
Advanced Audio Coding," J. Audio Eng. Soc., vol. 45, pp. 789 - 812, October 1997.

Chapter 12: MPEG-2 Audio 331

[Bosi, Todd and Holman 93]: M. Bosi, C. Todd, and T. Holman, "Aspects of
Current Standardization Activities for High-Quality, Low Rate Multichannel Audio
Coding," Proc. of the 1993 IEEE Workshop on Applications of Signal Processing to
Audio and Acoustics, 2a.3, New Paltz, New York, October 1993.

[Brandenburg 99]: K. Brandenburg, "MP3 and AAC Explained", from the
Proceedings of the AES 17th International Conference, High-Quality Audio Coding,
pp. 99-111, Florence, Italy, September 1999.

[Damaske and Ando 72]: P. Damaske and Y. Ando, "Interaural Crosscorrelation for
Multichannel Loudspeaker Reproduction," Acustica, vol. 27, pp. 232-238, October
1972.

[Davis 93]: M. Davis, "The AC-3 Multichannel Coder," presented at the 95th AES
Convention, New York, pre-print 377, October 1993.

[DVD-Audio]: DVD Specifications for Read-Only Disc, Part 4: AUDIO
SPECIFICA TIONS Ver. 1.2, Tokyo 1999-2001.

[DVD-Video]: DVD Specifications for Read-Only Disc, Part 3: VIDEO
SPECIFICATIONS Ver. 1.1, Tokyo 1997-2001.

[ETS 300 401 v2]: The European Telecommunications Standards Institute (ETSI),
ETS 300401 v2, "Radio Broadcasting Systems; Digital Audio Broadcasting (DAB)
to Mobile, Portable and Fixed Receivers", 1995-1997.

[ETS 300421]: The European Telecommunications Standards Institute (ETSI), ETS
300421, "Digital Video Broadcasting (DVB); Framing Structure, Channel Coding
and Modulation for 11112 GHz Satellite Services", August 1997.

[Fielder 87]: L. Fielder, "Evaluation of the Audible Distortion and Noise Produced
by Digital Audio Converters," J. Audio Eng. Soc., vol. 35, pp. 517-535, July/August
1987.

[Fuchs 93]: H. Fuchs, "Improving Joint Stereo Audio Coding by Adaptive
Interchannel Prediction", Proc. of the 1993 IEEE Workshop on Applications of
Signal Processing to Audio and Acoustics, New Paltz, New York, October 1993.

[Holman 91]: T. Holman, "New Factors in Sound for Cinema and Television," J.
Audio Eng. Soc., vol. 39, pp. 529-539, July/August 1991.

[ISO/IEC 13818-3]: ISOIIEC 13818-3, "Information Technology - Generic Coding
of Moving Pictures and Associated Audio, Part 3: Audio," 1994-1997.

[ISO/IEC MPEG NI229]: ISO/IEC JTC IISC 29/WG II N1229, "MPEG-2
Backwards Compatible CODECS Layer II and III: RACE dTTb Listening Test
Report," Florence, March 1996.

332 Introduction to Digital Audio Coding and Standards

[ITU-R BS.775-1]: International Telecommunications Union BS.775-1,
"Multichannel Stereophonic Sound System with and without Accompanying
Picture", Geneva, Switzerland, 1992-1994.

[Stoll 96]: G. Stoll, "ISO-MPEG-2 Audio: A Generic Standard for the Coding of
Two-Channel and Multichannel Sound", in N. Gielchrist and C. Grewin (ed.),
Collected Papers on Digital Audio Bit-Rate Reduction, pp. 43-53, AES 1996.

[Stoll et al. 94]: G. Stoll, G. Theile, S. Nielsen, A. Silzle, M. Link, R. Sedlmayer and
A. Breford, "Extension of ISO/MPEG-Audio Layer II to Multi-Channel Coding: The
Future Standard for Broadcasting, Telecommunication, and Multimedia
Applications", presented at the 94th AES Convention, Preprint 3550, Berlin 1994.

[Ten Kate 92]: W. ten Kate, P. Boers, A. Maekivirta, J. Kuusama, K. E. Christensen,
and E. Soerensen, "Matrixing of Bit-Rate Reduced Signals", in Proc. ICASSP, vol.
2, pp.205-208, May 1992.

[Van der Waal and Veldhuis 91]: R. G. v.d. Waal and R. N. J. Veldhuis, "Subband
Coding of Stereophonic Digital Audio Signals", Proc. ICASSP, pp. 3601 - 3604,
1991.

Chapter 13

MPEG-2AAC

1. INTRODUCTION

This chapter describes the MPEG-2 Advanced Audio Coding, AAC,
system.s Started in 1994, another effort of the MPEG-2 Audio committee
was to define a higher quality multichannel standard than achievable while
requiring MPEG-l backwards compatibility. The so called MPEG-2 non
backwards compatible audio standard, later renamed MPEG-2 Advanced
Audio Coding (MPEG-2 AAC) [ISOIIEC 13818-7] was finalized in 1997.
AAC made use of all of the advanced audio coding techniques available at
the time of its development to provide very high quality multichannel audio.

2. OVERVIEW

The aim of the MPEG-2 AAC development was to reach
"indistinguishable" audio quality as specified by the ITU-R TG 10-2 [lTU-R
TG 10-2/3] at data rates of 384 kb/s (or lower) for five full-bandwidth
channel audio signals. Tests carried out in the fall of 1996 at BBC, UK, and
NHK, Japan, showed that MPEG-2 AAC satisfies the ITU-R quality
requirements at 320 kb/s per five full-bandwidth channels (or lower

S The material in this chapter has significant overlap with that of [Bosi et. al. 1997] and the
authors gratefully acknowledge the contribution of MB's co-authors K. Brandenburg, S.
Quackenbush, L. Fielder, K. Akagiri, H. Fuchs, M. Dietz, J. Herre, G. Davidson and Y.
Oikawa to the material presented here.

M. Bosi et al., Introduction to Digital Audio Coding and Standards
© Kluwer Academic Publishers 2003

334 Introduction to Digital Audio Coding and Standards

according to the NHK data) [ISO/IEC MPEG NI420]. (The MPEG-2 AAC
tools also constitute the kernel of the MPEG-4 main, scalable, high quality
audio, low delay, natural audio and mobile audio internetworking profiles,
see also Chapter 15 [ISO/IEC 14496-3].) The MPEG-2 AAC specifications
are the result of a collaborative effort among companies around the world
each of which contributed advanced audio coding technology. AAC
combines the coding efficiency of a high-resolution filter bank, prediction
techniques, and Huffman coding to achieve very good quality audio at low
data rates. The AAC specifications have undergone a number of revisions
since the first submission of proposals (November 1994). In order to define
the AAC system, the audio committee selected a modular approach in which
the full system is broken down into a series of self-contained modules or
tools, where a tool is defined as a coding module that can be used as a
separate component of the overall system. The AAC reference model (RM)
described the characteristics of each tool and how they fit together. Each
aspect of the RM has been evaluated via core experiments, consisting of
informal listening tests that followed the ITU-R BS.1116 (see also Chapter
10) guidelines that were carried out between January '95 and July '96.

The following AAC tools (see Figure I and Figure 2) are described in
this chapter:
• Gain Control (included in Figure I in the pre-processing stage)
• Filter Bank
• Prediction
• Quantization and Coding
• Noiseless Coding
• Bitstream Multiplexing
• Temporal Noise Shaping (TNS)
• Mid/Side (MIS) Stereo Coding
• Intensity Stereo Coding.

In order to allow a tradeoff between quality and memory/processing
power requirements, the AAC system offers three profiles: Main Profile,
Low Complexity (LC) Profile, and Scaleable Sampling Rate (SSR) Profile.
In the Main Profile configuration, the AAC system provides the best audio
quality at any given data rate. With exception of the preprocessing tool, all
parts of the AAC tools may be used. Memory and processing power
required in this configuration are higher than the memory and processing
power required in the LC Profile configuration (see also next sections). It
should be noted that a Main Profile AAC decoder can decode an LC Profile
encoded bitstream.

Chapter 13: MPEG-2 AAC 335

InpUllimc sigllai

13818-7
Coded Audio
Stream

Figure 1. MPEG-2 AAC encoder block diagram from [Bosi et al. 97]

In the LC Profile configuration, the prediction and preprocessing tools
are not employed and the TNS order is limited. While quality performance
of the LC Profile is very high (see also next sections), the memory and
processing power requirements are considerably reduced in this
configuration.

In the SSR configuration, the gain control tool is required. The
preprocessing performed by the gain control tool consists of a CQF (see also
Chapter 4), gain detectors and gain modifiers. The prediction tool is not
used in this profile, and TNS order and bandwidth are limited. The SSR
Profile has lower complexity than the Main and LC Profiles and it can
provide a frequency scaleable signal.

336 Introduction to Digital Audio Coding and Standards

13818-7 Coded
Audio Stream BilSLIl'am

Dc·
fOfmaHer

Output
Tune
SIgnal

Figure 2. MPEG-2 AAC decoder block diagram from [Bosi et al. 97]

The AAC encoder process can be described as follows (see also Figure
I). First, an MDCT-based filter bank (see also Chapter 5) is used to
decompose the input signal into sub-sampled spectral components (time
frequency domain). At 48 kHz, the AAC filter bank allows for a frequency
resolution of 23 Hz and time resolution of 2.6 ms. Based on the input signal,
an estimate of the time dependent masking thresholds are computed (see also
Chapter 7). A perceptual model similar to the MPEG Psychoacoustic Model
2 (see also Chapter 11) is used for the AAC system. SMR values are utilized
in the quantization stage in order to minimize the audible distortion of the
quantized signal at any given data rate.

After the analysis filter bank, the TNS performs an in-place filtering
operation on the spectral values, i.e. replaces the spectral coefficients with
their prediction residuals. The TNS technique permits the encoder to
exercise a control over the temporal fine structure of the quantization noise
even within a single filter-bank time-window.

For multichannel signals, intensity stereo coding (see also Chapter 11)
can also be applied; in this operation, only the energy envelope is
transmitted. Intensity stereo coding allows for a reduction in the spatial
information transmitted and it most effective at low data rates.

Chapter 13: MPEG-2 AAC 337

The time-domain prediction tool can employed in order to take advantage
of correlations between sub-sampled spectral components of subsequent
frames resulting in an increased redundancy reduction for stationary signals.

Instead of transmitting the left and right signal, the normalized sum (M as
in Mid) and difference signals (S as in Side) only can be transmitted.
Enhanced MIS stereo coding is used in the multichannel AAC encoder at
low data rates.

The spectral components are quantized and coded with the aim of
keeping the quantization noise below the masked threshold. This step is
done by employing an analysis-by-synthesis stage and using additional
noiseless compression tools. A mechanism called "bit reservoir" similar to
the one adopted in MPEG Layer III (see also Chapter 11) allows for a
locally-variable data rate in order to satisfy the signal demands on a frame
by-frame basis. Finally, a bitstream formatter is used to assemble the
bitstream, which consists of the quantized and coded spectral coefficients
and control parameters.

The MPEG-2 AAC system supports up to 48 audio channels. Default
configurations include monophonic, two-channel and five-channel plus LFE
channel configurations. In the default five-channel plus LFE configuration,
the 3/2-loudspeaker arrangement is adopted as per [lTU-R BS. 775]. In
addition to the default configurations, sixteen possible program
configurations can be defined in the encoder. Downmix capabilities are also
supported [lSO/IEC MPEG NI623].

The sampling rates supported by the AAC system vary from 8 kHz to 96
kHz as shown in Table 1. In Table 1 the maximum data rate per channel,
which depends on the sampling rate and the bit reservoir buffer size of 6144
bits per channel, is also shown.

Table 1. MPEG-2 AAC sampling frequencies and data rates [Bosi et al. 97]
Sampling Frequency Maximum Bit Rate per Channel (kb/s)
(Hz)

96000
88200
64000
48000
44100
32000
24000
22050
16000
12000
11025
8000

576
329.2
384
288
264.6
192
144
132.3
96
72
66.25
48

338 Introduction to Digital Audio Coding and Standards

3. GAIN CONTROL

In the SSR Profile, the gain control block is added in the input stage of
the encoder. The gain control module consists of a PQMF filter bank (see
also Chapter 4), gain detectors and gain modifiers. The PQMF filter bank
splits each audio channel's input signal into four frequency bands of equal
width, which are critically sampled. Each filter bank's output has gain
modification as necessary and is processed by the MDCT tool to produce
256 spectral coefficients, for a total of 1024 coefficients. Gain control can be
applied to each of the four bands independently.

SSR gain control in the decoder has the same components as does in the
encoder, but in an inverse arrangement. The distinctive feature of the SSR
Profile is that lower bandwidth output signals, and hence lower sampling
rate output signals, can be obtained by neglecting the signal from the upper
bands of the PQMF. This leads to output bandwidths of 18 kHz, 12 kHz and
6 kHz when one, two or three PQMF outputs are ignored, respectively. The
advantage of this signal scalability is that decoder complexity can be reduced
as output signal bandwidth is reduced. The gain control module in the
encoder receives as input the time-domain signals and produces as outputs
the gain control data and a gain modified signal whose length is equal to the
length of the MDCT window (see also next section). The block diagram of
the gain control tool is shown in Figure 3.

