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Foreword 

THE RISE OF DIGITAL AUDIO 

Leonardo Chiariglione - Telecom [talia Lab, Italy 

Analogue speech in electrical form has a history going back more than a 
century and a quarter to the early days of the telephone. However, interest in 
digital speech only gathered momentum so.me 40 years ago when the 
telecommunications industry started a global project to digitize the telephone 
network. The technology trade-off of the time in this infrastructure-driven 
project led to a preference for adding transmission capacity over finding 
methods to reduce the bitrate of the speech signal so the use of compression 
technology for speech remained largely dormant. When in the late 1980s the 
ITU-T standard for visual telephony became available enabling compression 
of video by a factor of 3,000, the only audio format in use to accompany this 
highly compressed video was standard telephone quality 64 kb/s PCM. It 
was only where transmission capacity was a scarce asset, like in the access 
portion of radiotelephony, that speech compression became a useful tool. 

Analogue sound in electrical form has a history going back only slightly 
more than a century ago when a recording industry began to spring up 
around the gramophone and other early phonographs. The older among us 
fondly remember collections of long playing records (LPs) which later gave 
way to cassette tapes as the primary media for analogue consumer audio. 
Interest in digital audio received a boost some 20 years ago when the 



Consumer Electronics (CE) industry developed a new digital audio recording 
medium: a 12 cm platter - the compact disc (CD) - carrying the equivalent 
of 70 minutes of uncompressed stereo digital audio. This equivalent of one 
long playing (LP) record was all that the CE industry needed at the time and 
compression was disregarded as the audio industry digitized. 

Setting aside some company and consortium initiatives, it was only with 
the MPEG-l project in the late 1980s that compressed digital audio came to 
the stage. MPEG-l had the ambitious target of developing a single standard 
addressing multiple application domains: the digital version of the old 
compact cassette, digital audio broadcasting, audio accompanying digital 
video in interactive applications, the audio component of digital television 
and professional applications were listed as the most important. 

The complexity of the task was augmented by the fact that each of these 
applications was targeted to specific industries and sectors of those 
industries, each with their own concerns when it comes to converting a 
technology into a product. The digital version of the old compact cassette 
was the most demanding: quality of compressed audio had to be good, but 
the device had to be cheap; in digital audio broadcasting quality was at 
premium, but the device had to have an affordable price; audio in interactive 
audio-visual applications could rely on an anticipated mass market where a 
high level of silicon integration of all decompression functionalities could be 
achieved; a similar target existed for audio in digital television; lastly, many 
professional applications required the best quality possible at the lowest 
possible bitrates. 

It could be anticipated that these conflicting requirements would make 
the task arduous, and indeed the task turned out to be so. But the Audio 
group of MPEG, in addition to being highly competitive, was also inventive. 
Without calling them so, the Audio group was the first to define what are 
now known as "profiles" under the name of "layers". And quite good 
profiles they turned out to be because a Layer I bitstream could be decoded 
by a Layer II and a Layer III decoder in addition to its own decoder, and a 
Layer II bitstream could be decoded by a Layer III decoder in addition to its 
own decoder. 

The MPEG-2 Audio project later targeted multichannel audio, but the 
story was a complicated one. With MPEG-l Audio providing transparent 
quality at 256 kb/s for a stereo signal with Layer II coding and the same 
quality at 192 kb/s with Layer III coding, it looked like a natural choice that 
MPEG-2 Audio should be backwards compatible, in the sense that an 
MPEG-I Audio decoder of a given layer should be able to decode the stereo 
component of an MPEG-2 Audio bitstream. But it is a well-known fact that 
backwards compatible coding provides substantially lower quality compared 
to unconstrained coding. This was the origin of the bifurcation of the 
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multichannel audio coding work: Part 3 of MPEG-2 specifies a backward 
compatible multichannel audio coding and Part 7 of MPEG-2 (called 
Advanced Audio Coding - AAC) a non backward compatible or 
unconstrained multichannel audio coding standard. 

AAC has been a major achievement. In less than 5 years after approving 
MPEG-1 Audio layer III, the MPEG Audio group produced an audio 
compression standard that offered transparency of stereo audio down to 128 
kb/s. 

This book has been written by the very person who led the MPEG-2 
AAC development. It covers a gap that existed so far by offering both 
precious information on digital audio in general and in-depth information on 
the principles and practice of the 3 audio coding standards MPEG-1, MPEG-
2 and MPEG-4. Its reading is a must for all those who want to know more, 
for curiosity or professional needs, about audio compression, a technology 
that has led mankind to a new relationship with the media. 
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Preface 

The idea of this book came from creating and teaching a class for 
graduate students on Audio Coding at Stanford University's Computer 
Center for Research in Music and Acoustics (CCRMA). The subject of 
audio coding is a "hot topic" with students wanting to better understand the 
technology behind the MP3 files they are downloading over the internet, 
their audio choices on their DVDs, the digital radio proposals in the news, 
and the digital television offered by cable and satellite providers. Now in its 
sixth year, the class attracts a wide range of participants including music 
students, engineering students, and industrial professionals working in 
telecommunications, hardware design, and software product development. 