windOw-:====] ____ JTI~~~~~~~g gain_ sequence control_
data

_-+-tlPQMF

~~~ 

L-_____ =======-______ ~ time 

Pre-processing signal 

Figure 3. MPEG-2 AAC gain control module from [Bosi et al. 97] 



Chapter 13: MPEG-2 AAC 

The PQMF analysis and synthesis filters are given by: 

h dnJ = tQ[nJcos( (k +t)(n +f)~) 

gdnJ = Q[n] cos( (k +t)(n -t) ~) 
o S n S 95, 0 S k S 3 

339 

where the coefficients of the 96-tap prototype filter Q[n] are specified in 
[ISO/IEC 13818-7], The PQMF stage is followed by the gain detector and 
modifier stages. The gain detector produces gain control data that identify 
the bands receiving gain modification, the number of modified signal 
segments, and indices indicating location and level of gain modification for 
each segment. Note that the output gain control data is for the signal of the 
previous frame, so that the gain detector has a one-frame delay. The time 
resolution of the gain control is approximately 0.7 ms at 48 kHz sampling 
rate. The step size of gain control is 2n where n is an integer between -4 and 
11, allowing the signal to be amplified or attenuated by the gain control tool. 
The gain modifier applies gain control to the signal in each PQMF band by 
applying the gain control function to the signal. 

In the decoder the gain control module is placed at the end of the 
decoding process in the SSR Profile. Post-processing performed by the gain 
control tool consists of applying gain compensation to the sequences 
produced by each of the four IMDCT stages, overlapping and adding 
successive sequences with appropriate time alignment and combining these 
sequences in the inverse PQMF, IPQMF. The block diagram of the decoder 
gain control is shown in Figure 4. Gain compensation in the decoder 
requires the following three steps for each of the PQMF bands: 

(1) Decoding of gain control data 
(2) Calculation of the gain control function 
(3) Windowing and overlap-adding. 

In decoding the gain control data, the gain modification elements are 
extracted from the bitstream elements. From this information the gain 
control function is calculated, and is used to multiply the output of the 
IMDCT. Consecutive sequences are overlapped and added with appropriate 
time alignment. Finally, the IPQMF combines the separate four frequency 
bands to synthesize the output signal. 



340 Introduction to Digital Audio Coding and Standards 

window -
sequence 

11 
gain ~ 
control_ 
data 

/256 or 32 I Gain Compensator ~ 
IMDCT I & Overlapping 

Gain Compensator ~ 
output 

1256 or 32 I PCM 

IMDCT I & Overlapping data 

IPQMF 

l2560r32 I Gain Compensator ~ 
IMDCT I & Overlapping 

l256 or 32 I 
IMDCT I 

Gain Compensator ~ 
& Overlapping 

Figure 4. MPEG-2 AAC decoder gain control module from [Bosi et al. 97] 

4. FILTER BANK 

A fundamental component of the MPEG-2 AAC system is the conversion 
of the time domain signals at the input of the encoder into an internal time
frequency representation and the reverse process in the decoder. This 
conversion is done by applying a time-variant MDCT and a IMDCT (see 
also Chapter 5). The transform block length N can be set to either 2048 or 
256 time samples. Since the window function has a significant effect on the 
filter-bank frequency response, the MPEG-2 AAC filter bank has been 
designed to allow a change in window shape to best adapt to input signal 
conditions. The shape of the window is determined in the encoder and 
transmitted to the decoder. 

The use of 2048 time-domain samples transform allows for high coding 
efficiency for signals with complex spectra, but it may create problems for 
transient signals. We know from Chapter 7 that quantization errors 
extending more than a few milliseconds before a transient event are not 
effectively masked by the transient itself. This leads to a phenomenon called 
pre-echo in which quantization error from one transform block is spread in 
time and becomes audible (see also Chapter 7). The MPEG-2 AAC system 
addresses this problem by allowing the block length of the transform to vary 
as a function of the signal conditions, with a block switching mechanism 
based on [Edler 89], see also Chapter 5. Signals that are quasi-stationary are 
best accommodated by the long transform, while transient signals are 
generally reproduced more accurately by short transforms. The transition 



Chapter 13: MPEG-2 AAC 341 

between long and short transforms is seamless in the sense that aliasing is 
completely cancelled in the absence of transform coefficient quantization. 

4.1.1 Filter Bank Resolution and Window Design 

As discussed in Chapter 5, the frequency resolution of an MDCT filter 
bank depends on the window function. A natural choice that satisfies the 
MDCT perfect reconstruction requirements is the sine window. This 
window produces a filter bank with good resolution for the signal spectral 
components, improving coding efficiency for signals with a dense harmonic 
content. For other types of signals, however, a window with better ultimate 
rejection may provide better coding efficiency. The KED window (see 
[Fielder et al. 96] and also Chapter 5) better satisfies this requirement. In 
AAC the window shape can be varied dynamically as a function of the 
signal. The AAC system allows seamless switching between KBD and sine 
windows while perfect reconstruction and critical sampling are preserved 
(see also Chapter 5) as shown in Figure 5. A single bit per frame is 
transmitted in the bitstream to indicate the window shape. The window 
shape is variable for the 2048-length transform blocks only. Window shape 
decisions made by the encoder are applicable to the second half of the 
window function only since the first half is constrained by the window shape 
from the preceding frame. 

Gain 
Kaiser·Bessel !:erived Wndows for CNerlap-Add Sequence 
ABC 

". I" ..... -------~ ...... '\ 

/..... '\ 
-" ..... 

CNerlap-Add Sequence w ~h a Trans~ion to a Sine Function Wndow 
o E F 

.. - .................. ------ ........ \, 

// \, 
'. 

512 1~ 1536 aJ48 2500 :JJ72 ~ 4006 

Time (sarrples) 

Figure 5. MPEG-2 AAC window shape switching process from [Basi et al. 97] 



342 Introduction to Digital Audio Coding and Standards 

The adaptation of the time-frequency resolution of the filter bank to the 
characteristics of the input signal is done by shifting between transforms 
whose input lengths are either 2048 or 256 samples. The 256 sample length 
for transient signal coding was selected as the best compromise between 
frequency resolution and pre-echo suppression at a data rate of around 64 
kb/s per channel. Transform block switching is an effective tool for adapting 
the time/frequency resolution of the filter bank but potentially creates a 
problem of block synchrony between the different channels being coded. If 
one channel uses a 2048 transform length and during the same time interval 
another channel uses three 256 transforms, the long blocks following the 
block switch interval will no longer be time aligned. This lack of alignment 
between channels is undesirable since it creates problems in combining 
channels during encoding and bitstream formatting/de-formatting. This 
problem of maintaining block alignment between each channel of the 
MPEG-2 AAC system has been solved as follows. During transitions 
between long and short transforms a start and stop bridge window is used 
that preserves the time domain aliasing cancellation properties of the MDCT 
and IMDCT transforms and maintains block alignment. These bridge 
transforms are designated the "Start" and "Stop" sequences, respectively. 
The conventional long transform with the 2048 sample length is termed a 
"Long" sequence, while the short transforms occur in groups called the 
"Short" sequence. The "Short" sequence is composed of eight short block 
transforms arranged to overlap 50 % with each other and have the half 
transforms at the sequence boundaries to overlap with the "Start" and "Stop" 
window shapes. This overlap sequence and grouping of transform blocks 
into Start, Stop, Long and Short sequences is shown in Figure 6. 

Gain 
'Nindo'NSduring steady state conditions 
ABC ............ .. 

'>( 

windows during transient conditions 

1 

512 1024 1536 2048 2560 3072 3584 4096 

Time (samples) 

Figure 6. MPEG-2 AAC block switching process from [Basi et al. 97] 



Chapter 13: MPEG-2 MC 343 

Figure 6 displays the window-overlap process appropriate for both 
steady state and transient conditions. Curves A, B, and C represent this 
process when block switching is not employed and all transforms have a 
2048 samples and are composed of "Long" sequences only. The windowed 
transform blocks A, B, Care 50 % overlapped with each other, and 
assembled in sequential order. The lower part of the figure shows the use of 
block switching to smoothly transition to and from the shorter N = 256 time 
sample transforms that are present in the region between sample numbers 
1600 to 2496. The figure shows that short length transforms (#2 - #9) are 
grouped into a sequence of eight 50% overlapped transforms of length 256 
samples each and employing a sine function window of the appropriate 
length. The Start (#1) and Stop (#10) sequences allow a smooth transition 
between short and long transforms. The first half of the window function for 
the Start sequence, i.e. time-domain samples numbered 0 - 1023, is the either 
the first half of the KBD or sine window that matches the previous Long 
sequence window type. The next section of the window has a value of unity 
between sample numbers 1024 to 1471, then followed by a sine window. 
The sine window portion is given by the following formula: 

w[n] = Sin[~* (n -1343.5)] 
256 

where 1472 ~ n < 1600 

This region is followed by a final region with zero valued samples to 
sample number 2047. The "Stop" sequence window is the time-reversed 
version of the "Start" window and both are designed to ensure a smooth 
transition between transforms of both lengths and the proper time domain 
aliasing cancellation properties for the transforms used. For transients which 
are closely spaced, a single sequence of eight short windows can be 
extended by adding more consecutive short windows, subject to the 
restriction that short windows must be added in groups of eight. 

5. PREDICTION 

Prediction can be used in the AAC coding scheme for improved 
redundancy reduction. Prediction is especially effective in the case of 
signals presenting strong stationary components and very demanding in 
terms of data rate. Because the use of a short window in the filter bank 
indicates signal changes, i.e., non-stationary signal characteristic, prediction 
is only used for long windows. 



344 Introduction to Digital Audio Coding and Standards 

For each channel, prediction is applied to the spectral components 
resulting from the spectral decomposition of the filter bank. For each 
spectral component up to 16 kHz, there is one corresponding predictor, 
resulting in a bank of predictors, where each predictor exploits the auto
correlation between the spectral component values of consecutive frames. If 
prediction is activated, the quantizer is fed with a prediction error instead of 
the original spectral component, resulting in a higher coding efficiency. 
Figure 7 shows the block diagram of the prediction unit for one single 
predictor of the predictor bank. The predictor control operates on all 
predictors of one scale factor band. In Figure 7 the REC box indicates the 
reconstruction process of the last quantized value and Q indicates the 
quantizer. (Note that the complete prediction process is shown only for 
predictor PD. 

X;"" (n) 

X~"f (n) 

PREDICTOR CONTROL 
(P _ONIP _OFF) 

IF (P_ON) 
Yin) = e/n) 

= xi n) . Xj.'''( n) 

IF (P_OFF) 
Yin) = xin) 

'---------l _______ ~ y,(n) 

Predictor 
Side Info 

Figure 7. MPEG-2 AAC prediction unit for one scale factor band from [Basi et al. 97] 

In each predictor an estimate xest[n] of the current value of the spectral 
component x[n] is calculated from preceding reconstructed values xrec[n-l] 
and xrec[n-2]. This estimate is then subtracted from the actual spectral 
component x[n] resulting in a prediction error ern] which is quantized and 
transmitted. In the decoder, xest[n] is recreated and added to the dequantized 
prediction error that was transmitted data to create the reconstructed value 



Chapter 13: MPEG-2 AAC 345 

x,ec[n] of the current spectral component x[n]. The predictor coefficients are 
calculated from preceding recovered spectral components in the encoder as 
well as in the decoder. In this backward-adaptive approach, no additional 
side information is needed for the transmission of predictor coefficients - as 
would be required if forward adaptive predictors were to be used. 
The predictor is implemented using a lattice structure wherein two so-called 
basic elements are cascaded. The predictor parameters are adapted to the 
current signal statistics on a frame-by-frame basis, using an LMS-based 
(least mean square) adaptation algorithm. A more detailed description of the 
principles can be found in [Fuchs 95] and the implementation equations can 
be found in the standard [ISOIIEe 13818-7]. 

In order to guarantee that prediction is only used if this results in an 
increase in coding gain, an appropriate predictor control is required and a 
small amount of predictor control information has to be transmitted to the 
decoder. For the predictor control, the predictors are grouped into scale 
factor bands. The predictor control information for each frame is determined 
in two steps. First, for each scale factor band one determines whether or not 
prediction gives a coding gain and all predictors belonging to a scale factor 
band are switched on/off accordingly. Then, one determines whether 
prediction in the current frame creates enough additional coding gain to 
justify the additional bits needed for the predictor side information. Only if 
it does is prediction is activated and the side information transmitted. 
Otherwise, prediction is not used in the current frame and only one bit of 
side information is transmitted to communicate that decision. 

In order to increase the stability of the predictors and to allow defined 
entry points in the bitstream, a cyclic reset mechanism is applied in the 
encoder and decoder, in which all predictors are initialized again during a 
certain time interval in an interleaved way. The whole set of predictors is 
subdivided into 30 reset groups (Group 1: Ph P3h P6h ••• ; Group 2: P2, P32, 

P62, ••• ; ••• ; Group 30: P30, P60, ••. ) which are then periodically reset, one after 
the other with a certain spacing. For example, if one group is reset every 
eighth frame, then all predictors are reset within an interval of 8 x 30 = 240 
frames. The reset mechanism is controlled by a reset on/off bit, which 
always has to be transmitted as soon as prediction is enabled and a 
conditional five bit index specifying the group of predictors to be reset. In 
case of short windows prediction is always disabled and a full reset, i.e. all 
predictors at once, is carried out. 

The various listening tests during the development phase of the standard 
have shown that significant improvement in sound quality up to 1 grade on 
the ITU-R five-grade impairment-scale is achieved by prediction for 
stationary signals, like for example "Pitch Pipe", "Harpsichord". 



346 Introduction to Digital Audio Coding and Standards 

6. QUANTIZATION AND CODING 

The primary goal of the quantization and coding stage is to quantize the 
spectral data in such a way that the quantization noise satisfies the demands 
of the psychoacoustic model. At the same time, the number of bits needed to 
code the quantized signal must be below a certain limit, normally the 
average number of bits available for a block of audio data. This value 
depends on the sampling frequency and, of course, on the desired data rate. 
In AAC, a bit reservoir gives the possibility of influencing the bit 
distribution between consecutive audio blocks on a short-time basis. These 
two constraints, fulfilling the demands of the psychoacoustic model on the 
one hand and keeping the number of allocated bits below a certain number 
on the other, are linked to the main challenges of the quantization process. 
What can be done when the psychoacoustic model demands cannot be 
fulfilled with the available number of bits? What should be done if not all 
bits are needed to meet the requirements? 

There is no standardized strategy for optimum quantization, the only 
requirement is that the bitstream produced be AAC-compliant. One possible 
strategy is using two nested iteration loops as described later in this section. 
This technique was used for the formal AAC test (see also test description 
later in this chapter). Other strategies are also possible. One important issue, 
however, is the fine-tuning between the psychoacoustic model and the 
quantization process, which may be regarded as one of the 'secrets of audio 
coding', since it requires a lot of experience and know-how. 

The main features of the AAC quantization process are: 
• Non-uniform quantization. 
• Huffman coding of the spectral values using different tables. 
• Noise shaping by amplification of groups of spectral values (so-called 

scale factor bands). The information about the amplification is stored in 
the scale factors values. 

• Huffman Coding of differential scale factors. 
The non-uniform quantizer used in AAC is described as follows (see also 

MPEG Layer III description in Chapter 11): 

ix(i) = sign(xr(i»). nint([ jxr(i)j. ]0.75 -0.0946] 
V2quant,zer _ slepslze 

The main advantage of the non-uniform quantizer is the built-in noise 
shaping depending on coefficient amplitude. The signal to noise ratio 
remains constant with a wider range of signal energy values when compared 



Chapter J 3: MPEG-2 AAC 347 

to a uniform quantizer. The range of quantized values is limited to +/- 8191. 
In the above expression, quantizer_stepsize represents the global quantizer 
step size. Thus the quantizer may be changed in steps of 1.5 dB. The 
quantized coefficients are then encoded using Huffman coding. A highly 
flexible coding method allows the use of several Huffman tables for a given 
set of spectral data. Two and four-dimensional tables (signed or unsigned) 
are available. The Huffman coding process is described in detail in the next 
sections. To calculate the number of bits needed to encode the quantized 
data, the coding process has to be performed and the number of bits needed 
for the spectral data and the side information has to be computed. 

The use of a non-uniform quantizer is, of course, not sufficient to fulfill 
psychoacoustic demands. In order to fulfill the requirements as efficiently as 
possible, it is desirable to be able to shape the quantization noise in units 
similar to the critical bands of the human auditory system. Since the AAC 
system offers a relatively high frequency resolution for long blocks of 23.43 
Hz/line at 48 kHz sampling frequency, it is possible to build groups of 
spectral values which very closely reflect the bandwidth of the critical bands. 
Figure 8 shows the width of the scale factor bands for long blocks (for 
several reasons the width of the scale factor bands is limited to 32 
coefficients except for the last scale factor band). The total number of scale 
factor bands for long blocks at a sampling frequency of 48 kHz is 49. 

100 

90 

80 

70 

60 

50 

40 

30 

20 

10· 

o··~~~~~~~m 
1 5 9 13 17 21 25 29 33 37 41 45 49 

Figure 8. The number of MDCT coefficients in each MPEG-2 AAC scale factor band for long 
blocks at 48 kHz sampling rate from [Bosi et al. 97) 

The inverse scale factor amplification has to be applied in the decoder. 
For this reason the amplification information, stored in the scale factors in 
units of 1.5 dB steps is transmitted to the decoder. The first scale factor 



348 Introduction to Digital Audio Coding and Standards 

represents the global quantizer step size and is encoded in a PCM value 
called global_gain. All following scale factors are differentially encoded 
using a special Huffman code. This will be described in detail in the next 
sections. 

The decision as to which scale factor band has to be amplified is, within 
certain limits, left up to the encoder. The thresholds calculated by the 
psychoacoustic model are the most important criteria, but not the only ones, 
since only a limited number of bits may be used. As mentioned above, the 
iteration process described here is only one method for performing the noise 
shaping. This method is however known to produce very good audio quality. 
Two nested loops, an inner and an outer iteration loop are used for 
determining optimum quantization. The description given here is simplified 
to facilitate understanding of the process. The task of the inner iteration loop 
is to change the quantizer step size until the given spectral data can be 
encoded with the number of available bits. For that purpose an initial 
quantizer step size is chosen, the spectral data are quantized and the number 
of bits necessary to encode the quantized data is counted. If this number is 
higher than the number of available bits, the quantizer step size is increased 
and the whole process is repeated. The inner iteration loop is shown in 
Figure 9. 

Nonuniform 
quantizer 

#used bits less than 
#available bits? 

increase quantizer 
stepsize 

Figure 9. MPEG-2 AAC block diagram of the inner iteration loop from [Bosi et al. 97] 



Chapter 13: MPEG-2 AAC 349 

The task of the outer iteration loop is to amplify the scale factor bands 
(sfbs) in such a way that the demands of the psychoacoustic model are 
fulfilled as much as possible. 
1. At the beginning, no scale factor band is amplified. 
2. The inner loop is called. 
3. For each scale factor band, the distortion caused by the quantization is 

calculated (analysis by synthesis). 
4. The actual distortion is compared with the permitted distortion calculated 

via the psychoacoustic model. 
5. If this result is the best result so far, it is stored. This is important, since 

the iteration process does not necessarily converge. 
6. Scale factor bands with an actual distortion higher than the permitted 

distortion are amplified. At this point, different methods for determining 
the scale factor bands that are to be amplified can be applied. 

7. If all scale factor bands were amplified, the iteration process stops. The 
best result is restored. 

8. If there is no scale factor band with an actual distortion above the 
permitted distortion, the iteration process will stop as well. 

9. Otherwise the process will be repeated with the new amplification values. 
There are some other conditions not mentioned above which cause a 

termination of the outer iteration loop. Since the amplified parts of the 
spectrum need more bits for encoding, but the number of available bits is 
constant, the quantizer step size has to be changed in the inner iteration loop 
to decrease the number of used bits. This mechanism shifts bits from spectral 
regions where they are not required to those where they are required. For the 
same reason the result after an amplification in the outer loop may be worse 
than before, so that the best result has to be restored after termination of the 
iteration process. The outer iteration loop is shown in Figure 10. The 
quantization and encoding process for short blocks is similar to that for long 
blocks, but grouping and interleaving must be taken into account. Both 
mechanisms will be described in more detail in the next section. 



350 Introduction to Digital Audio Coding and Standards 

all sfbs amplified? 

no 

at least one band with 
more than the allowed 

distortion? 

yes 

store best result 

G 
Figure 10. MPEG-2 AAC block diagram of the outer iteration loop from [Bosi et al. 97] 

7. NOISELESS CODING 

The input to the noiseless coding module is the set of 1024 quantized 
spectral coefficients. As a first step a method of noiseless dynamic range 
compression may be applied to the spectrum. Up to four coefficients can be 
coded separately as magnitudes in excess of one, with a value of ±1 left in 
the quantized coefficient array to carry the sign. The "clipped" coefficients 
are coded as integer magnitudes and an offset from the base of the 
coefficient array to mark their location. Since the side information for 
carrying the clipped coefficients costs some bits, this noiseless compression 
is applied only if it results in a net saving of bits. 

Noiseless coding segments the set of 1024 quantized spectral coefficients 
into sections, such that a single Huffman codebook is used to code each 



Chapter 13: MPEG-2 AAC 351 

section (the method of Huffman coding is explained in a later section). For 
reasons of coding efficiency, section boundaries can only be at scale factor 
band boundaries so that for each section of the spectrum one must transmit 
the length of the section, in terms of the number of scale factor bands it 
comprises, and the Huffman codebook number used for the section. 

Sectioning is dynamic and typically varies from block to block, so that 
the number of bits needed to represent the full set of quantized spectral 
coefficients is minimized. This is done using a greedy merge algorithm 
starting with the maximum possible number of sections each of which uses 
the Huffman codebook with the smallest possible index. Sections are 
merged if the resulting merged section results in a lower total bit count, with 
merges that yield the greatest bit count reduction done first. If the sections 
to be merged do not use the same Huffman codebook then the codebook 
with the higher index must be used. 

Sections often contain only coefficients whose value is zero. For 
example, if the audio input is band limited to 20 kHz or lower, then the 
highest coefficients are zero. Such sections are coded with Huffman 
codebook zero, which is an escape mechanism that indicates that all 
coefficients are zero and it does not require that any Huffman code words be 
sent for that section. 

If the window sequence is eight short windows then the set of 1024 
coefficients is actually a matrix of 8 by 128 frequency coefficients 
representing the time-frequency evolution of the signal over the duration of 
the eight short windows. Although the sectioning mechanism is flexible 
enough to efficiently represent the 8 zero sections, grouping and interleaving 
provide for greater coding efficiency. As explained earlier, the coefficients 
associated with contiguous short windows can be grouped so that they share 
scale factors amongst all scale factor bands within the group. In addition, 
the coefficients within a group are interleaved by interchanging the order of 
scale factor bands and windows. To be specific, assume that before 
interleaving the set of 1024 coefficients c are indexed as 

c[g][w][b][k] 

where 
g is the index on groups 
w is the index on windows within a group 
b is the index on scale factor bands within a window 
k is the index on coefficients within a scale factor band 
and the right-most index varies most rapidly. 

After interleaving the coefficients are indexed as 



352 Introduction to Digital Audio Coding and Standards 

c[g][b][w][kJ 

This has the advantage of combining all zero sections due to band limiting 
within each group. 

The coded spectrum uses one quantizer per scale factor band. The step 
size of each of these quantizers is specified as a set of scale factors and a 
global gain that normalizes these scale factors. In order to increase 
compression, scale factors associated with scale factor bands that have only 
zero-valued coefficients are not transmitted. Both the global gain and scale 
factors are quantized in 1.5 dB steps. The global gain is coded as an 8-bit 
unsigned integer and the scale factors are differentially encoded relative to 
the previous frequency band scale factor value (or global gain for the first 
scale factor) and then Huffman coded. The dynamic range of the global gain 
is sufficient to represent full-scale values from a 24-bit PCM audio source. 

Huffman coding is used to represent n-tuples of quantized coefficients, 
with the Huffman code drawn from one of 12 codebooks. The spectral 
coefficients within n-tuples are ordered from low to high and the n-tuple size 
is two or four coefficients. The maximum absolute value of the quantized 
coefficients that can be represented by each Huffman codebook and the 
number of coefficients in each n-tuple for each codebook is shown in Table 
2. There are two codebooks for each maximum absolute value, with each 
representing a distinct probability distribution function. The best fit is 
always chosen. In order to save on codebook storage (an important 
consideration in a mass-produced decoder), most codebooks represent 
unsigned values. For these codebooks the magnitude of the coefficients is 
Huffman coded and the sign bit of each non-zero coefficient is appended to 
the codeword. 

Table 2. MPEG-2 AAC Huffman codebooks [Bosi et al. 97] 
Codebook Index n-Tuple size Maximum Absolute Signed Values 

Value 
0 0 
1 4 yes 
2 4 yes 
3 4 2 no 
4 4 2 no 
5 2 4 yes 
6 2 4 yes 
7 2 7 no 
8 2 7 no 
9 2 12 no 
10 2 12 no 
II 2 16 (ESC) no 



Chapter 13: MPEG-2 AAC 353 

Two codebooks require special note: codebook 0 and codebook II. As 
mentioned previously, codebook 0 indicates that all coefficients within a 
section are zero. Codebook 11 can represent quantized coefficients that have 
an absolute value greater than or equal to 16. If the magnitude of one or 
both coefficients is greater than or equal to 16, a special escape coding 
mechanism is used to represent those values. The magnitude of the 
coefficients is limited to no greater than 16 and the corresponding 2-tuple is 
Huffman coded. The sign bits, as needed, are appended to the codeword. 
For each coefficient magnitude greater or equal to 16, an escape code is also 
appended, as follows: 

escape code = <escape_prefix><escape_separator><escape_word> 

where 
<escape_prefix> is a sequence of N binary" 1 's" 
<escape_separator> is a binary "0" 
<escape_word> is an N+4 bit unsigned integer, msb first 

and N is a count that is just large enough so that the magnitude of the 
quantized coefficient is equal to 

8. BITSTREAM MULTIPLEXING 

The MPEG-2 AAC system has a very flexible bitstream syntax. Two 
layers are defined: the lower specifies the "raw" audio information while the 
higher specifies a specific audio transport mechanism. Since anyone 
transport cannot be appropriate for all applications, the raw data layer is 
designed to be parsable on its own, and in fact is entirely sufficient for 
applications such as compression for computer storage devices. The 
composition of a bitstream is shown in Table 3. 

Table 3. General structure of the MPEG-2 AAC bitstream [Bosi et al. 97) 
<stream> «transport> } <block> ( <transport> } <block> ... 
<block> [<pro!Lconfi!Lele>]<audio_ele>[ <audio_ele>][ <couplin!Lele>] [<data_ele>] 

[<fill eie>]<term ele> 

The tokens in the bitstream are indicated by angle brackets «». The 
bitstream is indicated by the token <stream> and is a series of <block> 
tokens each containing all information necessary to decode 1024 audio 



354 Introduction to Digital Audio Coding and Standards 

frequency samples. Furthermore each <block> token begins on a byte 
boundary relative to the start of the first <block> in the bitstream. Between 
<block> tokens there may be transport information, indicated by 
<transport>, such as would be needed for synchronization on break-in or for 
error control. Brackets ( {} ) indicate an optional token and brackets ( [] ) 
indicate that the token may appear zero or more times. 

Since the AAC system has a data buffer that permits its instantaneous 
data rate to vary as required by the audio signal, the length of each <block> 
is not constant. In this respect the AAC bitstream uses variable-rate headers 
(header being the <transport> token). These headers are byte-aligned so as 
to permit editing of bitstreams at any block boundary. 

An example of tokens within a <block> is shown in Table 4. 

Table 4. Example of tokens within an MPEG-2 AAC <block> [Bosi et al. 97] 
Token 
pro&-config_ele 
audio_ele 

single_channel_ele 
channel_paicele 
low _freq_effects_ele 

coupling_ele 
data_ele 
fill_ele 

term ele 

Meaning 
program configuration element 
audio element, one of: 

single channel 
stereo pair 
low frequency effects channel 

multichannel coupling 
data element, segment of data stream 
fill element, adjusts data rate for constant rate 
channels 
terminator, signals end of block 

The pro~config_ele is a configuration element that maps audio channels 
to an output speaker assignment so that multichannel coding can be as 
flexible as possible. It can specify the correct voice tracks for multi-lingual 
programming and specifies the analog sampling rate. 

There are three possible audio elements: single_channel_ele is a 
monophonic audio channel, channel_paicele is a stereo pair and 
low _freq_effects_ele is a sub-woofer channel. Each of the audio elements is 
named with a 4-bit tag such that up to 16 of anyone element can be 
represented in the bitstream and assigned to a specific output channel. At 
least one audio element must be present. 

The couplin~ele is a mechanism to code signal components common to 
two or more audio channels (see also next section). 

The data_ele is a tagged data stream that can continue over an arbitrary 
number of blocks. Unlike other elements, the data element contains a length 
count such that an audio decoder can strip it from the bitstream without 
knowledge of its meaning. As with the audio elements, up to 16 distinct data 
streams are supported. 



Chapter J 3: MPEG-2 AAC 355 

The fill_ele is a bit-stuffing mechanism that enables an encoder to 
increase the instantaneous rate of the compressed audio stream such that it 
fills a constant rate channel. Such mechanisms are required as, first, the 
encoder has a region of convergence for its target bit allocation so that the 
bits used may be less than the bit budget, and second, the encoder's 
representation of a digital zero sequence is so much less than the average 
coding bit budget that it must resort to bit stuffing. 

The term_ele signals the end of a block. It is mandatory as this makes 
the bitstream parsable. Padding bits may follow the term_ele such that the 
next <block> begins on a byte boundary. 

An example of one <block> for a 5.1 channel bitstream, (where the .1 
indicates the LFE channel), is 

<block> <single_channel_ele> <channel_pair_ele> 
<low _freq_effects_ele> <term_ele> 

Although discussion of the syntax of each element is beyond the scope of 
this section, all elements make frequent use of conditional components. This 
increases flexibility while keeping bitstream overhead to a minimum. For 
example, a one-bit field indicates whether prediction is used in an audio 
channel in a given block. If set to one, then the set of bits indicating which 
scale factor bands use prediction follows. Otherwise the bits are not sent. 
For additional information see [ISO/IEC 13818-7]. 

9. TEMPORAL NOISE SHAPING 

A novel concept in perceptual audio coding is represented by the 
temporal noise shaping, TNS, tool of the AAC system [Herre and Johnston 
96]. This tool is motivated by the fact that the handling of transient with 
long temporal input block filter banks presents a major challenge. In 
particular, coding of transients is difficult because of the temporal mismatch 
between masking threshold and quantization noise. 

The TNS technique permits the coder to exercise control over the 
temporal fine structure of the quantization noise even within a filter bank 
block. The concept of TNS uses the duality between time and frequency 
domain to extend predictive coding techniques. Signals with an "un-flat" 
spectrum can be coded efficiently either by directly coding spectral values or 
by applying predictive coding methods to the time signal. Consequently, the 
corresponding dual statement relates to the coding of signals with an "un
flat" time structure, i.e. transient signals. Efficient coding of transient signals 
can thus be achieved by either directly coding time domain values or by 



356 Introduction to Digital Audio Coding and Standards 

applying predictive coding methods to their spectral representation. Such 
predictive coding of spectral coefficients over frequency constitutes the dual 
concept to the intra-channel prediction tool described in the previous section. 
While intra-channel prediction over time increases the coder's spectral 
resolution, prediction over frequency enhances its temporal resolution. 

If forward predictive coding is applied to spectral data over frequency, 
the temporal shape of the quantization error will appear adapted to the 
temporal shape of the input signal at the output of the decoder. This 
effectively localizes the quantization noise in time under the actual signal 
and avoids problems of temporal masking, either in transient or pitched 
signals. This type of predictive coding of spectral data is therefore referred 
to as the TNS method. 

Analysis TNS 
Filterbank ~ Filtering ~ Q 

Figure 11. MPEG-2 AAC encoder TNS from [Bosi et a!. 97] 

TNS Filtering 
Encoder Noise 
Shaping Filter 

Figure 12. MPEG-2 AAC block diagram of the TNS encoder filtering stage from [Bosi et a!. 
97] 

The TNS processing can be applied either for the entire spectrum, or for 
only part of the spectrum. In particular, it is possible to use several 
predictive filters operating on distinct frequency regions. 

The predictive encoding/decoding process over frequency can be realized 
easily by adding one building block to the standard structure of a generic 
perceptual encoder and decoder. This is shown for the encoder in Figure 11 



Chapter 13: MPEG-2 AAC 357 

and Figure 12. Immediately after the analysis filter bank an additional 
block, "TNS Filtering", is inserted which performs an in-place filtering 
operation on the spectral values, i.e., replaces the target spectral coefficients 
(set of spectral coefficients to which TNS should be applied) with the 
prediction residual. This is symbolized by a rotating switch circuitry in 
Figure 12. Both sliding in the order of increasing and decreasing frequency 
is possible. Similarly, the TNS decoding process is done by inserting an 
additional block, inverse TNS filtering, immediately before the synthesis 
filter bank (see Figure 13 and Figure 14). An inverse in-place filtering 
operation is performed on the residual spectral values so that the spectral 
coefficients are replaced with the decoded spectral coefficients by means of 
the inverse prediction (all-pole) filter. The TNS operation is signaled to the 
decoder via a TNS on/off flag, the number and the frequency range of the 
TNS filters applied in each transform window, the order of the prediction 
filter (max. 12 or 20, depending on the profile) and the filter data itself. 

~ --.... 1NS ~ ~_1 Inverse SynthesE; 

Filtering Filterbank 

Figure 13. MPEG-2 AAC decoder TNS from [Bosi et al. 97] 

Inverse TNS Filtering 

Decoder Noise 
Shaping Filter 

Figure 14. MPEG-2 AAC TNS decoder inverse filtering stage from [Bosi et al. 97] 

The properties of the TNS technique can be described as follows. The 
combination of filter bank and adaptive prediction filter can be interpreted as 
a continuously signal adaptive filter bank. In fact, this type of adaptive filter 
bank dynamically provides a continuum in its behavior between a high
frequency resolution filter bank (for stationary signals) and a low- frequency 



358 Introduction to Digital Audio Coding and Standards 

resolution filter bank (for transient signals). Secondly, the TNS approach 
permits a more efficient use of masking effects by adapting the temporal fine 
structure of the quantization noise to that of the masker signal. In particular, 
it enables a better encoding of "pitch-based" signals such as speech, which 
consist of a pseudo-stationary series of impulse-like events where traditional 
transform block switching schemes do not offer an efficient solution. 
Thirdly, the TNS method reduces the peak bit demand of the coder for 
transient signal segments by exploiting irrelevancy. Finally, the technique 
can be applied in combination with other methods addressing the temporal 
noise shaping problem, such as transform block switching and pre-echo 
control. 

During the standardization process of the MPEG-2 AAC system, the 
TNS tool demonstrated a significant increase in performance for speech 
stimuli. In particular, an improvement in quality of approximately 0.9 in the 
five-grade ITU-R impairment scale for the most critical speech item 
"German Male Speech" was shown during the AAC core experiments. 
Advantages were also shown for other transient signal (for example in the 
"Glockenspiel" item). 

10. JOINT STEREO CODING 

The MPEG AAC system includes two techniques for stereo coding of 
signals: MIS stereo coding and intensity stereo coding. Both stereo coding 
strategies can be combined by selectively applying them to different 
frequency regions. The concept of joint stereo coding in the MPEG-2 AAC 
system is discussed in greater detail in [Johnston et al. 96]. 

10.1 MIS Stereo Coding 

In the MPEG-2 AAC system, MIS stereo coding is applied within each 
channel pair of the multichannel signal, i.e. between a pair of channels that 
are arranged symmetrically on the left / right listener axis. To a large 
degree, MIS processing helps to avoid imaging problems due to spatial 
unmasking. 

MIS stereo coding can be used in a flexible way by selectively switching 
in time on a block-by-block basis, as well as in frequency on a scale factor 
band by scale factor band basis, see [Johnston and Ferreira 92]. The 
switching state (MIS stereo coding "on" or "off") is transmitted to the 
decoder as an array of signaling bits ("ms_used"). This can accommodate 
short time delays between the Land R channels, and still accomplish both 
image control and some signal-processing gain. While the amount of time 



Chapter 13: MPEG-2 AAC 359 

delay that it allows is limited, the time delay is greater than the interaural 
time delay, and allows for control of the most critical imaging issues 
[Johnston and Ferreira 92]. 

10.2 Intensity Stereo Coding 

The MPEG-2 AAC system provides two mechanisms for applying 
intensity stereo coding. The first is based on the "channel pair" concept as 
used for MIS stereo coding and implements an easy-to-use coding concept 
that covers most of the normal needs without introducing noticeable 
overhead into the bitstream. For simplicity, this mechanism is referred to as 
the AAC "intensity stereo coding" tool. While the intensity stereo coding 
tool only implements joint coding within each channel pair, it may be used 
for coding of both 2-channel as well as multichannel signals. 

In addition, a second, more sophisticated mechanism is available that is 
not restricted by the channel pair concept and allows better control over the 
coding parameters. This mechanism is called the AAC "coupling channel" 
element and provides two functionalities. First, coupling channels may be 
used to implement generalized intensity stereo coding where channel spectra 
can be shared across channel boundaries including sharing among different 
channel pairs [Davis 93]. The second functionality of the coupling channel 
element is to perform a down-mix of additional sound objects into the stereo 
image so that, for example, a commentary channel can be added to an 
existing multichannel program ("voice-over"). Depending on the profile, 
certain restrictions apply regarding consistency between coupling channel 
and target channels in terms of window sequence and window shape 
parameters, see [ISO/IEC 13818-7]. In general, the MPEG-2 AAC system 
provides appropriate coding tools for many types of stereophonic program 
material from traditional two channel recordings to 5.1 or more multichannel 
material. 

11. TEST RESULTS 

Since the first submission of AAC proposals in November 1994, a number of 
core experiments were planned and carried out to select the best performing 
tools to be incorporated in the AAC RM. The final MPEG-2 AAC system 
was tested according to the ITU-R BS.1116 specifications in September 
1996 in the five channel, full-bandwidth configuration and compared to the 
MPEG-2 BC Layer II in the same configuration [ISO/IEC MPEG NI420]. 
The formal subjective tests were carried at BBC, UK, and NHK, Japan. A 



360 Introduction to Digital Audio Coding and Standards 

total of 23 reliable6 expert listeners at BBC and 16 reliable expert listeners at 
NHK participated in the listening tests. As specified by ITU-R BS.1116, the 
tests were conducted according to the triple-stimuluslhidden-reference/double
blind method using the ITU-R five-grade impairment scale (see also Chapter 
10). From the 94 submitted critical excerpts, a selection panel selected the 
ten most critical items (see Table 5). 

Table 5. MPEG-2 AAC Subjective Test Critical Items [Bosi et al. 97] 
No. 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Name 
Cast 
Clarinet 
Eliot 
Glock 
Harp 
Manc 
Pipe 
Station 
Thai 
Tria 

Description 
Castanets panned across the front, noise in surround 
Clarinet in front, theatre foyer ambience, rain in surround 
Female and male speech in a restaurant, chamber music 
Glockenspiel and timpani 
Harpsichord 
Orchestra - strings, cymbals, drums, horns 
Pitch Pipe 
Male voice with steam-locomotive effects 
Piano front left, sax in front right, female voice in center 
Triangle 

The test results, in terms of non-overlapping 95% confidence intervals 
for SDG as per ITU - R BS.1116 specifications [lTU - R BS.1116], are shown 
in Figure 15 through Figure 17. These figures show the test results for the 
following MPEG-2 AAC configurations: 
1. MPEG-2 AAC Main Profile at a data rate of 320 kb/s per five full

bandwidth channels 
2. MPEG-2 AAC LC Profile at a data rate of 320 kb/s per five full

bandwidth channels 
3. MPEG-2 Layer II BC at a data rate of 640 kb/s per five full- bandwidth 

channels. 
In Figure 15 and Figure 16 the vertical axis shows the SDG values. In 

Figure 17 the vertical axis shows the MPEG-2 AAC SDGs minus the 
MPEG-2 Layer II BC SDGs. A positive difference indicates that AAC was 
awarded a better grade than Layer II and vice versa. The MPEG-2 AAC 
test results show that the AAC system at a data rate of 320 kb/s per five full
bandwidth channels fulfils the ITU-R requirements for indistinguishable 
quality [ITU-R TG-2/3] in a BS.1116 fully compliant test. 

The AAC multichannel system at a data rate of 320 kb/s overall ranks 
higher than MPEG-2 Layer II BC at 640 kb/s (see Figure 17). In particular, 

6 Due to the very rigorous test method adopted, only statistically reliable expert listeners were 
taken into consideration in the final data analysis. A total of 32 listeners at BSC and 24 
listeners at NHK originally participated in the tests. After post-screening of the subjects, 
nine listeners at SSC and eight listeners at NHK were removed. 



Chapter 13: MPEG-2 AAC 361 

the difference between the two systems mean scores for the pitch pipe 
excerpt is more than 1.5 point in the ITU-R five-grade impairment scale 
according to the BBC data. It should be noted that the test data for MPEG-2 
Layer II BC at 640 kb/s were consistent with data obtained in previously 
conducted subjective tests [ISO/IEC MPEG N1229]. 

BBC results: AAC at 320 kbitls 
mean and 95% confidence intervals 

0.5 

0 

-0.5 

-1 

-1.5 

-2 

-2.5 

-3 

-3.5 

-4 
Cast Clarinet Eliot Glock Harp Mane Pipe Station Thai Tria 

(a) 

NHK resuHs: AAC at 320 kbitls 
mean and 95% confideoce intervals 

0.5 

0 

-0.5 

-1 

-1.5 

-2 

-2.5 

-3 

-3.5 

-4 
Cast Clarinet Eliot Glock Harp Mane Pipe Station Thai Tria 

(b) 
Figure 15. Results of formal listening tests for MPEG-2 AAC Main Profile at 320 kb/s, five 

channel configuration from [ISOIIEC MPEG NI420]; a) BBC results, b)NHK results 



362 Introduction to Digital Audio Coding and Standards 

SSC results: AAC low complexity at 320 kbitls 
mean and 95% confidence intervals 

0.5 I----------l 

-0.5 

-1 

-1.5 

-2 

-2.5 

-3 

-3.5 

-4 

0.5 

-0.5 

-1 

-1.5 

-2 

-2.5 

-3 

-3.5 

-4 

Casl 

-u-
u 

Clarinet Eliot Glock Harp Mane Pipe Station 

(a) 

NHK results: AAC low complexity at 320 kbitls 
mean and 95% confidence intervals 

,......, n n n 11 
H 11 11 .n ~ u 

Cast Clarinet Eliot Glock Harp Mane Pipe Station 

(b) 

Thai Tria 

,., 
11 U-TI 

Thai Tria 

Figure 16. Results of formal listening tests for MPEG-2 AAC LC Profile at 320 kb/s, five
channel configuration, from [ISOllEe MPEG N1420j. 



Chapter 13: MPEG-2 AAC 363 

2.5 
r-

1.5 r-

:- r-
'-

r- ..... 
r--

~ n II 11 n I 
I r- rn 

0.5 

I .. I L.. ft J.j u T1 tt-L- l 
-0.5 

-1 

-1.5 

-2 
Cast Clarinet Eliot Glock Harp Mane Pipe Station Thai Tria 

(a) 

2.5 

1.5 
r-

r 
-~ :- roo n -ff-:=HJr II ....;.. r- .... 

El U 0.5 

tt l-..J 

L L.J ..... 
'---0.5 

-1 

-1.5 

-2 
Cast Clarinet Eliot Glock Harp Mane Pipe Station Thai Tria 

(b) 
Figure 17. Comparison between MPEG-2 AAC at 320 kb/s and MPEG-2 BC Layer II at 640 
kb/s, five-channel configuration, from [ISO/IEC MPEG N1420]; (a) BBC Results, (b) NHK 

results 

12. DECODER COMPLEXITY EVALUATION 

In this section a complexity evaluation of the decoding process in its 
Main and LC Profile configurations is presented. In order to quantify the 
complexity of the MPEG-2 AAC decoder, the number of machine 



364 Introduction to Digital Audio Coding and Standards 

instructions, read/write storage locations (RAM), read-only storage locations 
(ROM) is specified for each module, see also [ISO/IEC MPEG NI712]. For 
simplicity, the assumption is made that the audio signal is sampled at 48 
kHz, 16-bits per sample, the data rate is 64 kbls per channel, and that there 
are 1024 frequency values per block. 

Two categories of the AAC decoder implementation are considered: 
software decoders running on general-purpose processors, and hardware 
decoder running on single-chip ASICs. For these two categories, a summary 
of the AAC decoder complexity is shown in Table 6. 

Table 6. MPEG-2 AAC decoder complexity [Bosi et at. 97] 
MPEG -2 AAC Configuration 
2-channel Main Profile software decoder 
2-channel LC Profile software decoder 
5-channel Main Profile hardware decoder 
5-channel LC Profile hardware decoder 

12.1 Input/Output Buffers 

Complexity 
40 % of 133 MHz Pentium 
25 % of 133 MHz Pentium 
90 sq. nun die, 0.5 micron CMOS 
60 sq. nun die, 0.5 micron CMOS 

Considering the bit reservoir encoder structure and the maximum data 
rate per channel, the minimum decoder input buffer size is 6144 bits. The 
decoder output, assuming a 16-bit PCM double-buffer system, requires a 
1024, 16-bit word buffer. The total number of 16-bit words for the decoder 
input/output buffer (RAM) is: 

384 + 1024 = 1408. 

12.2 Huffman Coding 

In order to decode a Huffman codeword, the decoder must traverse a 
Huffman code tree from root node to leaf node. Approximately 10 
instructions per bit for the Huffman decoding are required. Given the 
average of 1365 bits per blocks, the number of instructions per block is 
13653. Huffman decoding requires the storage of the tree and the value 
corresponding to the codeword. The total buffer required is a 995 16-bit 
word buffer (ROM). 

12.3 Inverse Quantization 

The inverse quantization can be done by table lookup. Assuming that 
only 854 spectral coefficients (20 kHz bandwidth) must be inverse quantized 



Chapter 13: MPEG-2 AAC 365 

and scaled by a scale factor, the 16-bit word ROM buffer is 256 words and 
the total number of instructions is 1708. 

12.4 Prediction 

Assuming that only the first 672 spectral coefficients will use prediction 
and the predictor used is a second order predictor, the number of instructions 
for predictor is 66 and the total number of instruction per block is 44352. 
Calculations can be done both in IEEE floating point and/or fixed arithmetic 
and variables are truncated to 16 bits prior to storage, see also [ISO/IEC 
MPEG N1628] and [ISO/IEC MPEG NI629]. The required storage buffer is 
4032 16-bit word. 

12.5 TNS 

In the Main Profile configuration, the TNS process employs a filter of 
order 20 operating on 672 spectral coefficients. The number of instruction 
per block is 13630. In the LC Profile configuration, the TNS process 
employs a filter of reduced order 12 with a total number of instructions per 
block of 8130. TNS requires negligible storage buffers. 

12.6 ~S Stereo 

This is a very simple module that performs matrixing on two channels of 
a stereo pair element. Since the computation is done in-place, no additional 
storage is required. Assuming that only a 20 kHz bandwidth needs the MIS 
computation, the total number of instruction for stereo pair is 854. 

12.7 Intensity Stereo 

Intensity stereo coding does not use any additional read-only or read
write storage. The net complexity of intensity stereo coding produces a 
saving of one inverse quantization per intensity stereo coded coefficient. 

12.8 Inverse Filter Bank 

The IMDCT of length 1024 requires about 20000 instructions per block 
while for the 128-point IMDCT, the total number of instructions per 8 short 
blocks is 24576. The total RAM for the filter bank is 1536 words, the total 
ROM, including window coefficients, etc., is 2270 words. The storage 



366 Introduction to Digital Audio Coding and Standards 

requirement employs a word length between 16 and 24 bits depending on the 
stage of the filter bank. 

12.9 Complexity Summary 

Table 7 through Table 9 summarize the complexity of each decoder 
module based on number of instructions per block (Table 7), amount of read
write storage and amount of read-only (Table 8 and Table 9) in 16-bit words. 
The tables list complexity on a per-channel basis and for a 5-channel coder. 
Table 10 shows a complexity comparison between the MPEG-2 AAC Main 
Profile and LC Profile. 

Table 7. MPEG-2 AAC Main Profile number of instruction per block (decoder) [Bosi et al. 
97] 
AAC Tool Single Channel Five Channels 
Huffman Coding 13657 68285 
Inverse Quantization 1708 8540 
Prediction 44352 221760 
TNS 13850 69250 
MIS 1708 
1M OCT 24576 122880 
TOTAL 98143 492423 

Table 8. MPEG-2 AAC Main Profile decoder RAM (I6-bit words) [Bosi et al. 97] 
Single Channel Five Channels 

Input Buffer 384 1920 
Output Buffer 1024 5120 
Working buffer 2048 10240 
Prediction 4032 20160 
IMOCT 1024 5120 
TOTAL 8512 42560 

Table 9. MPEG-2 AAC Main Profile decoder ROM [Bosi et al. 97] 

Huffman Coding 
Inverse Quantization 
TNS 
Prediction 
IMOCT 
TOTAL 

Single Channel Five Channels 
995 
256 
24 
o 
2270 
3545 



Chapter 13: MPEG-2 AAC 367 

Table 10. MPEG-2 AAC Main Profile and LC Profile (five-channel configuration only) [Bosi 
et al. 97] 

Instructions per Block 
RAM 
ROM 

13. SUMMARY 

Main Profile 
492423 
42560 
3545 

Low Complexity Profile 
242063 
22400 
3545 

In this chapter we reviewed the features of the MPEG-2 AAC standard. 
While initially the main goals of MPEG-2 were to address low sampling 
frequencies and multichannel extensions to MPEG-l (ISO/IEC 13818-3), an 
additional multichannel work item, MPEG-2 AAC, was also developed in its 
framework. The MPEG-2 AAC (ISO/IEC 13818-7) system was designed to 
provide MPEG-2 with the best multichannel audio quality without any 
restrictions due to compatibility requirements. The AAC tools provide high 
coding efficiency through the use of a high-resolution filter bank, prediction 
techniques, noiseless coding and added functionalities. ITU-R BS.1116 
compliant tests have shown that the AAC system achieves indistinguishable 
audio quality at data rates of 320 kb/s for five full-bandwidth channels and 
provides similar or better quality than MPEG-2 Layer II BC at 640 kb/s. We 
anticipate that the MPEG-2 AAC standard will become the audio coding 
system of choice in applications where high performance at the lowest 
possible data rate is critical to the success of the application. While MPEG-
4 audio addresses speech coding and functionalities in addition to broadband 
audio coding, AAC plays an important role in this context. Before 
discussing the main features of MPEG-4 Audio, we complete our review of 
multichannel audio coding systems with the introduction of Dolby AC-3, the 
coding standard used in high definition television and DVD applications. 

14. REFERENCES 

[ATSC A/521l0]: United States Advanced Television Systems Committee Digital 
Audio Compression (AC-3) Standard, Doc. N521l0, December 1995. 

[Basi et al. 97]: M Bosi, K. Brandenburg, S. Quackenbush, L. Fielder, K. Akagiri, 
H. Fuchs, M. Dietz, J. Herre, G. Davidson and Y. Oikawa, "[SO/IEC MPEG-2 
Advanced Audio Coding," J. Audio Eng. Soc., vol. 45, pp. 789 - 812, October 1997. 



368 Introduction to Digital Audio Coding and Standards 

[Davis 93]: M. Davis, "The AC-3 Multichannel Coder," presented at the 95th AES 
Convention, New York, Preprint 377, October 1993. 

[DVD-Video]: DVD Specifications for Read-Only Disc, Part 3: VIDEO 
SPECIFICATIONS Ver. 1.1, Tokyo 1997-2001. 

[Fielder 87]: L. Fielder, "Evaluation of the Audible Distortion and Noise Produced 
by Digital Audio Converters," J. Audio Eng. Soc., vol. 35, pp. 517-535, July/August 
1987. 

[Fielder et al. 96]: L. Fielder, M. Bosi, G. Davidson, M. Davis, C. Todd, and S. 
Vernon, "AC-2 and AC-3: Low-Complexity Transform-Based Audio Coding," 
Collected Papers on Digital Audio Bit-Rate Reduction, 'Neil Gilchrist and Christer 
Grewin (ed.), pp. 54-72, AES 1996. 

[Fuchs 93]: H. Fuchs, "Improving Joint Stereo Audio Coding by Adaptive 
Interchannel Prediction", Proc. of the 1993 lEEE Workshop on Applications of 
Signal Processing to Audio and Acoustics, New Paltz, New York, October 1993. 

[Fuchs 95]: H. Fuchs, "Improving MPEG Audio Coding by Backward Adaptive 
Linear Stereo Prediction", Preprint 4086 (1-1), presented at the 99th AES 
Convention, New York, October 1995. 

[Herre and Johnston 96]: J. Herre, J. D. Johnston, "Enhancing the Performance of 
Perceptual Audio Coders by Using Temporal Noise Shaping (TNS) ", presented at 
the 101st AES Convention, Preprint 4384, Los Angeles 1996. 

[ISO/lEC 13818-3]: ISO/lEC 13818-3, "Information Technology - Generic Coding 
of Moving Pictures and Associated Audio, Part 3: Audio," 1994-1997. 

[ISO/lEC 13818-7]: ISO/IEC 13818-7, "Information Technology - Generic Coding 
of Moving Pictures and Associated Audio, Part 7: Advanced Audio Coding", 1997. 

[ISO/lEC 14496-3]: ISO/lEC 14496-3, "Information Technology - Coding of Audio 
Visual Objects, Part 3: Audio ", 1999-2001. 

[ISO/lEC MPEG NI229]: ISO/IEC JTC lISC 29/WG II N1229, "MPEG-2 
Backwards Compatible CODECS Layer II and III: RACE dTTb Listening Test 
Report," Florence, March 1996. 

[ISO/IEC MPEG NI420]: ISO/IEC JTC lISC 29/WG II N1420, "Overview of the 
Report on the Formal Subjective Listening Tests of MPEG-2 AAC Multichannel 
Audio Coding" Maceio', November 1996. 

[ISO/lEC MPEG NI623]: ISOIIEC JTC lISC 29/WG 11 N1623, "Informal 
Assessment of AAC Downmix Stereo Performance" Bristol, April 1997. 



Chapter 13: MPEG-2 AAC 369 

[ISO/IEC MPEG NI628]: ISO/IEC JTC lISC 29/WG II N 1628, "Report on 
Reduction of Complexity in the AAC Prediction Tool" Bristol, April 1997. 

[ISO/IEC MPEG N16291: ISO/IEC JTC lISC 29/WG II N1629, " Results of the 
brief assessments on AAC reduction of prediction complexity" Bristol, April 1997. 

[ISO/IEC MPEG NI712]: ISO/IEC JTC lISC 29/WG II N1712, "Report on 
Complexity of MPEG-2 AAC Tools" Bristol, April 1997. 

[ITU-R BS.775-1]: International Telecommunications Union, Radiocommunication 
Sector BS.775-1, "Multichannel Stereophonic Sound System with and without 
Accompanying Picture", Geneva, Switzerland, 1992-1994. 

[ITU-R TG 10-2/3]: International Telecommunications Union, Radiocommunication 
Sector Document TG 10-2/3- E only, " Basic Audio Quality Requirements for Digital 
Audio Bit-Rate Reduction Systems for Broadcast Emission and Primary 
Distribution", 28 October 1991. 

[Johnston and Ferreira 92]: J. D. Johnston and A. J. Ferreira, "Sum-Difference 
Stereo Transform Coding", Proc. ICASSP, pp. 569-571, 1992. 

[Johnston et al. 96]: J. D. Johnston, J. Herre, M. Davis and U. Gbur, "MPEG-2 NBC 
Audio - Stereo and Multichannel Coding Methods," Presented at the IOlst AES 
Convention, Preprint 4383, Los Angeles, November 1996. 

[Van der Waal and Veldhuis 91]: R. G. v.d. Waal and R. N. J. Veldhuis, "Subband 
Coding of Stereophonic Digital Audio Signals", Proc. ICASSP, pp. 3601 - 3604, 
1991. 



Chapter 14 

Dolby AC-3 

1. INTRODUCTION 

In Chapters 11 through 13 we discussed the goals and the main features 
of ISO/IEC MPEG-I and -2 Audio. Other standards bodies addressed the 
coding of audio based on specific applications. For example, the North 
American HDTV standard [ATSC N52110], the DVD-Video standard 
[DVD-Video] and the DVB [ETS 300421] standard all make use of Dolby 
AC-3, also known as Dolby Digital. 

The AC-3 algorithm is based on perceptual coding principles and it is 
similar in many ways to other perceptual audio coders, such as the MPEG-I 
and 2 audio systems described in previous chapters. AC-3, however, was 
conceived since its very onset as a multichannel system. Originally designed 
to address the cinema industry needs, its initial goal was the storage of 
digital multichannel audio on film. First released in 1991 with the film 
Batman Returns, AC-3 migrated from film applications to consumer 
products, following the general multichannel audio systems expansion from 
the cinema halls to the home theatres systems. Born from the design 
experience of its predecessor AC-2 [Davidson, Fielder and Antill 90.], a 
TDAC-based, single-channel coding scheme, AC-3 went through many 
stages of refinement, improvement and fine-tuning. The resulting algorithm 
is currently in use in a number of standard applications including the North 
American HDTV standard, DVD-Video, and regional DVB. 

This chapter examines the basic functionalities, features, and underlying 
fundamentals of the AC-3 algorithm, and discusses its resultant ranking 
within low bit-rate coding standardization efforts. 

M. Bosi et al., Introduction  to  Digital Audio  Coding  and Standards
© Kluwer Academic Publishers 2003



372 Introduction to Digital Audio Coding and Standards 

2. MAIN FEATURES 

The AC-3 algorithm provides a high degree of flexibility with regard to 
data rate and other operational details [ATSC Al52/1 0]. One of the main 
features of AC-3 is that it processes multiple channels as a single ensemble. 
AC-3 is capable of encoding a number of audio channel configurations into a 
bitstream ranging between 32 and 640 kb/s. The decoder has the ability to 
reproduce various playback configurations from one t05.1 channels from the 
common bitstream (see also Chapter 12). The AC-3 coding schemes 
specifically supports 3/2, 3/1, 3/0, 2/2, 2/1, 2/0, and 110 channel 
configurations with an optional LFE channel [ITU-R BS.775-1]. The 
presence of the LFE channel, although not explicitly included in these 
configurations, is always an option. The sampling rates supported by AC-3 
are 32, 44.1, and 48 kHz. The frame size corresponds to 6 blocks of 512 
time-samples, or, equivalently, 1536 frequency-samples. At 48 kHz a frame 
covers a time interval of 32 ms. 

In Table 1 the different data rates adopted in AC-3 are listed. The six-bit 
bitstream variable frmsizecod conveys the encoded data rate to the decoder. 
Although each data rate is applicable to each channel configuration, in 
practice typical data rates applied for the two-channel and fi ve-channel 
configurations are 192 kbls and 384 kbls respectively. 

Table 1. AC-3 data rates [ATSC A15211 0] 
frmsizecod Data Rate (kb/s) frmsizecod Data Rate (kb/s) 

2 32 20 160 
4 40 22 192 
6 48 24 224 
8 56 26 256 
10 64 28 320 
12 80 30 384 
14 96 32 448 
16 112 34 512 
18 128 36 640 

Table 2. AC-3 channel configurations [ATSC A15211 0] 
acmod Configuration Number of Channels Channel Order 
000 1+1 2 Channel 1, Channel 2 
001 1/0 C 
010 2/0 2 L,R 
011 3/0 3 L,C,R 
100 211 3 L,R,S 
101 311 4 L,C,R,S 
110 2/2 4 L, R, SL, SR 
III 3/2 5 L, C, R, SL, SR 



Chapter 14: Dolby AC3 373 

In Table 2 the different channel configurations and how they are 
identified by the three-bit variable acmod in the AC-3 bitstream are 
described. For example, acmod equal to 000 implies two independent 
channels (dual mono). For values of acmod ~ 100, the channel configuration 
includes one or more surround channels. The optional LFE channel is 
enabled by a separate variable called Ifeon (Ifeon = I implies the presence of 
the LFE channel). 

AC-3 includes provision for sending of mUltiple auxiliary data streams, 
language identifiers, copyright protection, time stamps and control 
information. Listener features include down-mixing to fewer channels than 
present in the bitstream, dialog normalization, Dolby Surround 
compatibility, visually and hearing impaired bitstreams, dynamic range 
control. 

One of the most interesting user features, the dynamic range control for 
example, allows the program provider to store control parameters that 
specify the dynamic range reduction appropriate for a particular excerpt in 
the AC-3 bitstream. In this fashion, the AC-3 encoded audio bitstream 
always retains full dynamic range, allowing the end user to choose between 
the compressed or the full dynamic range audio excerpt. The dynamic range 
control parameters are used by the decoder to alter the level of the decoded 
audio on a block-by-block basis (every 5.3 ms at a 48 kHz sample rater. 
The control parameters may indicate that the decoder gain be raised or 
lowered and are generated by a dynamic level compression algorithm which 
may be resident in the AC-3 encoder, or in a subsequent bitstream processor. 
The dynamic range control parameters have an amplitude resolution of less 
than 0.25 dB and the block to block gain variations are further smoothed by 
the gentle overlap add process lasting 5.3 ms (see also the filter bank and 
overlap and add process description in the next sections), preventing the 
audibility of gain stepping artifacts. The exact nature of the dynamic range 
control is determined by the algorithm that generates the control parameters. 
In general, however, the sound level headroom is reduced, that is loud 
sounds are brought down towards dialogue level, and quiet sounds are made 
more audible, that is brought up towards dialogue level. If the dynamic 
range compression is turned off, the original signal dynamic range will be 
reproduced. The default for the listener is to reproduce the program with 
compression as specified by the program originator. Full description of the 
AC-3 listener features are beyond the scope of this book and can be found in 
[ATSC Al52110]. 

7 In addition to the fine resolution dynamic range control described above, a coarser dynamic 
range control based on parameters passed on a frame-by-frame basis is also available. 



374 Introduction to Digital Audio Coding and Standards 

3. OVERVIEW OF THE ENCODING PROCESS 

Similarly to the MPEG-I and -2 Audio coding schemes, in AC-3 achieves 
high coding gains with respect to PCM by encoding the audio signal in the 
frequency domain. A block diagram of the encoding process is shown in 
Figure 1. 

Figure 1. Block diagram of the AC-3 encoder process from [ATSC Al521lOl 

The audio input signal is grouped in blocks of 512 PCM time-samples. 
The internal dynamic range of AC-3 allows for up to 24-bit input sample 
precision. The first step in the encoder is to assess whether or not the signal 
under exam presents a transient. Depending on the nature of the input 
signal, an appropriate filter bank resolution is selected by dynamically 
adapting the filter bank block size. In steady state conditions, that is when 



Chapter 14: Dolby AC3 375 

no transient is detected, 512 time-sample blocks are windowed and then 
mapped into the frequency domain via an MDCT ensuring a frequency 
resolution of 93.75 Hz at 48 kHz sampling rate. In the presence of a 
transient, the MDCT block size is reduced to 256 time-samples in order to 
increase the time resolution of the signal frequency representation. The time 
resolution in this case is 2.67 ms at 48 kHz sampling rate. 

Next, multichannel coding takes place by computing the channel 
coupling strategy, composing the coupling channel, and rematrixing the 
frequency coefficient of the signal (see next sections). 

The individual MDCT frequency coefficients are converted into a 
floating-point representation where each coefficient is described by an 
exponent and a mantissa. Based on the exponent coding strategy, each 
exponent is then encoded. The set of the coded exponents represent the 
spectral envelope of the input signal. After the exponents are encoded, the 
mantissas are quantized according to the bit allocation output. 

The bit allocation routine processes the signal spectral envelope to 
compute hearing masking curves. It applies a parametric model to define the 
appropriate amplitude precision for the mantissas. Based on control 
parameters passed in the encoded bitstream, the mantissas can be decoded 
with dither when they are allocated zero bits for quantization. 

The idea behind the dither strategy is that the reproduced signal energy 
should be maintained even if no bits are allocated. The dither strategy is 
applied on a per-channel basis and can be bypassed depending on the 
exponents accuracy and other considerations. In practice, applying dither 
can result in added audible distortion, therefore a careful monitoring of the 
resulting bitstream is required. 

Finally, the control parameters such as block switching (blksw) flags, 
coupling strategy (cplg strat) , rematrixing (remt) flags, exponent strategy 
(exps strat) , dither flags (dith flags), bit allocation parameters (bitalloc 
params) are multiplexed with the encoded spectral envelope and mantissas to 
compose the AC-3 bitstream, where each AC-3 frame corresponds to 6 
blocks of 256 frequency-samples. 

The block diagram of the decoder is shown in Figure 2. Typically the 
AC-3 bitstream is byte or 16-bit word aligned. After synchronizing the 
encoded bitstream, the decoder checks for errors and de-formats various type 
of data in the bitstream such as control parameters and encoded spectral 
envelope and mantissas. The spectral envelope is decoded to reproduce the 
exponents. 

Based on the exponent values and the bit allocation parameters 
transmitted, the bit allocation re-computes the precision of the mantissas 
representation and these data are employed to unpack and de-quantize the 
mantissas values. 



376 Introduction to Digital Audio Coding and Standards 

The multichannel inverse allocation takes place (de-coupling and 
rematrixing), and the dynamic range control parameters are applied. 

The final values for the frequency coefficients of the signal are then 
inverse transformed via an IMDCT applied to 256 blocks of frequency 
samples. The decoded PCM time-samples are obtained by windowing and 
overlapping and adding the resulting samples. If required, the down-mix 
process takes place before delivering the output PCM samples. 

Main Information 

Packed Manflaaa 

U k Side Information 
Side I~fo~~ation 1-""'=:::"'::;'+"=:':-'" 

Bit AllocaUon 
Pal8meers 

mlc R Words 

Figure 2. Block diagram of the AC-3 decoder from [ATSC Al5211O] 



Chapter 14: DoibyAC3 377 

4. FILTER BANK 

The filter bank used in AC-3 is based on a 512 time-sample block MDCT 
[Princen, Johnson and Bradley 87]. The input buffer is build by taking 256 
new time-samples and concatenating them to the 256 time-samples from the 
previous block, with the typical TDAC overlapping of 50% block size 
between adjacent blocks for steady state signals as we saw in Chapter 5. 
Next, the PCM samples are windowed with a normalized window derived 
from the Kaiser-Bessel window [Fielder et al. 96]. As a reminder, the KBD 
expression follows: 

n 

L w[p,a] 
p=O 
N/2 

Lw[p,a] 
p=O 

N 
O~n<-

2 

where w (p,Cl) represents the Kaiser-Bessel window kernel of length N/2 + 1 
and N equals 512. Since the KBD window is symmetrical, the remaining 
N/2 window coefficient can be derived from the first N/2 coefficients by 
starting at time N/2 and time-reversing the first N/2 coefficients. As a 
reminder, the Kaiser-Bessel kernel window, also a symmetrical window, is 
given by: 

where 

N 
o=:;o=:;-

2 

and Cl is the kernel Kaiser-Bessel window alpha factor that allows for a trade 
off between close window resolution and ultimate rejection. As we saw in 
Chapter 5, small values for Cl imply a small main lobe width for the window 
(increased close resolution), large values for a imply low side lobe levels 
(increased ultimate rejection). The KBD window is also employed in MPEG 
AAC [Bosi et al. 97] with Cl = 4 for steady state conditions and a = 6 for 



378 Introduction to Digital Audio Coding and Standards 

transients. In AC-3 a is set equal to five (5). The selection of the window 
characteristics was based on the study of the shape of masking template 
curves [Fielder 87]. In particular, the frequency response of the window 
should be below the worst-case combination of all masking templates. If the 
filter bank response is below (or coincides) with the worst-case combination 
of the masking templates, the number of bits necessary to represent the 
signal can be reduced by exploiting the masking curve information. In 
Figure 3 a comparison between a 512-point sine window and the 512-point 
KBD window employed in AC-3 is shown. The target curve represents the 
combination of the worst-case masking curve derived from masking data for 
20 Hz, 50 Hz, and I kHz maskers masking narrow-band noise [Fielder et al. 
96]. While both windows faIl short of satisfying the frequency selectivity 
imposed by the masking templates, the AC-3 window is a considerably 
better match. 

O~~~~~MTTM~~~MT~~~TM~~~~ 

-10 

-20 

.~ 

-40 TnrosIstlo1 B!rld 9q)e 

-50' ~" .;<.. 120 <B'1001 Hz 
LewI ~ •••••• 

-00' \ •••• 
(dB) \ i . ..... .... 512 IX. Sire Wrc:bN : \, \ ......................................................... . 

, 
-90 ' . 

·100 '--" •••••••••••••• 

-110 TsgetforWrc:bNDesIg1 ", _---------
-120 o 500 1001 1500 2!XX) 2500 2!XX) 3&Xl 4000 4500 500l 

Ftequencf (Hz) 

Figure 3. Filter bank resolution comparison from [Fielder et al. 961 

The MDCT operates on overlapping blocks of 512 time samples (long 
blocks) when the signal is in steady state conditions, or 256 time samples 
when the signal is transient-like (short blocks). The expressions for the 
MDCT and IMDCT, as we saw in Chapter 5, are given by: 



Chapter 14: Dolby AC3 379 

N-J 

X[k] = Lx[n]w[n]cos(~(n+n()(k+t» for k=O, .. . ,N/2-1 
n~O 

and 

X[k] = -X[N-k-l] for k=N!2, ... ,N-I 

N-J 

x'[n] = ~ LX[k]cos(~ (n + no)(k +t» for n=O, ... ,N-I 
k~O 

where N= 512 in steady-state conditions and no is the phase term that ensures 
time-domain aliasing cancellation. 

0.8 

0.6 

0.4 +--+---t---I-+-I--f--\-+--+--\--+---.H-t----\--j 

0.2 

o 256 512 768 1024 1280 1536 

n 

0.8 +----+---t--I+--If---t\---t---I-I--+--fi--j---\--i 

0.4 

0.2 

o 258 512 768 1024 1280 1536 

n 

Figure 4. Typical window sequence for AC-3: top for a steady state signal and bottom for a 
transient-like signal occurring in the region between n = 256 and n = 1024 

Time versus frequency resolution trade-offs are achieved by applying 
block switching as in other coding schemes such as for example MPEG 



380 Introduction to Digital Audio Coding and Standards 

Layer III [ISO/IEC 11172-3 and ISO/IEC 13818-3] or AAC [ISO/IEC 
13818-7] (see also Chapters 11 and 13). The AC-3 block-switching scheme, 
however, is closer to the AC-2A block switching-scheme [Bosi e Davidson 
92] rather than the Edler's [Edler 89] block-switching scheme (see also 
Chapter 5). In AC-3 the phase term no is not always equal to (l + N/2)/2 
where N is the current block length, but depends on the overlapping region 
between the current block m and the successive block (m +1). In the case of 
steady state signals where long blocks are utilized, the overlap region equals 
50% of the block length. In the case of transient-like signals where short 
block are utilized, the overlap region equals 50% of the long block or zero, 
that is two consecutive short windows are butted together. The phase term 
no is equal to half the amount of overlapping plus 1;2. 

A typical AC-3 window sequence is shown in Figure 4. For steady state 
conditions and for the second of the short windows, no = 257/2; for the first 
of the short windows Do = 1f2. In the presence of transients, the time 
resolution of the filter bank is increased by selecting the shorter block size. 
The transition form long to short block is achieved by simply adopting an 
asymmetrical window that has the first half equal to the long window and 
then drops to zero. The short window sequence alternates asymmetrical 
windows that have zero overlapping and 256-sample overlapping. While the 
frequency response of these windows is sub-optimal, they achieve increased 
time resolution while keeping the structure of the AC-3 coding algorithm 
very simple. In the case of short windows, exactly two blocks fit in a long 
window, keeping the filter bank, packing routines and the overall coding 
scheme simple. 

In AC-2A, a similar concept of varying the overlapping region between 
adjacent blocks is adopted to dynamically trade-off frequency versus time 
resolution in the signal representation (see also Chapter 5). In this case, 
however, asymmetrical windows always overlapping with each other are 
employed. The frequency response of these window is better than the 
frequency response of the windows used in AC-3, however, the complexity 
of the filter bank, packing and other routines is increased. In Figure 5 a 
window sequence similar to that adopted in AC-2A is shown. The long 
window is 512-point long with ex = 4; the short window is 128-point long 
with ex = 6. Time resolution for AC-2A is sharper than in AC-3 (about 1.33 
ms versus 2.67 ms at 48 kHz sampling rate). The AC-2A method also allows 
for greater flexibility in transient representation. The transition windows 
from long to short (start) and from short to long (stop) are asymmetrical and 
of size equal to 320 time-samples. In AC-2A the evenly-stacked TDAC 
[Princen and Bradley 86] transform is utilized, which alternates series of 
MDCT and modified discrete sine transforms, MDST. The phase factor no 
equals 25712 for the long and stop window, and 65/2 for the short and start 



Chapter 14: Dolby AC3 381 

window. Both the transition and short AC-2A windows have a better 
frequency response than the AC-3 short windows. The non-power-of-two 
transition window, however, causes an increase in complexity in the filter 
bank as well as in other aspects of the AC-2A algorithm. Furthermore, for 
non-independent channel coding, the multichannel data alignment may cause 
problems. 

0.8 +---1--t--~I---+--+f--+-->r+--+-~r----l 

0.6 +---.,f---!--I'\--+--t\-+-tt--+--+---t 

0.4 +--+--!--I-+-+-I-+-+-+---\-+---\---t 

0.2 +-+---hl---\:-+-+-+++-+-+------lrl 

o 256 512 n 768 1024 1280 

0.8 +---I---tr---41r--f-f-f--IHH--lri--+--\r----t 

0.6 +---.,I.......--t!--flI--f-f-t--HH--f\--+--+---t 

0.2 +-+----,HI---\:-+H-1H-1+ft+-+-+-+----lH 

o 256 512 n 768 1024 1280 

Figure 5. AC-2A window sequence example; top for a steady state signal and bottom for a 
transient-like signal occurring in the region between n = 512 and n = 768 

4.1 Transient Detection 

In the AC-3 encoder a transient detection mechanism is utilized to assess 
the nature of the input signal and, based on this information, whether the 
filter bank and the AC-3 algorithm operate in long or short block. High-pass 
filtered version of the full-bandwidth channels are examined to detect a rapid 
surge in energy. 

Typically, abrupt increases in the signal energy at high frequencies are 
associated with the presence of an attack. If the onset of a transient is 



382 Introduction to Digital Audio Coding and Standards 

detected in the second half of a long block in a certain channel, then that 
channel switches to a short block. The transient detector input is a block of 
512 time samples for each audio block; it processes the time-samples blocks 
in two steps, each operating on 256 samples. The transient detector output is 
a one-bit flag, blksw[n] for each full-bandwidth channel, which, when set to 
one, indicates the presence of a transient in the second half of the 512-point 
block for the corresponding channel. 

The transient detector presents four stages: the high-pass filter, the 
segmentation of the time samples, a peak amplitude detection for each 
segment, and the comparison of the peak values with a threshold set to 
trigger only significant changes in the amplitude values. The high-pass filter 
is implemented as an infinite impulse response filter with cut-off frequency 
equal to 8 kHz. The block of the high-passed 256 samples is then 
decomposed into a hierarchical tree whose shorter segment is 64 samples 
long. The sample with the largest magnitude is then identified for each 
segment and then compared to the threshold if there is significant change in 
level for the current block. First, the overall peak is compared to a silence 
threshold; if the overall peak is below the threshold, then the signal is in 
steady state condition and a long block is used for the AC-3 algorithm. If 
the ratio of peak values for adjacent segments exceeds a pre-defined 
threshold, then the flag is set to indicate the presence of a transient in the 
current 256-point segment. The second step follows exactly the above
mentioned stages for the second 256-point input segment and determines the 
presence of a transient in the second half of the input block. 

5. SPECTRAL ENVELOPE CODING 

Once the audio signal is represented in the frequency domain after being 
processed by the filter bank, the frequency samples or frequency coefficients 
are coded in floating point form, where each coefficient consists of a scale 
factor or exponent and a mantissa. As described in Chapter 2, the exponents 
indicate the number of leading zeros in the binary representation of a 
coefficient. The set of exponents for each audio block conveys an estimate 
of the overall spectral content of the signal. This information is often 
referred to as the spectral envelope of the signal. In coding the spectral 
envelope of the signal, AC-3 allows exponents to be represented by 5-bit 
numbers and their values vary between 0 (for the largest value coefficients 
with no leading zeroes) and 24. The AC-3 bitstream contains coded 
exponents for all independent channels, all coupled channels, and for the 
coupling (see also next section) and LFE channels (when they are enabled). 



Chapter 14: Dolby AC3 383 

AC-3 spectral envelope coding aIlows for variable resolution in time and 
frequency [Todd et al. 94]. In the time domain, two or more consecutive 
block within one frame can share a common set of exponents. Since audio 
information is not shared across frames in AC-3, block 0 of every frame 
always includes new exponents for every channel. In the frequency domain, 
either one (015 mode), two (025 mode) or four (045 mode) mantissas can 
share the same exponent. The strategy for sharing exponents in the time or 
frequency domain is embedded in the encoder process and is based on the 
signal conditions. For steady state signals, while the maximum frequency 
resolution allowed is preferred (015 mode), the signal spectrum is expected 
not to vary significantly from block to block. In this case, the set of 
exponents is only transmitted for block zero and kept constant for the other 
blocks in a frame. This operation results in a substantial saving in the 
exponent representation therefore freeing up bits for mantissas quantization. 
On the other hand, for transient-like signals the signal spectrum is expected 
to vary significantly from block to block. For transient-like signals AC-3 
typicaIly transmits the set of exponents for all blocks in a frame, aIlowing 
the coded spectral envelope to follow as closely as possible the variations in 
time of the input signal. In this case, however, fine grain frequency 
resolution (for example the 015 mode) for the exponent representation is 
superfluous, therefore a saving in the bit budget can be realized by 
representing the set of exponents in a coarser frequency scale (for example 
the 025 or the 045 mode). For each frame and for any given input signal 
the exponent strategy is based on the minimization of audibility of the 
quantization noise at the target data rate. 

The exponents, with the exception of the first frequency term, are 
differentiaIly coded across frequency. The first exponent of a full-bandwidth 
or LFE channel, representing the DC term of that channel, is always coded 
as a 4-bit absolute number, with values ranging between 0 and 15. The 
differential exponents are combined into groups in the audio block. The 
grouping is done employing one of three modes, 015, 025, or 045, where 
the 015 mode provides the finest frequency resolution, and the 045 mode 
requires the least amount of data. The number of grouped differential 
exponents placed in an audio block representation for a particular channel 
depends on the exponent strategy and on the frequency bandwidth 
information for that channel. The number of exponents in each group 
depends only on the exponent strategy. 

An AC-3 audio block contains two types of fields with exponent 
information. The first type defines the exponent coding strategy for each 
channel, and the second type contains the actual coded exponents for 
channels requiring new exponent information. For independent channels, 
frequency bandwidth information is included along with the exponent 



384 Introduction to Digital Audio Coding and Standards 

strategy fields. For coupled channels and the coupling channel (see also next 
section), the frequency information is found in the coupling strategy fields. 

Each differential exponent can take on one of five values: -2, -1, 0, + 1, 
+2, allowing differences of up to ± 12 dB between exponents. These values 
are then mapped to new values by adding an offset equal to +2 and further 
combined into a 7-bit unsigned integer as follows: 

where Mh Mz, and M3 are three differential, adjacent in frequency, 
exponents mapped values. In this fashion, each exponent requires an 
average of 7/3 = 2.33 bits. 

Table 3. Data rate for different exponent strategies in terms of bits needed per frequency 
coefficient 
Exponent Shared Time Interval in Terms of Number of Audio Blocks 
Strategy 

1 2 3 4 5 6 
DIS 2.33 1.17 0.78 0.58 0.47 0.39 
D25 1.17 0.58 0.39 0.29 0.23 0.19 
D45 0.58 0.29 0.19 0.15 0.12 0.10 

In Table 3 the data rate relative to different exponent strategies is shown. 
Since in the D25 or the D45 mode a single exponent is effectively shared by 
2 or 4 different mantissas, encoders must ensure that the exponent chosen for 
the pair or quad is the minimum absolute value (corresponding to the largest 
exponent) needed to represent all the mantissas. In general, the exponent 
field for a given channel in an AC-3 audio block consists of a single absolute 
exponent followed by a number of these grouped values. 

The coding of the spectral envelope in AC-3 is very different from 
coding of the spectral envelope in its predecessor, AC-2. In AC-2 the 
floating-point representation of the signal spectrum is very close to a group 
linear A-law (see also Chapter 2). First, the spectral coefficients are grouped 
into bands that simulate the auditory critical bandwidths. For each critical 
band the maximum is selected, and the exponent for this coefficient is 
selected as the exponent for the coefficients in that critical band. As a result 
of this operation the signal quantization floor level may be raised depending 
on the value of the local spectral maxima. The difference between the AC-2 
and AC-3 spectral envelope representation is shown in Figure 6 [Fielder et 
al. 96]. 



Chapter 14: Dolby AC3 

-5 

-to ' 
Exponent : 

Value 
(left shifts) 

-15 

-20 

-- -- --- Oi(jnaJ ~tnJ1l 
- AC-3 E>qJoneots 
------ AC-2 E>porents 

~0~~~~~~~~~~~10000~~~~1=~~~~~ 

Frequency (Hz) 

Figure 6_ Comparison between AC-2 and AC-3 spectral envelope representation from 
[Fielder et al. 96] 

6. MULTICHANNEL CODING 

385 

As we saw in Chapter 12 and 13, the main goal of multichannel audio 
coding is to reduce the data rate of a multichannel audio signal by exploiting 
redundancy between channels and irrelevancy in the spatial representation of 
the multichannel signal while preserving the basic audio quality and the 
spatial attributes of the original signal. In perceptual audio coding, this goal 
is achieved by preserving the listener cues that influence the directionality of 
hearing [Blauert 83]. In AC-3, two techniques are adopted for multichannel 
coding. One exploits redundancies among pairs of highly correlated channel 
and it is called rematrixing. Rematrixing is based on a similar principle as 
MIS stereo coding (see also Chapter 11): sum and differences of correlated 
channel spectra are coded rather than the original channels [Johnston and 
Ferreira 92]. The other multichannel technique adopted in AC-3 is channel 
coupling (see also Chapters 12 and 13), in which two or more correlated 
channel spectra are combined together and the combined or coupled channel 
is coded and transmitted with additional side information [Davis 93]. 



386 Introduction to Digital Audio Coding and Standards 

6.1 Rematrixing 

In AC-3 rematrixing is applicable only in the 2/0 mode, acmod = 010. In 
this mode, when rematrixing is applied, rather than separately coding two 
highly correlated channels, the left, L, and right, R, channel are combined 
into two new channels, L', and R', which are defined as follows: 

L' = (L+ R)12 

R' = (L - R)/2 

Quantization and packing are then applied to the L' and R' channels. In 
the decoder, the original Land R channel are derived as follows: 

L=L' +R' 

R=L' -R' 

In the case of complete correlation between the two channels, like when, for 
example, the two channels are identical, then L' is the same as Lor R, and 
R' is zero. In this case, no bits are allocated to R', allowing for an increased 
accuracy in the Land R = L' representation. 

Rematrixing is performed independently for different frequency regions. 
There are up to four frequency regions with boundaries dependent on 
coupling information. Rematrixing is never used in the coupling channels. 
If coupling and rematrixing are simultaneously in use, the highest 
rematrixing region ends at the starting of the coupling region. In Table 4 the 
frequency boundaries when coupling is not in use are shown at different 
sampling rates. 

Table 4. AC-3 rematrixing frequency regions boundaries in kHz [ATSC N521l0j 
Frequency Lower Bound Upper Bound Lower Bound Upper Bound 
Region Fs = 48 kHz Fs = 48 kHz Fs = 44.1 kHz Fs = 44.1 kHz 
1 1.17 2.3 1.08 2.11 
2 2.3 3.42 2.11 3.14 
3 3.42 5.67 3.14 5.21 
4 5.67 23.67 5.21 21.75 



Chapter 14: Dolby AC3 387 

6.2 Coupling 

Channel coupling exploits the experimental findings that sound sources 
localization cues depend mostly on the energy envelope of the signal and not 
its fine temporal structure. Channel coupling can be seen as an extension of 
intensity stereo coding [Van der Waal and Veldhuis 91] as we described in 
Chapter 11, although the two technologies were derived independently. In 
AC-3 two or more correlated channel spectra (coupling channels) are 
combined together in a single channel (coupled channel) above a certain 
frequency (coupling frequency) [Davis 93]. The coupled channel is the 
result of the vector summation of the spectra of all the channels in coupling. 
In addition to the coupled channel, side information is also conveyed to the 
decoder in order to enable the reconstruction of the original channels. The 
set of side information is called coupling coordinates and consists of the 
quantized version of the power spectra ratios between the original signal and 
the coupled channel for each input channel and spectral band. The coupling 
coordinates, floating-point quantized and represented with a set of exponents 
and mantissas, are computed in such manner that they allow for the 
preservation of the original signal short-term energy envelope. 

In Figure 7 an example of channel coupling with three input channels is 
shown. For each input channel an optional phase adjustment is first applied 
to avoid phase cancellation during the summation. Next, the coupled 
channel is computed by summing all frequency coefficients above the 
coupling frequency. The power of the original channels and the coupled 
channel is then derived. In the simplified case of Figure 7 only two 
frequency bands are considered. In general the number of frequency bands 
vary between 1 and 18; typically 14 bands are considered. In Table 5 the 
allowed coupling bands are shown for a sampling rate of 48 kHz. Finally, 
the power ratios are computed to derive the coupling coordinates. As 
mentioned before coupling is only active above the coupling frequency, 
where this frequency may vary from block to block. 



388 Introduction to Digital Audio Coding and Standards 

Ch.1 J Phase I 
-I Adjust J + J Phase I Coupling 
-I Adjust 1 -11 ~ I Channel 

Measure II Measure I J Phase I 

~I 
Adjust J Power Power 

Band 1 Band 2 

~ Measure Power I Coupling Coordinate 
Band 1 1 

"'-'1 Channel 3 Band 1 

Ch.2 

Ch.3 

-1 Measure Power I : Coupling Coordinate 
Band 1 I Channel 2 Band 1 

y Measure Power I : Coupling Coordinate 
Band 1 I Channel 1 Band 1 

-1 Measure Power I : Coupling Coordinate 
Band 2 I Channel 3 Band 2 

y Measure Power : Coupling Coordinate 
Band 2 I Channel 2 Band 2 

Measure Power 1 : CouplinQ Coordinate 
Band 2 I Channel 1 Band 2 

Figure 7. Example of AC-3 coupling: block diagram for three input channels from [Fielder et 
al. 96] 

Table 5. AC-3 coupling bands at a sampling rate of 48 kHz [ATSC Af52/10] 

Coupling Band Lower Bound (kHz) Upper Bound (kHz) 
o 3.42 4.55 
1 4.55 5.67 
2 5.67 6.80 
3 6.80 7.92 
4 7.92 9.05 
5 9.05 10.17 
6 10.17 11.30 
7 11.30 12.42 
8 12.42 13.55 
9 13.55 14.67 
10 14.67 15.80 
11 15.80 16.92 
12 16.92 18.05 
13 18.05 19.17 
14 19.17 20.30 
15 20.30 21.42 
16 21.42 22.55 
17 22.55 23.67 



Chapter 14: Dolby AC3 389 

Coupling parameters such as the coupling frequency and which channels 
are in coupling are always transmitted in block 0 of a frame; they may also 
be part of the control information for blocks I through 5. The coupling 
coordinates dynamic range covers a range between - 132 and + 18 dB with a 
resolution varying between 0.28 and 0.53 dB. In the decoder the spectral 
coefficients corresponding to the coupling channels are derived by 
multiplying the coupling coordinates by the received coupled channel 
coefficients as shown in Figure 8. 

It should be noted that coupling is intended for use only when audio 
coding at a certain data rate and desired audio bandwidth would introduce 
audible artifacts due to bit starvation. In these cases, coupling allows for 
maintaining the coding constraints without significantly altering the original 
signal. 

Coupling Coordinale 
Channel 1 Band 1 

x 
x 

~ Coupling Coordinale 
Ch.1 

Channel 1 Band 2 

Coupling Coordinale Uncoupled 
Channel 2 Band 1 Ch 1 

x 
Splitinlo x 

~ Bands 

Coupling Coordinate 
Ch.2 

Channel 2 Band 2 

Coupling Coordinale Uncoupled 
Channel 3 Band 1 Ch2 

x 

x 

~ Coupling Coordinale 
Ch.3 

Channel 3 Band 2 

Uncoupled 
Ch3 

Figure 8. Example of the AC-3 de-coupling process for three input channels from [Fielder et 
al. 96] 



390 Introduction to Digital Audio Coding and Standards 

7. BIT ALLOCATION 

In AC-3 a parametric bit allocation is employed in order to distribute the 
number of bits available per block to the frequency coefficients mantissas 
given a certain data rate. The AC-3 parametric bit allocation combines 
forward and backwards adaptive strategies [Davidson, Fielder and Link 94]. 
In a forward adaptive bit allocation strategy, as adopted in the MPEG audio 
coders, the allocation is computed in the encoder and then transmitted to the 
decoder. Advantages of this approach include high flexibility in the 
allocation without modifying the decoder structure. The backward adaptive 
strategy calls for a computation of the allocation in both the encoder and the 
decoder. This method was applied in the AC-3 predecessor, AC-2, bit 
allocation strategy. While loosing some flexibility, this method has the 
advantage of saving bits in the representation of the control parameters and 
therefore it frees resources that become available to encode the frequency 
mantissas. 

In AC-3 both encoder and decoder bit allocation include the core 
psychoacoustics model upon which the bit allocation is built and the 
allocation itself, therefore eliminating the need to explicitly transmit the bit 
allocation in its entirety. Only essential psychoacoustics parameters and a 
delta bit allocation, in terms of a parametric adjustment to the masking 
curves, are conveyed to the decoder. This strategy allows for an 
improvement path since these parameters are computed in the encoder only 
and don't affect the decoder structure but also minimizes the amount of 
control data to be transmitted to the decoder. 

Bit allocation parameters are always sent in block 0 and are optional in 
blocks 1 through 5. The main input to the bit allocation routine in the 
encoder and decoder is the set of the fine grain exponents that represent 
spectral envelope of the signal for the current block. Another input in the 
decoder bit allocation is represented by the optional delta bit allocation. The 
main output in the encoder and decoder bit allocation routine is a bit 
allocation array; in the encoder control parameters to be conveyed to the 
decoder are additional outputs. 

In order to compute the bit allocation, the excitation patterns are first 
derived. For each block, the exponent set is mapped to a logarithmic power
spectral density. A logarithmic addition of the power-spectral density over 
frequency bands that follow the critical band rate as defined by Flecther 
[Fletcher 40] and Zwicker [Zwicker 61] is computed (see also Chapter 6). In 
Figure 9 the band sub-division adopted in AC-3 is shown. A comparison 
with the AL2 banding structure is also shown in Figure 9. While AC-2 
banding structure approximates the critical bandwidths, AC-3 offers an 
increased resolution, its banding being closer to half critical bandwidths. 



Chapter 14: Dolby AC3 391 

The excitation patterns are computed by applying a spreading function to 
the signal energy levels on a critical band by critical band basis. The 
spreading function adopted in AC-3 is derived from masking data of 500 Hz, 
1 kHz, 2kHz, and 4kHz maskers masking narrow-band noise as shown in 
Figure 10 [Fielder et al. 96]. The masking curve towards lower frequencies 
can be approximated by a single linear curve with a slope of 10 dB per band. 
Towards higher frequencies, the masking curve can be approximated by a 
two-piece linear segment curve. The slope and the vertical offset of these 
segments can be varied based on the frequency of the masking components 
to better follow the corresponding masking data. Four parameters are 
transmitted to the decoder to characterize the spreading function shape 
(namely the offset and the slope of the two segments of the spreading 
function). 

1<XXJ 

Ben:Mdth 
(Hz) 

100 

20 

Critical Bn::Mdth 

1/2 Critical Elard.Iidth 

20 100 

/JC-2 Barding 
Stn.ctl.fe 

, 
, , 

---

1<XXJ 

FffiQJ9l'CY (Hz) 

, 
/>C-3 B:n:Ing / , 

Stn.cture 

10k rok 

Figure 9. AC-3 and AC-2 bit allocation spectral bandwidths versus critical bandwidths from 
[Fielder et al. 96] 

In order to capture the contribution of all masking components in the 
block of data under examination, the masking components are weighted by 
the spreading function and then combined together. This step is sometimes 
implemented as a convolution (see for example [Schroeder, Atal and Hall 



392 Introduction to Digital Audio Coding and Standards 

79] and MPEG Psychoacoustic Model 2 [ISO/IEC 11172-3]). The 
convolution between the masking components of the signal and the 
spreading function can be computed via a linear recursive filter (or IIR 
filter), since its output is the result of weighed summation of the input 
samples. In this case the filter order and coefficients are determined from 
the spreading function. In AC-3 the linear recursive filter is replaced with an 
equivalent filter that processes logarithmic spectral samples. To implement 
the convolution with the two-slope spreading function, two filters are 
connected in paral\el. The computation of the excitation patterns utilizing 
IIR filters in place of a convolution results in a very efficient 
implementation, drastically reducing the complexity of the algorithm. 

Once the excitation pattern is computed, it is then offset downward by an 
appropriate amount (about 25 dB). The signal masking curve is then 
combined with the threshold in quiet by selecting the greater of the two 
masking levels for each frequency point in order to derive the corresponding 
global masked curve. 

The masking curve computation is present in both encoder and decoder. 
A number of parameters describing the masking models, however, are 
conveyed to the decoder. The shape of the spreading function, for example 
is described in the AC-3 bitstream by four parameters. In addition, optional 
improvements to the masking models can be transmitted to the decoder via 
the delta bit al\ocation. The delta bit allocation is derived from the 
difference between two masking curves calculated in paral\el in the encoder, 
where one masking curve represent the core model and is recomputed in the 
decoder and the other represents an improved version of it. 

The last step in the bit al\ocation routine is the derivation of the number 
of bits to be assigned to each frequency mantissa. The masking curve is 
subtracted to the fine-grain logarithmic spectral envelope. This difference is 
right shifted by 5 and then mapped to a vector of values, baptab, to obtain 
the final bit allocation. In Table 6 the mapping between the shifted 
difference values and the final al\ocation is shown. 

It should be noted that, in general, bit allocation strategies are based on 
the assumption that the quantization noise in a particular band is independent 
of the number of bits al\ocated in neighboring bands. While this assumption 
is reasonably well satisfied when the time-to-frequency mapping of the 
signal is performed with a high frequency-resolution, aliasing-free filter 
bank, this is not always the case. This effect is especially pronounced at low 
frequencies, where the slope of the masking curves can exceed the 
selectivity of the filter bank. For example, in the downward frequency
masking regions for tonal components with frequencies between 500 Hz -
2.5 kHz the computation of the bit allocation based solely on the differences 
between the signal spectrum levels and the masking levels may lead to 



Chapter 14: Dolby AC3 393 

audible quantization noise. In AC-3, a method sometimes nicknamed "Low 
Comp" is applied in order to compensate for potential audible quantization 
noise at low frequencies due to the limited frequency resolution of the signal 
representation. In this scheme, an iterative process is applied, in which the 
noise contributions from each transform coefficient are examined and an 
appropriate word length adjustment is adopted in order to ensure that the 
quantization noise level lie below the computed masking curve. The 
adoption of the Low Comp scheme often results in the addition of one to 
three bits per frequency sample in the region of high positive slopes of the 
masking curves for low frequency or mid-range tonal maskers. The reader 
interested in a more detailed discussion of the Low Comp method should 
consult [Davidson, Fielder and Link 94]. 

·20 

-3> 

-40 
1 I4-lz 

500Hz 

Relatil.€ -50 

Lel.€l 
(dB) .aJ 

I 
I 
I 

-70 I 
I 
I 
I 
I 

.00 I 
I 

" I 
I, , . 

-00 . ', 

-100 
-3> -20 -10 0 10 20 3> 40 50 

Relatil.€ PC-3 band number 

Figure 10, Comparison between the AC-3 spreading function and masking curves for 500 Hz, 
1 kHz, 2 kHz, 4kHz sinusoidal maskers from [Fielder et at. 96] 



394 Introduction to Digital Audio Coding and Standards 

Table 6. AC-3 bit allocation from shifted SMR values [ATSC A/52110j 
Shifted SMR Baptab Shifted SMR Baptab Shifted SMR Bae.tab 
0 0 22 7 44 13 

23 8 45 13 
2 24 8 46 13 
3 25 8 47 14 
4 26 8 48 14 
5 1 27 9 49 14 
6 2 28 9 50 14 
7 2 29 9 51 14 
8 3 30 9 52 14 
9 3 31 10 53 14 
10 3 32 10 54 14 
11 4 33 10 55 15 
12 4 34 10 56 15 
13 5 35 11 57 15 
14 5 36 11 58 15 
15 6 37 11 59 15 
16 6 38 11 60 15 
17 6 39 12 61 15 
18 6 40 12 62 15 
19 7 41 12 63 15 
20 7 42 12 
21 7 43 13 

8. QUANTIZATION 

The mantissas are quantized according to the number of bits allocated as 
indicated in Table 7. The baptab value corresponds to a bit allocation 
pointer, bap, which describes the number of quantizer levels. Depending on 
the number of levels, the quantizer utilized in AC-3 may be symmetrical or 
asymmetrical. For levels up to 15 the quantizer is a midtread quantizer (see 
also Chapter 2). For levels above 15, i.e. 32, 64, ... , 65536, the quantizer is 
a two's complement quantizer. In addition, some quantized mantissas are 
grouped into a single codeword (see also the MPEG-l Layer II quantization 
description in Chapter 11). In the case of a three and five-level quantizer, 
bap = 1 and bap = 2 respectively, three quantized mantissas are grouped into 
a five and seven-bit codeword respectively as follows: 

bap = 1 codeword = 9 mantissa[a] + 3 mantissa[b] + mantissa[c] 

bap = 2 codeword = 25 mantissa[a] + 5 mantissa[b] + mantissa[c] 



Chapter 14: Dolby AC3 395 

In the case of an eleven-level quantizer, two quantized values are grouped 
and represented by a seven-bit codeword as follows: 

bap = 4 codeword = II mantissa[a] + mantissa[b] 

Table 7 shows the correspondence between the bap value and the number of 
quantization levels and bits used to represent a single mantissa. 

Table 7. AC-3 quantizer levels [ATSC A/52/1O] 
bap Quantizer levels Mantissa bits 

0 0 0 
3 1.67 (5/3) 

2 5 2.33 (7/3) 
3 7 3 
4 11 3.5 (7/2) 
5 15 4 
6 32 5 
7 64 6 
8 128 7 
9 256 8 
10 512 9 
11 1024 10 
12 2048 11 
13 4096 12 
14 16,384 14 
15 65,536 16 

The AC-3 decoder may employ optionally a dither function when bap = 
0, i.e. the number of mantissa bits is zero. Based on the values of a one-bit 
control parameter transmitted in the AC-3 bitstream, dithflag, the decoder 
may substitute random values for mantissas with bap equal to zero. For 
dithflag equal to zero, true zero values are utilized. 

9. BITSTREAM SYNTAX 

The AC-3 bitstream consists of a sequence of frames (see Figure 11). 
Each frame contains six coded audio blocks, each of which represent 256 
new audio samples for a total of 1536 samples. A synchronization 
information header at the beginning of each frame contains information 
needed to acquire and maintain synchronization. First a synchronization 
word equal to 0000 1011 0111 0111 is transmitted. An optional cyclic 
redundancy code, CRC, word follows. This 16-bit CRC applies to the first 
5/8 of the frame. An 8-bit field synchronization information (SI) conveys 



396 Introduction to Digital Audio Coding and Standards 

the sample rate code (2 bits) and the frame size code (6 bits). The SI is used 
to determine the number of two-byte words before the next synchronization 
word. The length of the above mentioned part of the bitstream (Synch word, 
CRC and SI information) is fixed and it is always transmitted for each frame. 

A bitstream information (BSI) header follows the SI, and contains 
parameters describing the coded audio service. The coded audio blocks may 
be followed by an auxiliary data (Aux) field. At the end of each frame is an 
error check field that includes a CRC word for error detection. With the 
exception of the CRC, these fields may vary from frame to frame depending 
on programming parameters such as the number of encoded channels, the 
audio coding mode, and the number of listener features . 

.__------1S36 PCM sampless---------------------. 

SYNC 
CRC 

SI BSI 
AUDIO AUDIO AUDIO AUDIO AUDIO AUDIO AUX CRC 

#1 BLOCK 0 BLOCK 1 BLOCK 2 BLOCK 3 BLOCK 4 BLOCKS DATA #2 

Figure 11. AC-3 frame structure 

The BSI field is a variable field containing parameters describing the 
coded audio services including bitstream identification and mode, audio 
coding modes, mix levels, dynamic range compression control word, 
language code, time code, etc. 

Within one frame the relative size of each audio block can be adapted to 
the signal bit demands. Audio blocks with higher bit demand can be 
weighted more heavily than other in the distribution of the bit pool available 
per frame. In addition, the rate of the AC-3 frame can be adjusted based on 
the signal demands, by changing the frame size code parameter in the SI 
field. In this fashion, variable bit rate on a short and long-term basis can be 
implemented in AC-3. This feature may prove to be very useful in storage 
applications. 

10. PERFORMANCE 

A number of tests were carried out to measure the performance of AC-3. 
One of the most recent tests and possibly one of the most interesting because 



Chapter 14: Dolby AC3 397 

of its assessment in conjunction with the subjective evaluation of other state
of-the-art two-channel audio coders took place at the Communication 
Research Centre, CRC, Ottawa, Canada [Soulodre, Grusec, Lavoie and 
Thibault 98] (see Figure 12). Other codecs included in the tests were 
MPEG-2 AAC at 128 kb/s (Main Profile), MPEG Layer II at 192 kb/s and 
MPEG Layer III at 128 kb/s, and Lucent PAC [Sinha, Johnston, Dorward 
and Quackenbush 98] at 160 kb/s. At 192 kb/s AC-3 scored in average 4.5 
in the five-grade ITU-R impairment scale, i.e. the differences between the 
AC-3 coded an the original excerpts was deemed by expert listeners in the 
region of perceptible but not annoying. AC-3 at 192 kb/s together with 
MPEG-2 AAC at 128 kb/s s ranked the best among the codecs tested. 

0.00,-----------------,0.00 

~ 
~ ·1.00 l-;-----=,L--+...=--1r----+·,.oo 
g ., 
Ci3 -1,411) 

i ::: ~'~r~~· 
i .2.00 1 
~ -uo 

:; -2..80 ••.•.•..... 

·2.00 

8 -uo "'~"l~~! 

1 ... 00 ~:~-::::.:;:.I-::::-.... +------tL....--------+ -3.00 

VelYMfno'ltflg 

-4.00 .L-~......,...---.----,.---..,.---.,.......L-4.OO. .. 96 128 160 192 

Bilrale (kbps) 

Figure 12. Comparison of AC-3 overall quality with MPEG-2 AAC, MPEG-2 Layer II and 
MPEG-2 Layer III from [Soulodre, Grusec, Lavoie and Thibault 98] 

11. SUMMARY 

In this chapter we reviewed the main features of the Dolby AC-3 Audio 
system. AC-3 was developed for encoding multichannel audio on film and 
later migrated to consumer applications. Dolby AC-3 is currently in use in 
the North American HDTV, DVD-Video, and regional DVB standards. 



398 Introduction to Digital Audio Coding and Standards 

AC-3 is a perceptual audio coding system that allows the encoding of 
diverse audio channels format. The AC-3 algorithm presents similarities 
with its predecessor, AC-2, and other perceptual audio coding schemes such 
as MPEG-l and -2 Audio, as well as unique, distinctive approaches to audio 
coding. AC-3 data rates range from 32 kb/s to 640 kb/s, with preferred 
operational data rates at 192 kb/s in the two-channel configuration and 384 
kb/s in the five-channel configuration. User's features include downmixing 
capability, dynamic range control, multilingual services, and hearing and 
visual impaired services. 

AC-3 was tested in the stereo configuration by the CRC, Canada, during 
the subjective evaluation tests of state-of-the-art two-channel audio codecs, 
scoring in average 4.5 in the five-grade ITU-R impairment scale at 192 kb/s 
in the stereo configuration. 

12. REFERENCES 

[ATSC A/52110]: United States Advanced Television Systems Committee Digital 
Audio Compression (AC-3) Standard, Doc. Al5211 0, December 1995. 

[Blauert 83]: J. Blauert, Spatial Hearing, MIT Press, Cambridge, MA 1983. 

[Bosi and Davidson 92]: M. Bosi and G. A. Davidson, "High-Quality, Low-Rate 
Audio Transform Coding for Transmission and Multimedia Applications", presented 
at the 93rd AES Convention, J. Audio Eng. Soc. (Abstracts), vol. 40, P. 1041, 
Preprint 3365, December 1992. 

[Bosi et a1. 97]: M Bosi, K. Brandenburg, S. Quackenbush, L. Fielder, K. Akagiri, 
H. Fuchs, M. Dietz, J. Herre, G. Davidson, and Y. Oikawa, "ISO/lEC MPEG-2 
Advanced Audio Coding," 1. Audio Eng. Soc., vol. 45, pp. 789 - 812, October 1997. 

[Davidson, Fielder and Link 94]: G. A. Davidson, L. D. Fielder, and B. D. Link, 
"Parametric Bit Allocation in a Perceptual Audio Coder ", presented at the 97th AES 
convention, San Francisco, Preprint 3921, November 1994. 

[Davidson, Fielder, and Antill 90]: G. A. Davidson, L. D. Fielder, and M. Antill, 
"Low-Complexity Transform Coder for Satellite Link Applications," presented at 
the 89th Convention of the Audio Engineering Society, pre-print 2966, New York, 
September 1990. 

[Davis 93]: M. Davis, "The AC-3 Multichannel Coder," presented at the 95th AES 
Convention, New York, pre-print 3774, October 1993. 

[DVD-Video]: DVD Specifications for Read-Only Disc, Part 3: VIDEO 
SPECIFICATIONS Ver. l.l, Tokyo 1997-2001. 



Chapter 14: Dolby AC3 399 

[Edler 89]: B. Edler, "Coding of Audio Signals with Overlapping Transform and 
Adaptive Window Shape" (in German), Frequenz, Vol. 43, No.9, pp. 252-256, 
September 1989. 

[ETS 300421]: The European Telecommunications Standards Institute (ETSI), ETS 
300 421, "Digital Video Broadcasting (DVB); Framing Structure, Channel Coding 
and Modulation for 11112 GHz Satellite Services", August 1997. 

[Fielder 87]: L. Fielder, "Evaluation of the Audible Distortion and Noise Produced 
by Digital Audio Converters," J. Audio Eng. Soc., vol. 35, pp. 517-535, July/August 
1987. 

[Fielder et al. 96]: L. Fielder, M. Bosi, G. Davidson, M. Davis, C. Todd, and S. 
Vernon, "AC-2 and AC-3: Low-Complexity Transform-Based Audio Coding," 
Collected Papers on Digital Audio Bit-Rate Reduction, Neil Gilchrist and Christer 
Grewin, Eds., pp. 54-72, AES 1996,. 

[Fletcher 40]: H. Fletcher, "Auditory Patterns," Reviews of Modem Physics, Vol. 
12, pp. 47-65, January 1940. 

[ISO/IEC 11172-3]: ISO/IEC 11172, Information Technology, "Coding of moving 
pictures and associated audio for digital storage media at up to about 1.5 Mbitls, Part 
3: Audio", 1993. 

[ISO/IEC 13818-3]: ISO/IEC 13818-3, "Information Technology - Generic Coding 
of Moving Pictures and Associated Audio, Part 3: Audio," I 994- I 997. 

[ISO/IEC 13818-7]: ISO/IEC 13818-7, "Information Technology - Generic Coding 
of Moving Pictures and Associated Audio, Part 7: Advanced Audio Coding", 1997. 

[ITU-R BS. 775-1]: International Telecommunications Union BS.775-1, 
""Multichannel Stereophonic Sound System with and without Accompanying 
Picture ", Geneva, Switzerland, 1992-1994. 

[Johnston and Ferreira 92]: J. D. Johnston, A. J. Ferreira, "Sum-Difference Stereo 
Transform Coding", Proc. ICASSP pp. 569-571, 1992. 

[Princen and Bradley 86]: J. P. Princen and A. 8. Bradley, "Analysis/Synthesis 
Filter Bank Design Based on Time Domain Aliasing Cancellation," IEEE 
Transactions on Acoustics, Speech, and Signal Processing, vol. ASSP-34, no. 5, pp. 
1153 -1161, October 1986. 

[Princen, Johnson and Bradley 87]: J. P. Princen, A. Johnson and A. 8. Bradley, 
"SubbandlTransforrn Coding Using Filter Bank Designs Based on Time Domain 
Aliasing Cancellation", Proc. of the ICASSP 1987, pp. 2161-2164, 1987. 



400 Introduction to Digital Audio Coding and Standards 

[Schroeder, Atal and Hall 79]: M. R. Schroeder, 8. S. Atal and J. L. Hall, 
"Optimizing Digital Speech Coders by Exploiting Masking Properties of the Human 
Ear", 1. Acoust. Soc. Am., Vol. 66 no. 6, pp. 1647-1652, December 1979. 

[Sinha, Johnston, Dorward and Quackenbush 98]: D. Sinha, 1. D. Johnston, S. 
Dorward and S. R. Quackenbush, "The Perceptual Audio Coder (PAC)", in The 
Digital Signal Processing Handbook, V. Madisetti and D. Williams (ed.), CRC 
Press, pp. 42.1-42.18, 1998. 

[Soulodre, Grusec, Lavoie and Thibault 98]: G. A. Soulodre, T. Grusec, M. Lavoie, 
and L. Thibault, "Subjective Evaluation of State-of-the-Art Two-Channel Audio 
Codecs", 1. Audio Eng. Soc., Vol. 46, no. 3, pp. 164-177, March 1998. 

[Todd et al. 94]: C. Todd, G. A. Davidson, M. F. Davis, L. D. Fielder, B. D. Link 
and S. Vernon, "AC-3: Flexible Perceptual Coding for Audio Transmission and 
Storage," presented at the 96th Convention of the Audio Engineering Society, 
Preprint 3796, February 1994. 

[Van der Waal and Veldhuis 91]: R. G. v.d. Waal and R. N. J. Veldhuis, "Subband 
Coding of Stereophonic Digital Audio Signals", Proc. ICASSP, pp. 3601 - 3604, 
1991. 

[Zwicker 61]: E. Zwicker, "Subdivision of the Audible Frequency Range into 
Critical Bands (Frequenzgruppen)," 1. Acoust. Soc. of Am., Vol. 33, p. 248, 
February 1961. 



Chapter 15 

MPEG-4 Audio 

1. INTRODUCTION 

In Chapters 11, 12 and 13 we discussed the goals of the first two phases 
of the MPEG Audio standard, MPEG-I and MPEG-2, and we reviewed the 
main features of the specifications. MPEG-4 is another ISOIIEC standard 
that was proposed as a work item in 1992 [ISOIIEC MPEG N27I]. In 
addition to audiovisual coding at very low bit rates, the MPEG-4 standard 
addresses different functionalities, such as, for example, scalability, 3-D, 
synthetic/natural hybrid coding, etc. MPEG-4 became an ISOIIEC final draft 
international standard, FDIS, in October 1998 (lSO/IEC 14496 version 1), 
see for example [ISOIlEC MPEG N250I, N2506, N2502 and N2503]. The 
second version of ISO/IEC 14496 was finalized in December 1999 [ISOIIEC 
14996]. In order to address the needs of emerging applications, the scope of 
the standard was expanded in later amendments and, even currently, a 
number of new features are under development. These features will be 
incorporated in new extensions to the standard, where the newer versions of 
the standard are compatible with the older ones. 

The MPEG-4 standard targets a wide number of applications including 
wired, wireless, streaming, digital broadcasting, interactive multimedia and 
high quality audio/video. Rather than standardize a full algorithm and a 
bitstream as was done in MPEG-l and 2, MPEG-4 specifies a set of tools, 
where a tool is defined as a coding module that can be used as a component 
in different coding algorithms. Different profiles, that represent a collection 
of tools and refer to a particular application, are defined in the standard. 

MPEG-4 Audio includes, in addition to technology for coding general 
audio as in MPEG-I and 2, speech, synthetic audio and text to speech 

M. Bosi et al., Introduction  to  Digital Audio  Coding  and Standards
© Kluwer Academic Publishers 2003



402 Introduction to Digital Audio Coding and Standards 

interface technology. Features like scalability, special effects, sound 
manipulations, and 3-D composition are also included in the standard. 
While MPEG-1 and 2 Audio typically specify the data rate at the time of the 
encoding process, the scalability feature in MPEG-4 allows for a system data 
rate, which is, with some boundaries, dynamically adaptable to the channel 
capacity. This feature provides significant benefits when dealing with 
transmission channels with variable capacity, such as internet and mobile 
channels. 

In this chapter, a high level description of MPEG-4, its goals and 
functionalities are discussed. The development of MPEG-4 Audio is then 
presented followed by a description of the basic tools and profiles of MPEG-
4 Audio. Finally an evaluation of the audio coding tools performance is 
discussed and intellectual property management issues are introduced. 

2. MPEG-4: WHAT IS IT? 

The MPEG-4 standard specifies the coding parameters of elements of 
audio, visual, or audiovisual information, referred to as "media objects". 
These objects can be multidimensional, natural or synthetic, i.e. they can be 
recorded from natural scenes with a microphone and a video recorder or they 
can be computer-generated [Chiariglione 98]. 

For example (see Figure 1), a talking person can be represented as the 
ensemble of basic media objects such as the background image (still image 
object), the talking person without the background (video object) and that 
person's voice plus background noise (audio object). 

In addition, the MPEG-4 standard describes the composition of these 
objects to create groups of media objects that describe an audiovisual scene. 
For example, the audio object representing the person's voice can be 
combined with video object representing the talking person to form a new 
media object containing both the audio and visual components of the talking 
person and then further combined into more complex audiovisual scenes. 

MPEG-4 defines also the multiplexing and synchronization of the data 
associated with media objects, so that they can be transported over media 
channels, and it provides means for interaction with the audiovisual scene 
generated at the receiver's end. It incorporates identification of intellectual 
property and supports controlled access to intellectual property through the 
requirements specified in the "Management and Protection of Intellectual 
Property", IPMP, part of the standard [ISOIlEC 14496-1, ISOIlEC MPEG 
N2614]. 



Chapter 15: MPEG-4 Audio 

lIIultiplexed 
dOWIl."iiream 

contmll data 

multiplexed 
upstream 

C(lntmlldrt/(1 

video 
comp(),~ilOr 

hypothetical viewer 

audiovisual ohj('("t~· 

o ~o 
I 0 I display 

o 
o 

speaker user iI/put 

Figure 1. An example of an MPEG-4 scene from [ISO/lEe MPEG N4668] 

2.1 MPEG-4 Standard Document Organization 

403 

Similarly to the other MPEG standard documents, the ISO/IEC 14496 
document, "Coding of audio-visual objects", specifies the decoder process 
and bistream format. The main sections, listed below, describe the different 
parts of the standard as follows: 

ISO/IEC 14496-1: Systems 
ISOIIEC 14496-2: Visual 
ISO/IEC 14496-3: Audio 
ISOIIEC 14496-6: Delivery Multimedia Integration Framework 
ISOIIEC 14496-10 (Proposed) Advanced Video Coding 



404 Introduction to Digital Audio Coding and Standards 

Part 1 of the standard describes the MPEG-4 Systems specifications. The 
Systems part of the standard specifies the tools for describing the spatial
temporal relation between the audio-visual objects in a scene. The actual 
scene is created using the binary format for scenes (BIFS) and, at a lower 
level, by defining the relations between audio-visual elementary streams 
using object descriptors. In addition, the Systems part of the standard 
specifies the MPEG-4 file format, MP4 and interfaces to different aspects of 
terminals and networks through Java application engines, MPEG-J. 

Parts 2 and 3 of the standard define a set of advanced compression tools 
for visual and audio objects, respectively. The elementary data streams 
resulting from the coding procedures described in these parts of the standard 
can be transmitted or stored separately, but eventually need to be composed 
to create the final multimedia scene. 

Part 2, Visual, supports the coding of natural images and video together 
with synthetic scenes at data rates ranging from 5 kb/s to more than 1 Gb/s. 
In addition, complexity, quality and spatio-temporal scalability is supported 
together with robustness in error prone environments. Face and body 
animation and coding of 2-D and 3-D polygonal meshes are also addressed. 

Part 3, Audio, addresses the coding of general audio, speech, synthetic 
audio, text to speech, TTS, interface, as well as additional functionalities 
such. as scalability, time/pitch shift, 3-D, and error robustness. The audio 
tools will be discussed further later in this chapter. 

Part 6 of the standard presents the Delivery Multimedia Integration 
Framework (DMIF) tools. The FlexMux tool is used to interleave mUltiple 
elementary streams into a single stream. The TransMux tool is used to map 
elementary streams onto transport streams such as the real time transport 
protocol (RTP) or MPEG-2 transport streams. 

Recently, a new video format, proposed as Part 10 of the MPEG-4 
standard, reached the final committee draft (FCD) status [lSO/IEC MPEG 
N4920]. Part 10, or Advanced Video Coding, A VC, jointly developed with 
ITU-T SG16 by the joint video team, JVT, [ISO/IEC MPEG N4400] 
addresses a new set of visual compression tools. Part 10 FCD holds the 
promise of extremely high quality video at increased complexity with 
respect to Part 2. AVC is expected to be finalized as ISO/IEC 14496-10 by 
the end of 2002. 

New extensions are currently under consideration by the MPEG-4 Audio 
standard committee [lSO/IEC MPEG N4764]: 

• Bandwidth extension - a technology that allows for the 
reconstruction of the high frequency components of an audio 
signal at the receiver side. This method significantly improves 
the compression efficiency of general audio coders [Dietz, 
Liljeryd, Kjoerling and Kunz 02]. 



Chapter 15: MPEG-4 Audio 405 

• Parametric coding at higher data rates - a tool that extends the 
capability of the harmonic individual lines and noise, HILN, 
parametric coding scheme of the standard [den Brinker, Schuijers 
and Oomen 02]. 

In addition, a call for proposals for lossless audio coding was recently 
issued by the MPEG Committee [ISO/IEC MPEG N5040]. The idea behind 
this calJ is to extend the general audio coding capability of MPEG-4 Audio 
to lossless coding. 

3. MPEG-4 AUDIO GOALS AND 
FUNCTIONALITIES 

The scope of MPEG-4 Audio is broader than the scope of MPEG-I and 2 
Audio. The different types of applications that MPEG-4 is addressing, such 
as telephony and mobile communication, digital broadcasting, internet 
networks, interactive multimedia, etc., require a high degree of coding 
efficiency together with flexible access to coded data, including access to 
subsets of coded data (i.e. scalability of the coded bitstream), and protection 
against transmission errors. Reflecting the needs of these requirements, the 
MPEG-4 Audio goals and functionalities include, in addition to highly 
efficient audio coding, the provision of speech coding to address telephony 
applications, universal access through scalability of the coded data to address 
different transmission channel requirements and robustness in error prone 
environments. Furthermore content-based interactivity through flexible 
access and manipulation of the coded data and support to synthetic audio and 
speech through the structured audio, SA, and ITS interface are addressed by 
the standard functionalities. 

Different technologies described in different parts of the audio standard 
refer to this diverse set of requirements/goals. Figure 2 shows the typical 
data rate requirements for different applications versus the bandwidth of the 
coded signals and which part of the MPEG-4 Audio standard is applicable. 
Namely, MPEG-4 addresses two basic types of audio, synthetic (ITS and 
SA) [Vercoe, Gardner and Scheirer 98, Scheirer, Lee and Yang 00] and 
natural (parametric, code excited linear predictive or CELP, general audio or 
G/A, and scalable coders) [Edler, Purnhagen and Ferekidis 96, Purnhagen 
and Meine 00, Johnston, Quackenbush, Herre and Grill 00]. The 
synchronization and mix of natural with synthetic audio is called 
SyntheticlNatural hybrid coding, SNHC. In addition, the AudioBIFS 
[Scheirer, Vaananen and Huopaniemi 99] part of the Systems BIFS 
framework allows for receiver's mixing and postproduction and 3-D sound 
presentation. 



406 Introduction to Digital Audio Coding and Standards 

The TTS interface part of MPEG-4 Audio standardizes a transmission 
protocol for synthesized speech, where TTS systems translate text 
information into speech so it can be transferred through speech lines such as 
telephone lines. In addition, TTS systems can be used for services for the 
visually impaired, automatic voice response systems, etc. The data rates 
covered by the TTS systems vary between 200 bls and 1.2 kb/s. 

In the SA part of the audio standard, the delivery of synthetic audio is 
described. This capability allows for ultra-low data rates (200 bls as shown 
in Figure 2) and interactivity at the receiver end. The SA bitstream format 
specifies a set of synthesis algorithms that describe how to create the sound, 
and a set of synthesis control parameters that describe which sounds to 
create. The set of synthesis algorithms, which can generate "instruments", 
(such as real-life instruments like the flute, violin, etc., or instruments that 
reflect the sound of ocean waves, or synthetic-hybrid "instruments", etc.) is 
specified in the SA orchestra language, SAOL. The control parameters that 
govern the creation of specific sounds are specified in the SA score 
language, SASL. A format designed to represent banks of wave-tables, the 
SA audio sample bank format, SASBF, is included in the standard and was 
developed in collaboration with the musical instrument digital interface, 
MIDI, manufactures association [MIDI]. Wave-table synthesis is ideal for 
applications that don't need interaction and require low complexity structure, 
such as, for example, karaoke applications. This technology allows for the 
synthesis of a desired sound from look-up tables where particular waveform 
types are stored. In this case, extremely low data rates can be achieved. 

Satellite Cellular phone Internet ISDN 
Secure com. 

bit-rate (kbps) 
0.2 2 4 6 16 24 32 48 64 

I I I I I I I I I 

Structured Audio 2 
Parametric coder 

CELPcoder 

G/Acoder 2 
Scalable Coder 2 

4kHz 8kHz Typical Audio bandwidth 20kHz 

Figure 2. MPEG-4 Audio data rates and target applications from [Edler 97] 

Speech signals can be coded with the MPEG-4 Audio standard by 
utilizing the parametric speech and CELP tools [Nishiguchi and Edler 02]. 



Chapter 15: MPEG-4 Audio 407 

The parametric speech coder, called also harmonic vector excitation coding, 
HVXC, achieves good quality at data rates between 2 and 4 kb/s. Lower 
data rates, such as 1.2 kb/s in average, can be achieved when variable rate 
coding is enabled. For data rates between 4 and 24 kb/s the CELP coder is 
utilized. Two sampling rates are supported, 8 and 16 kHz, where the first 
sampling rate is employed for narrow-band coding of speech and the second 
for wide-band coding of speech. 

General audio covers data rates between 6 kb/s for audio signals with 
bandwidth of 4 kHz, and 300 kb/s (or above) per channel for signals with 
bandwidths above 20 kHz for mono to multichannel audio. The work of 
MPEG-4 Audio in this area represents a continuation of the MPEG-I and 
MPEG-2 Audio work with additional tools for addressing natural audio 
source material. 

Data rate scalability allows for the data to be parsed into bitstreams of 
lower data rates that can be still decoded into a meaningful signal. 
Encoder/decoder complexity scalability allows for encoder/decoders of 
lower complexity to generate valid and meaningful bitstreams. Scalability 
works within a single MPEG-4 Audio tool, such as for example HVXC, and 
can also be applied to combinations of tools, such as, for example, with 
CELP as the base coder and other general audio coders such AAC or 
TwinVQ for the enhancement layers. 

In Figure 3 different audio objects and the combination of the elementary 
streams through a compositor are shown. The different elementary audio 
streams can be multiplexed together, and, in addition, encoded video streams 
can also be multiplexed into the same MPEG-4 bitstream. In the decoder 
stage, the bitstream is demultiplexed and each elementary stream is decoded. 
The resulting audio can be played directly or made available for scene 
composition through the AudioBIFS information. The audio composition 
tools are specified in the Systems part of the standard. In the compositor 
multiple audio streams are "mixed" to create a single track. As an example, 
let's assume we have a speaking voice over background music. One way of 
coding this signal with high quality would be to use general audio coding 
tools at 64 kb/s per channel. An alternative approach would be to code the 
speaking voice using the CELP tools at 16 kb/s per channel, and the music 
using SA tools at 2 kb/s per channel and then synchronize these two audio 
objects through the compositor. In the first case a data rate of 64 kb/s per 
channel was adopted, in the second the data rate was reduced to 18 kb/s per 
channel. For this approach to be effective for a large class of signals, the 
encoder should be able to properly separate the different components of the 
input signal. Encoder specifications and, in particular, the mechanism for 
source separation are beyond the scope of the MPEG-4 standard. 



408 Introduction to Digital Audio Coding and Standards 

Theoretical work [Bregman 90] has the potential to carry the foundation to 
practical guidelines in this field. 

Iparametric~ rn -0 

I ~ 
Q) 

CELP --w 
i::: ~ 

I ~ 
0 

GlA -'iii 
0 

I ~ 
Q. 

SA E 
0 
u 

I TIS ~ 
MPEG-4 Audio 

Figure 3. MPEG-4 Audio structure from [Grill 97a] 

4. MPEG-4 AUDIO TOOLS AND PROFILES 

MPEG-4 Audio profiles define subsets of the MPEG-4 Audio 
functionalities appropriate for specific applications. The audio profiles are 
specified in terms of audio "object types" and audio "levels". An audio 
object type is a collection of specific coding tools that can be used together 
for a determined application. An audio level specifies how the coding tools 
can be used in a determined application in terms of the number of supported 
audio channels, the number of simultaneous audio objects in use, maximum 
allowed sampling rates, implementation complexity, and use of error 
protection. In contrast with MPEG-2 AAC where the profiles are organized 
in a hierarchical structure (with the MPEG-2 AAC main profile being a 
superset of MPEG-2 AAC SSR and LC profiles), MPEG-4 is not 
hierarchical and the profiles are defined based on useful groupings of tools 
rather than in any a priori "logical" structure. 

4.1 MPEG-4 Audio Coding Tools 

The tools utilized in MPEG-4 Audio can be grouped into the following 
categories: 



Chapter 15: MPEG-4 Audio 409 

• Speech Tools 
• General Audio Tools 
• Scalability Tools 
• Synthesis Tools 
• Composition Tools 
• Streaming Tools 
• Error Protection Tools 

The speech tools include coding tools designed specifically for speech 
coding. For example, MPEG-4 supports linear predictive (CELP) and 
parametric speech (HVCX) coding. 

The general audio tools include the basic audio coders such as MPEG-2 
AAC and transform-domain weighted interleave vector quantization, 
TwinVQ. Tools that enhance MPEG-2 AAC efficiency, such as perceptual 
noise substitution (PNS) and long term prediction (LTP) are also included. 
In addition, parametric coding of general audio signal defined in the 
harmonic and individual lines plus noise (HILN) tools are enclosed. 

The scalability tools allow for the creation and manipulation of data 
streams that can be decoded at varying data rates. Such tools let a single 
data stream to be successfully decoded over widely different bandwidths. 
For example the same bitstream can be utilized to convey music to a slow
dialup computer as well as to listeners with broadband access. 

The synthesis tools such as the SA, SASBF and MIDI tools are used in 
the creation of synthetic sounds (as opposed to the reproduction of natural 
sounds as carried out using the general audio tools). 

The composition tools are used in the creation of audio-visual scenes and 
are typically used to control the merging of one or more audio and video 
signals into a single scene. For example, the composition tools could be 
used to layer a vocal track over a background instrumental mix. Streaming 
tools allow a remote user to control the way audio signals are streamed to 
them. Although composition and streaming tools are actually defined in part 
1 of the standard (Systems), they are often referred to in the audio 
specifications. 

Finally, error protection tools permit the addition of higher error 
protection for very susceptible signals or for signals facing particularly noisy 
transmission channels. The error protection EP tool provides unequal error 
protection by applying forward error protection codes, FEC, and/or cyclic 
redundancy codes, CRC, to audio tools [ISOIlEC 14496-3]. 

The tools relevant to defining audio profiles are listed by category in 
Table 1. . 



410 Introduction to Digital Audio Coding and Standards 

Table 1. Key MPEG-4 Audio coding tools 
Category Audio Tools 
Speech Code Excited Linear Prediction (CELP) 

Harmonic Vector Excitation Coding (HVXC) 
Text to Speech Interface (TTS) 

General Audio 

Scalability 
Synthesis 

Error Protection 

4.1.1 Speech 

Variable Bitrate HVXC 
Silence Compression 
MPEG-2 AAC Main 
MPEG-2 AAC Low Complexity (LC) 
MPEG-2 AAC Scalable Sampling Rate (SSR) 
Low Delay (LD) AAC 
Perceptual Noise Substitution (PNS) 
Long Term Prediction (LTP) 
Harmonic and Individual Lines plus Noise (HILN) 
TwinVQ 
Bit-Sliced Arithmetic Coding (BSAC) 
Tools for Large Step Scalability (TLSS) 
Synthetic Audio (SA) Tools 
Structured Audio Sample Bank Format (SASBF) 
MIDI 
Error Robustness Tools 

The CELP-based speech coder (see Figure 4) exploits a source model 
tailored on the vocal mechanism. It distinguishes between voiced and 
unvoiced excitation and employs linear prediction filters to simulate the 
vocal tract. The perceptual model in the CELP coder is very simple. The 
quantization noise is spectrally shaped via spectral weighing filters so that it 
has a similar shape to the input signal. MPEG-4 CELP can operate in the 
wideband or narrowband mode. The sampling rates are comprised between 
8 and 16 kHz and the data rates between 4 and 24 kb/s per channel. The 
coding delay depends on the data rate; the maximum delay for 4 kb/s per 
channel is less than 50 ms; the minimum delay for higher data rates is less 
than 15 ms. The CELP core allows for layered scalable coding and it 
performs best for speech only applications and speech with low background 
noise at low data rates. For speech only applications, the CELP tools 
showed very good results. For example, for data rates above 6 kb/s the 
CELP tools scored above 3.0 in the ITU-R five-grade impairment scale (see 
also Chapter 10) [ISOIIEC MPEG N2424]. In general, MPEG-4 speech 
coding offers great flexibility and added functionalities when compared to 
other speech coding standards such as [ITU-T G.722, G.723.1, and G.729]. 
In version 2 of the standard the CELP silence compression tool was added. 
This tool reduces the average data rate by transmitting a silence insertion 
description, SID, when a region with silence or background noise only is 
detected. 



Chapter 15: MPEG-4 Audio 

LPC analysis f---------, bit 
,-------, st re a m audio 

signal 
and quant. 

LPC synthesis 
filter t----, 

spectral 
weighting filter 

Figure 4. MPEG-4 eELP speech coder structure from [Edler 97] 

411 

The parametric coding core exploits a source model that is based upon 
the decomposition of the audio signals into individual sinusoidal 
components, harmonic sounds and noise (see also Figure 7). HVXC 
consists of parametric coding technology applied to speech signals only. It 
operates at data rates of 1.2-4 kb/s per channel at 8 kHz sampling rate. The 
minimum coding delay is less than 40 ms, and it features a layered scalable 
coding option. As for HILN (see also next section), the speed/pitch change 
functionality is an inherent functionality of this coder. The HVXC coder 
performance at 2 kb/s per channel is good for speech only and speech with 
low background noise [ISO/IEC MPEG N2424]. 

The TIS interface is standardized in MPEG-4. The TTS interface 
component supports features such as speaker age, gender, etc. and can be 
interfaced with the face animation technology. 

4.1.2 General Audio 

The general audio coding tools support data rates ranging from 6 kb/s per 
channel to several hundred of kb/s per channel [Herre and Purnhagen 02]. 
Monophonic and multichannel configurations (similarly defined as in 
MPEG-2 AAC) are supported. High quality general audio coding is 
provided in MPEG-4 Audio by including MPEG-2 AAC as a coding core 
tool and by adding tools such as PNS and LTP which are capable of 
improving the basic AAC performance. 

PNS works in conjunction with MPEG-2 AAC by identifying scale factor 
bands that consist primarily of noise and transmitting the total noise power 
rather than the individual spectral coefficients [Schulz 96, Herre and Schulz 
98]. PNS allows for a parametric description of noise-like signal 



412 Introduction to Digital Audio Coding and Standards 

components. At decoding time the original noise-like spectrum in that scale 
factor band is replaced ("substituted") by pseudo-random noise with the 
appropriate signal power. The PNS tool improves the basic quality of the 
MPEG-2 AAC coder for signal containing noise-like spectral components at 
data rates below 48 kb/s per stereo channel. 

The LTP tool is a lower complexity replacement for the prediction tool 
defined in the MPEG-2 AAC Main Profile that provides comparable 
performance. Typically the LTP tool provides a 50% saving in terms of 
memory and processing utilization with respect to MPEG-2 AAC [Ojanpera 
and Vaananen 99]. 

In addition, the MPEG-4 Audio specifications allow the 
quantization/noiseless coding scheme in the MPEG-2 AAC coder to be 
replaced by either the TwinVQ [Iwakami, Moriya and Miki 95] or the bit
sliced arithmetic coding, BSAC, scheme [Park and Kim 97]. TwinVQ is a 
quantization scheme based on vector quantization that uses the same spectral 
representation as MPEG-2 AAC, yet is more effective at remaining 
intelligible at the lowest supported data rates (below 16 kb/s per channel). 
TwinVQ performs a spectral flattening and then uses two vector quantization 
codebooks to quantize the flattened spectrum based on a perceptual 
distortion measure. AAC with the TwinVQ quantization represents a 
possible core for the MPEG-4 scalable coding. BSAC represents an 
alternative for the noiseless coding stage of MPEG-2 AAC. BSAC makes 
use of an arithmetic coding scheme rather than being based on Huffman 
coding. As discussed below, BSAC allows for fine-step scalability in the 
general audio coder. 

Figure 5 and Figure 6 show block diagrams of the MPEG-4 general 
audio encoder and decoder structures. In comparison with similar block 
diagrams for MPEG-2 AAC (see Chapter 13 Figure 1 and Figure 2), notice 
the inclusion of PNS and LTP in the main coding chain and also the choices 
of using TwinVQ or BSAC instead of the standard MPEG-2 AAC 
quantization and noiseless coding in the final stage of the encode chain (and 
in the first stage of the decode chain). 

In addition to the tools shown in the figures, error robustness tools and a 
low delay (LD) version of AAC [ISO/IEC 14496-3] were included in version 
2 of the standard. The AAC LD goal is to achieve speech quality at low data 
rates and low delay (equal or less than 30 ms). AAC LD is derived from the 
AAC basic structure by reducing the frame length and filter bank delay to 
480 samples (instead of 1024), by eliminating the block switching structure 
so that there is no need for a look-ahead buffer (576 samples for AAC) and 
by reducing the use of the bit reservoir to a minimum so that no delay is 
added (instead of 74.7 ms at 48 kHz). The total algorithmic delay introduced 
by AAC LD at 48 kHz sampling rate is 20 ms (versus 129.4 of AAC). 



Chapter 15: MPEG-4 Audio 413 

Based on MPEG-4 verification tests AAC LD at data rates of 32 and 64 kb/s 
has a comparable performance to MPEG-2 AAC Main Profile at 24 and 56 
kb/s with a delay of 30 ms (versus over 300 ms) and 20 ms (versus over 140 
ms) respectively [ISOIIEC MPEG N3075]. 

Perceptwl 
Model 

Input time signal 

Quantization and 
Coding Choices 

Bitstream 

Legend: 
data 
control --

Coded Audio 
Birstream 

Figure 5. Block diagram of the GA non-scalable encoder from [ISOIIEC 14996-3] 



414 Introduction to Digital Audio Coding and Standards 

Legend: 
data 
control --

Coded Audio 
Bitstrcam 

BilSlrcam 
Deforrnauc 

Deooding and 
Dcquantimtion Oloices 

1---.... Output time signal 

Figure 6. Block diagram of the GA non-scalable decoder from [ISo/lEe 14996-3] 

The HILN tool was also added in the second version of the standard. 
This tool is based on parametric audio coding technology, i.e. the audio 
signals are described by utilizing some chosen model parameters rather than 
approximating the audio waveform representation as previously done in 
MPEG-l and 2. The source model is based upon the assumption of quasi
stationarity and the coexistence of pure tones, transients and noise in the 
signal under exam. The parameters selected to describe the source include 
spectral samples, frequency and amplitude of sinusoids, amplitude envelope 
and noise spectrum. In Figure 7 the basic structure of the parametric audio 
coding tool is shown. The audio signal is first decomposed into individual 



Chapter 15: MPEG-4 Audio 415 

sinusoidal components, harmonic sounds and noise. Perceptual models are 
applied in the quantization of the spectral and harmonic components 
parameters. The parameters quantization is such that the step size covers 
just noticeable differences. In addition, entropy coding is also employed. 
HILN operates at data rates of 4-16 kb/s per channel and it has a layered 
scalable coding option. The speed/pitch change functionality is an inherent 
functionality of this coder. The HILN tools extend natural audio coding at 
very low data rates. The optimal area of application for the HILN tools 
includes monophonic music signals with low content complexity for data 
rates ranging between 4 kb/s and 8 kb/s. An integrated parametric decoder, 
which includes both HILN and HVXC, allows for coding of speech and 
music at very low data rates. For example, speech plus background music 
can be encoded by using a total of 6 kb/s where 2 kb/s are utilized to code 
the speech part of the signal with the HVXC tools and 4 kb/s are utilized to 
code the music with the HILN tools. 

model based 
separation 

parameter 
estimation 

Figure 7. MPEG-4 Audio parametric audio coding (HILN) tool structure from [Edler 97] 

4.1.3 Scalability 

An important new functionality included in MPEG-4 Audio is that of 
scalability [Grill 97]. The scalability tools allow a decoder to parse out a 
subset of the bitstream and decode that into an intelligible audio signal. 
There are 2 types of scalability implemented in MPEG-4: large step 
scalability and fine grain scalability. Large step scalability was implemented 
in version 1 of MPEG-4 Audio and allows for creating an audio bitstream 
that can be grouped into a small number of subsets of differing data rates. 



416 Introduction to Digital Audio Coding and Standards 

Large step scalability is implemented in a cascaded encoding approach 
wherein the audio signal is first encoded at the lowest desired data rate and 
then the differences between the coded signal and the original signal are then 
encoded in subsequent stages using additional bits (see Figure 8). The 
decoder can then decide how many stages it can handle and parse out the 
appropriate portion of the bitstream to decode. The scalable coder structure 
may include AAC only, TwinVQ only or a combination of AAC and 
TwinVQ. Typically the large step scalability size is 8 kb/s or larger. 
Scalable coder combinations such as 6 kb/s per channel CELP or Twin VQ 
combined with 18 kb/s per channel AAC were successfully tested and scored 
slightly below 4.0 versus AAC at 24 kb/s per channel, which scored slightly 
above 4.0 (see also Table 10) [ISO/IEC MPEG N2276]. 

Notice how the scalability is predefined in "large steps" with each step 
corresponding to the use of an additional coding stage - this is in contrast to 
the fine grain scalability approach included with the addition of the BSAC 
tool in version 2 of MPEG-4 Audio. The BSAC tool layers the quantized 
frequency-domain audio samples in order of the significance of the bits in 
their representation, allowing for only subsets of the spectrum sample bits to 
be used in the decode stage for a lower precision copy of the original audio 
signal. In this manner, the BSAC tool allows for scalability changes in steps 
of 1 kb/s per channel as it decides to include or exclude particular layers of 
the quantized spectrum. BSAC performance varies between 4.4 at 96 kb/s 
per stereo channel and 3.0 at 64 kb/s per stereo channel (see also Table 10) 
[ISO/IEC MPEG N3075]. 

Input 
Audio 
Signal 

~ 
;1 Stage I Coder 1 

low Data Rate &'coding .... 
[4 
~ 
I\) 

a 
-""!I Stage 2 Coder : 

Additional Delail 

~ s .... 
~ 

~ I 'YelMore Detail (1) 

Stage 3 Coder I :>< 
(1) 
'"1 

Figure 8. MPEG-4 Audio approach to large step scalable encoding 

r- Output 
Bitstream 



Chapter 15: MPEG-4Audio 417 

4.2 MPEG-4 Audio Object Types 

MPEG-4 Audio is based on groups of pre-defined "object types" that 
define sets of functionality that can be used together. Table 2 shows the 
object types included in the GA coder structure and the tools available to 
those types. 

Table 2. MPEG-4 Audio tools and object types [ISO/IEC 14496-3, ISO/IEC MPEG N4979) 

3: 3: 
'" 3: en '" a '" en en a 

Tools ~ a N N >-

Object Type 

Null 

AAC main 

AACLC 

AAC SSR 

AAC LTP 

SBR 
AAC Scalable 

TwinVQ 

CELP 

HVXC 

TTSI 

Main Synthetic 

Wave table Synth. 

General MIDI 

>- >- ..., C/l 

n >- >- :;: >- C/l n ..., S n :r: >- to 
3: n < :4 -I 3: C/l C/l '" r r en 0 C/l 
e? r C/l Z -I C/l < r X ~ to § >-
" n '" C/l '" C/l 0 '" n ~ "r1 n 

X 

I---i--l-'+-'-~"- ?C.f- f-. _ ~._i t!--j--j~f-I--I 
~r-+-~_~~4-~i~X~-+-+-+-+~--4r-I--r-+-+-~..., 
1---1---1-f-il.......Jf.----1-' ~- -x f .. · .. _.+--.-J .... {--+ .. - .- .. - '''''1-

AlgSynthl AudFX 1--+-+---+-+-++-+---+-+-+: ..:,:X'-+_+-+-+---+-+-+i----l---Cf-1 

E~~~~:, --~--~xx+l I t,-::-:=Ifr~, 
::: ~;~~Q ......... --1["-' _+rt_nj1-
~: ~:~pLD..._. ~?'. X. I...... I.?' ... x ~ 
~: :~~C ...... _.I·-f- X+.+++ /. +X i ....... ~.=ffi=l 
ER Parametric] .................... 1 .. L~, ........... ..L~ X 

The MPEG-4 AAC Main, MPEG-4 AAC Low Complexity (LC), and 
MPEG-4 AAC Scalable Sampling Rate (SSR) object types all include the 
same tools contained in the corresponding MPEG-2 AAC Main, LC and 
SSR profiles with the addition of the PNS tool. The MPEG-4 AAC LTP 



418 Introduction to Digital Audio Coding and Standards 

object type is equivalent to the MPEG-4 AAC LC object type withthe 
addition of the LTP tool. The TwinVQ object type contains the TwinVQ 
and LTP tools. In conjunction with AAC, it operates at lower data rates with 
respect to AAC, supporting mono and stereo sound. 

Error resilient bitstream reordering allows for the use of unequal error 
protection. In addition to object types described above, the following error 
resilient, ER, object types are included in the GA description: ER AAC LC, 
ER AAC LTP, ER BSAC, ER TwinVQ, ER AAC LD. 

The AAC Scalable object type allows a large number of scalable 
combinations including combinations with TwinVQ and CELP coder tools 
as the core coders. It supports only mono or 2-channel stereo sound. It 
contains the AAC LTP object plus TLSS. The ER AAC Scalable object 
type includes error resilient tools. 

The CELP object type supports 8 kHz and 16 kHz sampling rates at bit 
rates from 4 to 24 kb/s. CELP bitstreams can be coded in a scalable way 
using bit rate scalability and bandwidth scalability. ER CELP also includes 
error resilient tools and silence compression tools. 

The HVXC object type provides a parametric representation of 8 kHz, 
mono speech at fixed data rates between 2 and 4 kb/s and below 2 kb/s using 
a variable data rate mode, supporting pitch and speed changes. ER HVXC 
also contains error resilient tools. 

In addition to the HVXC technology for the parametric speech coding, 
the HILN parametric coding tools were added in version 2 of the standard. 
The ER HILN object type includes error resilience tools. The ER 
Parametric object type combines the functionalities of the ER HILN and 
ER HVXC objects. Only monophonic channels and sampling rates of 8 kHz 
are supported in this configuration. 

The TTS interface object type gives an extremely low data rate phonemic 
representation of speech. While the specific TTS technology is not 
specified, the interface is fully defined. Data rates range from 0.2 to 1.2 kb/s. 

Additional object types are specified for synthetic sound. The Main 
Synthetic object type includes all MPEG-4 SA tools, namely SAOL, 
SASBF, etc. Sound can be described without input until it is stopped by an 
explicit command and up to 3-4 kb/s. The Wavetable Synthesis object type 
is a subset of the Main Synthetic object type, making use of the SASBF 
format and MIDI tools. The General MIDI object type provides 
interoperability with existing content. The Algorithmic Synthesis and 
AudioFX object type provides SAOL-based synthesis capabilities for very 
low data rate terminals. 

Finally, the NULL object type provides the possibility to feed raw PCM 
data directly to the MPEG-4 audio compositor in order to allow mixing in of 



Chapter 15: MPEG-4 Audio 419 

local sound at the decoder. This means that support for this object type is in 
the compositor. 

Although not yet officially included in the standard specifications, the 
spectral band replication, SBR, tool and object type are also shown in Table 
2 [ISO/IEC MPEG N4764]. SBR is based on bandwidth extension 
technology, currently under consideration by the MPEG Audio Committee. 
The bandwidth extension tool, SBR, replicates sequences of harmonics 
contained in the bandwidth-limited encoded signal representation and is 
based on control data obtained from the encoder [Dietz, Liljeryd, Kjoerling, 
Kunz 02]. The ratio between tonal and noise-like components is maintained 
by adaptive inverse filtering as well as addition of noise and sinusoidal 
components. Once formally approved by the standard bodies, the SBR tool 
will be included in AAC Main, LC, SSR, L TP and in ER AAC LC and LTP. 
SBR allows for compatibility with earlier versions of these tools. 

4.3 Profiles 

The following eight MPEG-4 Audio profiles are specified by the standard 
(see Table 3): 

• Main- It encompasses all MPEG-4 Audio natural and synthetic objects, 
with the exception of the error correction objects. 

• Scalable- It includes all the audio objects contained in the main profile 
with the exception of MPEG-2 AAC Main and SSR and SA. It allows 
for scalable coding of speech and music and it addresses transmission 
methods such as internet and digital audio broadcasting. 

• Speech- It includes the CELP, HVXC and TTS interface objects. 
• Synthesis- It contains all SA and TTS interface objects and provides the 

capability to generate audio and speech ay very low data rates. 
• Natural- It encompasses all the natural audio coding objects and 

includes TTS interface and error correction tools. 
• High Quality- It includes the AAC LC object plus LTP, the AAC 

scalable and CELP objects; in this profile, there is the option of 
employing the error resilient tools for the above-mentioned objects. 

• Low Delay- It includes AAC LD plus CELP, HVXC, with the option of 
using the ER tools, and TTS interface objects. 

• Mobile Audio Internetworking (MAUI)- It includes ER AACLC, ER 
AAC scalable, ER Twin VQ, ER BSAC and ER AAC LD. This profile 
is intended to address communication applications using speech coding 
algorithms and high quality audio coding. 

Two additional audio profiles, the Simple Audio Profile, which contains the 
MPEG-4 AAC LC tools but works at sampling rates up to 96 kHz, and the 



420 Introduction to Digital Audio Coding and Standards 

Simple SBR Audio Profile are currently under consideration [ISo/lEe 
MPEG N4764 and N4979]. The Simple SBR Profile is equivalent to the 
Simple Profile with the addition of the SBR object. The conformance 
specifications of the MPEG-4 standard are tailored around the different 
profiles. 

Table 3. MPEG-4 Audio profiles [ISOIIEe 14496-3. ISOllEe MPEG N4979. ISOIIEe 
MPEGN4764] 

en 
3:: &l 

Profile 5" g: 

" 

en 
c 
C> 
C> 

" ""' 
Object Type 

Null 

AACmain 

AACLC 

AACSSR 

AACLTP 

SBR 
AAC Scalable 

TwinVQ 

CELP 

HVXC 

Ix x 
~~ -~- --
IX X X 

!X X X 

en 
< 
S. 
C> g. 

TISI Ix X XiX 

::x: r V:l 
jCj" 0 Z §" 
""' :!! 3:: V:l 

~ §" '" 0 t:l )-

" C 

*" 
C C> e!. S ~ ~ ~ 
:;; < ~ 

X 
x X 

X X 
X X 

Main Synthetic 

Wavetable Synth. 

General MIDI 

AlgSynthl AudFX 

ERAACLC 

ERAACLTP 

ER AAC Scale. 

ERTwinVQ 

Ix X ! 
~-I-+-"~:+-+-+-l----l--+-

X X X 

X X 
X X ER BSAC 

ERAACLD 

ERCELP 

ERHVXC 

ERHILN 
f,---..... --- _ .... --- ---- "~" ... ~-" - -- ---

X 
ER Parametric X . ................................ -, ................. . 

4.3.1 Levels 

Profiles may specify different levels that differ with respect to the 
number of channels, sampling rates, and simultaneous audio objects 
supported; their implementation complexity; and whether or not they make 
use of the error protection (EP) tool. Table 4 through Table 7 show the main 



Chapter 15: MPEG-4 Audio 421 

characteristics of the level descriptions for the some of the relevant profiles 
associated with general audio coding. In these tables, complexity limits are 
shown both in terms of processing required approximated in pev or 
"processor complexity units", which specify an integer number of MOPS or 
"Millions of Operations per Second" and in memory usage approximated in 
ReV or "RAM complexity units" which specify an integer number of 
kWords. 

Table 4. High Quality Audio Profile Levels [ISO/IEC 14496-3] 
Level Maximum Maximum Maximum Maximum EPTool 

number of Sampling PCU ReU Present 
channels/object Rate (kHz) 

2 22.05 5 8 No 
2 2 48 10 8 No 
3 5.1 48 25 12 No 
4 5.1 48 100 42 No 
5 2 22.05 5 8 Yes 
6 2 48 10 8 Yes 
7 5.1 48 25 12 Yes 
8 5.1 48 100 42 Yes 

Table 5. Low DelayAudio Profile Levels [ISO/IEC 14496-3] 
Level Maximum Maximum Maximum Maximum EPTool 

number of Sampling PCU RCU Present 
channels/object Rate (kHz) 

1 8 2 No 
2 16 3 1 No 
3 1 48 3 2 No 
4 2 48 24 12 No 
5 8 2 Yes 
6 16 3 1 Yes 
7 I 48 3 2 Yes 
8 2 48 24 12 Yes 

Table 6. Natural Audio Profile Levels [ISO/IEC 14496-3] 
Level Maximum Sampling MaximumPCU EP Tool Present 

Rate (kHz) 
1 48 20 No 
2 96 100 No 
3 48 20 Yes 
4 96 100 Yes 



422 Introduction to Digital Audio Coding and Standards 

Table 7. MAUl Audio Profile Levels [ISO/IEC 14496-3] 
Level Maximum Maximum Maximum Maximum Maximum EP Tool 

number of number of Sampling PCV RCV Present 
channels objects Rate (kHz) 

1 1 24 2.5 4 No 
2 2 2 48 10 8 No 
3 5.1 48 25 12 No 
4 1 1 24 2.5 4 Yes 
5 2 2 48 10 8 Yes 
6 5.1 48 25 12 Yes 

In addition, the Simple and Simple SBR profiles levels are shown in 
Table 8 and Table 9. 

Table 8. Sim~le Audio Profile Levels [ISO/IEC MPEG N4764] 
Level Maximum number Maximum MaximumPCU MaximumRCU 

of channels/objects Sampling 
Rate (kHz) 

1 2 24 3 5 
2 2 48 6 5 
3 5 48 19 15 
4 5 96 38 15 

Table 9. Sim~le SBR Audio Profile Levels [ISOIIEC MPEG N4979] 
Level Maximum number MaximumAAC Maximum SBR 

of channels/objects Sampling Rate (kHz) Sampling Rate (kHz) 
1 2 24 24 
2 2 48 48 
3 5 48 48 
4 5 96 48 

s. MPEG-l AND 2 VERSUS MPEG-4 AUDIO 

We saw in Chapters 11-13 how MPEG-I and -2 approach audio coding 
based on the removal of redundancies and irrelevancies in the original audio 
signal. The removal of redundancies is based on the frequency 
representation of the signal, which is in general more efficient than its PCM 
representation given the quasi-stationary nature of audio signals. In 
addition, the removal of redundancies is based on models of human 
perception like, for example, psychoacoustic masking models. In this 
approach, by additionally removing irrelevant parts of the signal, high 



Chapter 15: MPEG-4 Audio 423 

quality audio at low data rates is typically achieved. General-purpose audio 
codecs such as MPEG-1 and 2 audio codecs provide very high quality output 
for a large class of audio signals at data rates of 128 kb/s or below. 

Before perceptual audio coding reached maturity, a number of coding 
schemes based on removal of redundancies only, such as prediction 
technologies, were developed. These codecs try to model the source as 
precisely as possible in order to extract the largest possible amount 
redundancies. For speech signals, CELP codecs model the vocal tract and 
work well at data rates of 32 kb/s or below. However, they show serious 
problems with signals that don't precisely fit the source models, for example 
music signals. While MPEG-1 and 2 Audio is sub optimal for speech 
signals, CELP coders are unable to properly code music signals. One 
possible solution to this problem is to restrict the class of signals in input to a 
certain type of codec. Another possible solution is to define a useful 
combination of different codec types. Given the wide scope of its 
applications, MPEG-4 adopted the second approach. 

The MPEG-4 Audio encoder structure is shown in Figure 9. As we saw 
in the previous sections, three types of algorithms can be found: 

Coding based on time/frequency mapping (TIF), like MPEG- I, 
MPEG-2 audio, which represents the basic structure of the GA 
tools. The foundation of this type of coding is MPEG-2 AAC. 
As we saw in previous sections, additional tools that enhance the 
codec performance and efficiency at very low data rates are also 
included. 
Coding based on CELP, like for example in the ITU-T G.722, 
G.723.1 and G. 729 coders. The MPEG-4 CELP codec exploits 
a source model based on the vocal tract mechanism like the ITU
T speech codecs, but it also applies a simple perceptual model 
where the quantization noise spectral envelope follows the input 
signal spectral envelope. 
Coding based on parametric representation (PARA). This coding 
technique in addition to allow for added functionalities such as 
pitch/time changes and volume modifications, tends to perform 
better than CELP (HVXC) for very low data rates speech signals 
and the T/F scheme (HILN) for very low data rates music signals 
containing single instruments with a large number of harmonics. 

Separate coding depending on the characteristics of the input signal can 
improve the performance of the overall codec if in the encoder stage an 
appropriate algorithm selection, manual or automatic, takes place. 
Unfortunately the MPEG-4 standard does not specify the encoder operations 
other than in an informative part of the standard. Automatic signal analysis 
and separation possibly allows for future optimization of the encoder stage. 



424 Introduction to Digital Audio Coding and Standards 

signal analysis 
and control 

pre
audio processing 

signal 

Figure 9. MPEG-4 Audio encoder structure from [Edler 97] 

bit 
stream 

The MPEG-4 audio bitstream represents also a departure from the 
MPEG-l or 2 fashion of representing the compressed signal, i.e. there is no 
multiplex, no synch word, etc. MPEG-4 audio only defines setup 
information packets and payload for each coder. MPEG-4 Systems specifies 
"Flex-Mux" to cover multiplex aspects of MPEG-4 functionalities, such as 
for example scalability. An MPEG-4 file (.MP4) format is also described in 
the Systems specifications. 

6. THE PERFORMANCE OF THE MPEG-4 AUDIO 
CODING TOOLS 

The primary goal of the MPEG-4 verification tests was to evaluate the 
subjective performance of specific coding tools operating at a certain data 
rate. To better enable the evaluation of MPEG-4, several coders from 
MPEG-2 and ITU-T were included in the tests. The subjective performance 
of some the MPEG-4 tools is summarized in terms of the ITU-R five-grade 
impairment scale in Table /0 [ISO/IEC MPEG N4668] along with the 
performance of comparable technology such as MPEG-2, ITU-T G.722 and 
G.723. The reader interested in knowing the details of the audio tests 
conditions and results should consult [Contin 02]. 



Chapter 15: MPEG-4 Audio 425 

Table 10. MPEG-4 Audio coding tools subiective Eerformance [ISO/IEC MPEG N4668] 
Coding Tool Number of Data Rate Grading Scale Typical 

Channels Qualit~ 

AAC 5 320 kb/s Impairment 4.6 
95 MPEG-2 LII BC 5 640 kb/s Impairment 4.6 
AAC 2 128 kb/s Impairment 4.8 
AAC 2 96 kb/s Impairment 4.4 
MPEG-l Lli 2 192 kb/s Impairment 4.3 
MPEG-l LIII 2 128 kb/s Impairment 4.1 
AAC 24 kb/s Quality 4.2 
CELP/AAC scal. 6 kb/s+ 18 kb/s Quality 3.7 
TwinVQ/AAC scal. 6 kb/s+ 18 kb/s Quality 3.6 
AAC 18 kb/s Quality 3.2 
G.723 6.3 kb/s Quality 2.8 
Wideband CELp8 1 18.2 kb/s Quality 2.3 
BSAC 2 96 kb/s Quality 4.4 
BSAC 2 80 kb/s Quality 3.7 
BSAC 2 64 kb/s Quality 3.0 
AAC-LD (20ms) 64 kb/s Quality 4.4 
G.722 32 kb/s Quality 4.2 
AAC-LD (30ms) 32 kb/s Quality 3.4 
Narroband CELP 6 kb/s Quality 2.5 
Twin VQ 6 kb/s Quality 1.8 
H1LN 16 kb/s Quality 2.8 
HILN 6 kb/s Qualit~ 1.8 

7. INTELLECTUAL PROPERTY AND MPEG-4 

Recognizing at an early stage of the development of MPEG-4 that one of 
the biggest potential impediment for a wide adoption of a standard is the 
clearance of the intellectual property implicated, part of the MPEG-4 
Systems specifications are devoted to the identification of intellectual 
property involved in its implementation. In order to identify intellectual 
property in the MPEG-4 media objects, MPEG-4 developed the intellectual 
property management and protection (IPMP) [ISO/lEe MPEG N2614]. 
MPEG-4 target applications range from low data rate internet telephony to 
high fidelity video and audio. Anyone can develop applications based on 
any needed subset of MPEG-4 profiles. The level and type of protection 
may vary dramatically depending on the content, complexity, and associated 
business models. In addition, the traditional business model of paying once 
for hardware devices and then having the associated royalties managed by 
the device manufacturer is less attractive for software implementations of 
MPEG-4 clients. While MPEG-4 does not standardize IPMP systems, it 

8 The data shown reflect test results for both speech and music signals. 



426 Introduction to Digital Audio Coding and Standards 

does standardize the IPMP interface as a simple extension to the MPEG-4 
systems architecture via a set of descriptors and elementary streams (lPMP
D and IMPM-ES). 

In addition to the work of ISO/IEC WG lion MPEG-4, the MPEG-4 
Industry Forum, M4IF, was established in order to "further the adoption of 
the MPEG-4 standard, by establishing MPEG-4 as an accepted and widely 
used standard among application developers, service providers, content 
creators and end users" [M4IF]. Currently licensing schemes for MPEG-4 
AAC are available through Dolby Laboratories [AAC Audio] and for 
MPEG-4 Visual and Systems through MPEG LA, LLC [M4 Visual and 
Systems]. 

8. SUMMARY 

In this chapter we reviewed the main features of the MPEG-4 Audio 
standard. MPEG-4 represents the last phase of work within MPEG that 
deals directly with the coding of audiovisual signals. 

The main goals of MPEG-4 Audio are broader than the goals set for 
MPEG-I and -2. In addition to audio coding, coding of speech, synthetic 
audio, text to speech interfaces, scalability, 3D, and added functionalities 
were also addressed by MPEG-4. To this date the MPEG-4 Audio, first 
finalized at the end 1998, went through two revision stages during which 
added schemes such as HILN for very low data rate audio and additional 
functionalities for MPEG-4 AAC such as low delay and error robustness 
versions, were included in the specifications. MPEG-4 targets wireless, 
digital broadcasting, and interactive multimedia (streaming, internet, 
distribution and access to content, etc.) applications. 

This chapter concludes this book's overview of major audio coding 
standards. Hopefully, the review of the major coding standards has both 
provided further insight into how the principles of audio coding have been 
applied in state-of-the-art coders and also given enough coding details to 
assist the reader in effectively using the standard documentation to 
implement compliant coders. The true goal of the book, however, is to have 
taught some readers enough "coding secrets" to facilitate their personal 
journeys to create the next generation of audio coders. 

9. REFERENCES 

[AAC Audio]: http://www.aac-audio.coml. "Dolby Laboratories Announces MPEG-
4 AAC Licensing Program," March 2002. 



Chapter 15: MPEG-4 Audio 427 

[Bregman 90]: A. S. Bregman, Auditory Scene Analysis: The Perceptual 
Organization of Sound, Cambridge, Mass.: Bradford Books, MIT Press 1990. 

[Chiariglione 98]: L. Chiariglione, "The MPEG-4 standard, " Journal of the China 
Institute of Communications, September 1998. 

[Contin 02]: L. Contin, "Audio Testing for Validation," in The MPEG-4 Book, pp. 
709 - 751, F. Pereira and T. Ebrahimi (ed.), Prentice Hall 2002. 

[den Brinker, Schuijers and Oomen 02]: A. C. den Brinker, E. G. P. Schuijers and A. 
W. J. Oomen, "Parametric Coding for High-Quality Audio," presented at the I 12th 
AES Convention, Munich, pre-print 5553, May 2002. 

[Dietz, Liljeryd, Kjoerling and Kunz 02]: M. Dietz, L. Liljeryd, K. Kjoerling and O. 
Kunz, "Spectral Band Replication, a novel approach in audio coding," presented at 
the I 12th AES Convention, Munich, Preprint 5553, May 2002. 

[Edler 97] B. Edler, Powerpoint slides shared with the authors, 1997. Used with 
permission. 

[Edler and Purnhagen 98]: B. Edler and H. Purnhagen, "Concepts for Hybrid Audio 
Coding Schemes Based on Parametric Techniques," presented at the 105th AES 
Convention, San Francisco, Preprint 4808, October 1998. 

[Grill 97]: B. Grill, "A Bit Rate Scalable Perceptual Coder for MPEG-4 Audio," 
presented at the 103rd AES Convention, New York, Preprint 4620, October 1997. 

[Grill 97a]: B. Grill, Powerpoint slides shared with the authors, 1997. Used with 
permission. 

[Herre and Purnhagen 02]: J. Herre and H. Purnhagen, "General Audio Coding," in 
The MPEG-4 Book, pp. 487 - 544, F. Pereira and T. Ebrahimi (ed.), Prentice Hall 
2002. 

[Herre and Schulz 98]: J. Herre and D. Schulz, "Extending the MPEG-4 AAC Codec 
by Perceptual Noise Substitution," presented at the 112th AES Convention, 
Amsterdam, Preprint 4720, May 1998. 

[ISO/IEC 14496-1]: ISO/IEC 14496-1, "Information Technology - Coding of Audio 
Visual Objects, Part I: Systems ", 1999-2001. 

[ISO/IEC 14496-2]: ISO/IEC 14496-2, "Information Technology - Coding of Audio 
Visual Objects, Part 2: Visual ",1999-2001. 

[ISO/IEC 14496-3]: ISO/IEC 14496-3, "Information Technology - Coding of Audio 
Visual Objects, Part 3: Audio ", 1999-2001. 



428 Introduction to Digital Audio Coding and Standards 

[ISO/lEC 14496-6]: ISO/lEC 14496-6, "Information Technology - Coding of Audio 
Visual Objects, Part 6: Delivery Multimedia Integration Framework (DMIF)", 1999-
2000. 

[ISO/lEC MPEG N2276]: ISO/lEC JTC IISC 29/WG II N2276, "Report on the 
MPEG-4 Audio NADIB Verification Tests" Dublin, July 1998. 

[ISO/lEC MPEG N2424]: ISO/IEC JTC IISC 29/WG II N2424, "Report on the 
MPEG-4 speech codec verification tests" Atlantic City, October 1998. 

[ISO/IEC MPEG N2501]: ISO/IEC JTC IISC 29/WG II N2501, "FDIS of ISO/IEC 
144496-1" Atlantic City, October 1998. 

[ISO/IEC MPEG N2502]: ISO/IEC JTC IISC 29/WG II N2502,."FDIS of ISO/IEC 
144496-2" Atlantic City, October 1998. 

[ISO/IEC MPEG N2503]: ISO/IEC JTC IISC 29/WG II N2503, "FDIS of ISO/IEC 
144496-3" Atlantic City, October 1998. 

[ISO/IEC MPEG N2614]: ISO/IEC JTC IISC 29/WG II N2614, "MPEG-4 
Intellectual Property Management and Protection (IPMP) Overview and 
Applications Document" Rome, December 1998. 

[ISO/IEC MPEG N271]: ISO/IEC JTC IISC 29/WG II N271, "New Work Item 
Proposal for Very-Low Bitrates Audiovisual Coding" London, November 1992. 

[ISO/IEC MPEG N3075]: ISO/IEC JTC IISC 29/WG II N3075, "Report on the 
MPEG-4 Audio Version 2 Verification Tests" Maui, December 1999. 

[ISO/IEC MPEG N4400]: ISO/lEC JTC IISC 29/WG 11 N4400, "JVT Terms of 
Reference" Pattaya, December 2001. 

[ISO/IEC MPEG N4668]: ISO/IEC JTC IISC 29/WG II N4668, "MPEG-4 
Overview" Jeju, March 2002. 

[ISO/IEC MPEG N4764]: ISO/IEC JTC IISC 29/WG II N4764, "Text of ISO/IEC 
14496-3:2001 PDAM 1" Fairfax, May 2002. 

[ISO/IEC MPEG N4920]: ISO/lEC JTC IISC 291WG 11 N4920, "Text if ISO/IEC 
14496-10 FCD Advanced Video Coding" Klagenfurt, July 2002. 

[ISO/IEC MPEG N4979]: ISO/IEC JTC lISC 29/WG II N4979, "MPEG-4 Profiles 
Under Consideration" Klagenfurt, July 2002. 

[ISO/IEC MPEG N5040]: ISO/IEC JTC IISC 29/WG 11 N5040, "Call for Proposals 
on MPEG-4 Lossless Audio Coding" Klagenfurt, July 2002. 



Chapter 15: MPEG-4 Audio 429 

[ITU-T G.722]: International Telecommunications Union Telecommunications 
Sector G.722, "7 kHz Audio Coding Within 64 kb/s", Geneva 1998. 

[ITU-T G.723.1]: International Telecommunications Union Telecommunications 
Sector G.723.1, "Dual Rate Speech Coder for Multimedia Communications 
Transmitting at 5.3 and 6.3 kb/s ", Geneva 1996. 

[ITU-T G.729]: International Telecommunications Union Telecommunications 
Sector G.729, "Coding of Speech at 8 kb/s Using Conjugate Structure Algebraic 
Code Exited Linear Prediction", Geneva 1996. 

[Iwakami, Moriya and Miki 95]: N. Iwakami, T. Moriya, and S. Miki, "High-Quality 
Audio Coding at Less Than 64 kb/s by Using Transform-Domain Weighted 
Interleaved Vector Quantization (TwinVQ)," Proc. IEEE ICASSP, pp. 3095-3098, 
Detroit, May 1995. 

[Johnston, Quackenbush, Herre and Grill 00]: J. D. Johnston, S. R. Quackenbush, J. 
Herre and B. Grill, "Review of MPEG-4 General Audio Coding" in Multimedia 
Systems, Standards, and Networks, pp. 131-155, A. Puri and T. Chen (ed.), Marcel 
Dekker, Inc. 2000. 

[M4 Visual and Systems]: http://www.mpegla.coml. "Final Terms of MPEG-4 
Visual and Systems Patent Portfolio Licenses Decided, License Agreements to Issue 
in September," July 2002. 

[M4IF]: MPEG-4Industry Forum Home Page, www.m4if.org/index.html 

[MIDI]: MIDI Manufactures Association Home Page http://www.midi.org/. 

[Nishiguchi and Edler 02]: M. Nishiguchi and B. Edler, "Speech Coding," in The 
MPEG-4 Book, pp. 451 - 485, F. Pereira and T. Ebrahimi (ed.), Prentice Hall 2002. 

[Ojanpedi and Vaananen 99]: J. Ojanpera and M. Vaananen, "Long Term Predictor 
for Transform Domain Perceptual Audio Coding," presented at the I 07th AES 
Convention, New York, pre-print 5036, September 1999. 

[Park and Kim 97]: S. H. Park and Y. B. Kim 97, "Multi-Layered Bit-Sliced Bit
Rate Scalable Audio Coding," presented at the 103rd AES Convention, New York, 
pre-print 4520, October 1997. 

[Purnhagen and Meine 00]: H. Purnhagen and N. Meine, "HILN: The MPEG-4 
Parametric Audio Coding Tools," Proc. IntI. Symposium On Circuit and Systems, 
Geneva, 2000. 

[Rubinstein and Kahn 01]: K. Rubinstein and E. Kahn, Powerpoint slides shared 
with the authors, 2001. Used with permission. 



430 Introduction to Digital Audio Coding and Standards 

[Scheirer, Lee and Yang 00]: E. D. Scheirer, Y. Lee and Y. J. W. Yang, "Synthetic 
Audio and SNHC Audio in MPEG-4" in Multimedia Systems, Standards, and 
Networks, pp. 157 - 177, A. Puri and T. Chen (ed.), Marcel Dekker, Inc. 2000. 

[Scheirer, ViUiniinen and Huopaniemi 99]: E. D. Scheirer and R. Viiiiniinen, J. 
Huopaniemi, "Describing Audio Scenes with the MPEG-4 Multimedia Standard" 
IEEE Trans. On Multimedia, Vol. I no. 3 pp. 237-250, September 1999. 

[Schulz 96]: D. Schulz, "Improving Audio Codecs by Noise Substitution," J. Audio 
Eng. Soc., vol. 44, pp. 593 - 598, July! August 1996. 

[Vercoe, Garnder and Scheirer 98]: B. L. Vercoe, W. G. Gamder and E. D. Scheirer, 
"Structured Audio: The Creation, Transmission, and Rendering of Parametric Sound 
Representations," Proc. IEEE, Vol. 85 No.5, pp. 922-940, May 1998. 



Index 

A 

AAC. See MPEG-2 AAC 

B 

Bark Scale, 182-83 

Basi lar Membrane, 170-74 

Binary Numbers, 14-20 

Bit Allocation 

Basic Methods, 204-18 

Dolby AC-3, 390-95 

MPEG Layer I, 300 

MPEG Layer II, 301-4 

MPEG Layer III, 305-7 

MPEG-2 AAC, 346-50 

Bits, Manipulating, 16-20 

Bitstream Format 

Basic Ideas, 230-33 

Dolby AC-3, 395-96 

MPEG-l Audio, 296-97 

MPEG-2 AAC, 353-55 

MPEG-2 BC, 324-27 

Block Switching 

Basics for DFT, 122-23 

Basics for MDCT, 131-36 

Dolby AC-3, 379-82 

MPEG-I Coders, 275-77 

MPEG-2 AAC, 341-43 

c 
Cochlea, 170-74 

Coding Artifacts, 255-57 

Coding Errors, 9-10 

Coding Goals, 5-7 

Coding Standards 

Background on MPEG Audio, 266-68 

Dolby AC-3, 371-98 

MPEG-l Audio, 265-310 

MPEG-2 AAC, 333-67 

MPEG-2 BC, 321-30 

MPEG-2 LSF and MP3 Files, 315-18 

MPEG-4 Audio, 401-26 

Pulse Code Modulation (PCM), 7-9 

Convolution Theorem, 58-59, 79-80 

Critical Bands, 164-68 

D 

Data Rate, 202-4 



432 Introduction to Digital Audio Coding and Standards 

Dirac Delta Function, 49-51 ITU-R 5-Grade Impairment Scale, 431 

Discrete Fourier Transform (DFT), 110-

13 

Dolby AC-3, 371-98 

Bit Allocation, 390-95 

Bitstream Format, 395-96 

Block Switching, 379-82 

Filter Bank, 377-82 

Scale Factors, 382-85 

Down Sampling, 80-83 

E 

Entropy Coding 

Basic Ideas, 38--43 

MPEG Layer III, 305...(i 

MPEG-2 AAC, 350-53 

Euler Identity, 49 

F 

Fast Fourier Transform (FFT), 111-13 

Fourier Series, 59...(i 1 

Fourier Transform 

Continuous, 51-53 

Discrete, 11 0-13 

Fast Fourier Transform (FFT), 111-13 

Fourier Series, 59...(i 1 

Z Transform, 77-84 

G 

Gain Control, 338--40 

H 

Haar Filter, 87-89 

Hearing Threshold, 153-56 

Hearing, How It Works, 168-74 

Huffman Coding. See Entropy Coding 

I 

Impairment Scales, 240--41 

Inner Ear, 170-74 

L 

Listening Tests, 240-50, 359...(i3, 396-97, 

424-25 

Loudness, 150-51 

M 

Masking, 149-98 

Addition of, 192-95 

Basic Ideas, 156-D0 

Experiments, 160...(i4 

Hearing Threshold, 153-56 

Heuristic Model of, 180-82 

Masking Curves, 183-92, 223-29 

MPEG Psychoacoustic Modell, 280-

88 
MPEG Psychoacoustic Model 2, 288-

96 

MDCT, 124--43 

Fast Implementation, 141--43 

Relationship to PQMF, 136--41 

Theory of, 125-31 

MP3 Files, 315-18 

MPEG-l Audio, 265-310 

Bit Allocation 

Layer I, 300 

Layer II, 301--4 

Layer III, 305-7 

Bitstream Format, 296-97 

Filter Bank, 273-78 

Layer III Hybrid Filter Bank, 273-75 

Layers, 271-73 
Psychoacoustic Models, 278-96 

Scale Factors 

Layer I, 298-99 

Layer II, 301 

Layer III, 304-5 

Stereo Coding, 309-10 

MPEG-2 AAC, 333-67 

Bitstream Format, 353-55 