In designing a course for such a diverse group, it is important to develop a 
shared vocabulary and understanding of the basic building blocks of a digital 
audio coder so that the choices made in any particular coder can be discussed 
using a commonly understood language. In the course, we first address the 
theory and implementation of each of the basic coder building blocks. We 
then show how the building blocks fit together into a full coder and how to 
judge the performance of such a coder. Finally, we discuss the features, 
choices, and performance of the main state-of-the-art coders in commercial 
use today. 

The ultimate goal of the class, and now of this book, is to present the 
student and the reader with a solid enough understanding of the major issues 
in the theory and implementation of perceptual audio coders that they are 



able to build their own simple audio codec. MB is always very pleasantly 
surprised to hear the results of her student's work. As a final project for the 
class, they are able to design and implement perceptual audio coding 
schemes equivalent to audio coding schemes that were state-of-the-art only a 
few years ago. It is our hope that this book will allow advanced readers to 
achieve similar goals. 

The book is organized in two parts: The first part consists of Chapters 1 
through 10 which present the student with the theory of the major building 
blocks needed to understand the workings of a perceptual audio coder. The 
second part consists of Chapters II through 15 in which the most widely 
used perceptual audio coders are presented and their major features 
discussed. Typically, the students start their final project (building their own 
perceptual audio coder) at the transition from the first part to the second. In 
this manner, they are confronting their own trade-offs in coder design while 
hearing how these very same trade-offs are handled in state-of-the-art 
commercial coders. The particular chapter contents are as follows: 

Chapter 1 serves as an introductory chapter in which the goals and high
level structure of audio coders are discussed. 

Chapter 2 discusses how to quantize sampled data so that it can be 
represented with a finite number of bits for storage or transmission. Errors 
introduced in the quantization process are discussed and compared for 
uniform and floating point quantization schemes. The ideas of noiseless 
(entropy) coding and Huffman coding are introduced as means for further 
reducing the bit requirement for quantized data. 

Chapter 3 addresses sampling in the time domain and how to later recover 
the original continuous time input signal. The basics of representing audio 
signals in the frequency domain via Fourier Transforms are also introduced. 

Chapters 4 and 5 present the main filter banks used for implementing the 
time to frequency mapping of audio signals. Quadrature Mirror filters and 
their generalizations, Discrete Fourier Transforms, and transforms based on 
Time Domain Aliasing Cancellation are all analyzed. In addition, methods 
for designing time variant filter banks are illustrated. 

Chapters 6 addresses the fundamentals of psychoacoustics and human 
hearing. Chapter 7 then discusses applications of frequency and temporal 
masking effects to develop masking curves for use in audio coding. 

Chapter 8 presents methods for allocating bits to differing frequency 
components so as to maximize audio quality at a given bitrate. This chapter 
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shows how the masking curves discussed in the previous chapter can be 
exploited to reduce audio coding bitrate. 

Chapter 9 discusses how the pieces described in the previous chapters fit 
together to create a perceptual audio coding system. The standardization 
process for audio coders is also discussed. 

Chapter lOis devoted to the understanding of methods for evaluating the 
quality of audio coders. 

Chapter 11 gives an overview MPEG-l Audio. The different audio layers 
are discussed as well implementation and performance issues. MPEG Layer 
III is the coding scheme used to create the well-known MP3 files. 

Chapters 12 and 13 present the second phase of MPEG Audio, MPEG-2, 
extending the MPEG-l functionality to multichannel coding, to lower 
sampling frequencies, and to higher quality audio. MPEG-2 LSF, MPEG-2 
BC, and MPEG-2 AAC are described. The basics of multichannel and 
binaural coding are also introduced in these chapters. 

Chapter 14 is devoted to Dolby AC-3, the audio coder used in digital 
television standards and in DVDs. 

Chapter 15 introduces the latest MPEG family of audio coding standards, 
MPEG-4, which allows for audio coding at very low bit rates and other 
advanced functionalities. MPEG-4 looks to be the coding candidate of 
choice for deployment in emerging wireless and wired network applications. 
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Chapter 1 

Introduction 

1. REPRESENTATION OF AUDIO SIGNALS 

We hear a sound and we want to store it for later replay - what 
information do we need to capture? Physicists tell us that sound is a 
pressure wave (i.e., vibration) in the air so we can measure this pressure 
wave with a mechanical device and then mechanically reproduce the 
pressure wave later. This is the principle used by Thomas Edison and other 
manufacturers of early gramophones (precursors to phonographs) in which a 
large cone concentrated the vibrations to a point where a needle scratched its 
vibrating path onto a spinning cylinder or disk. Later, a hand-cranked or 
other form of motor would turn the spinning cylinder or disk and the 
needle's forced movement along its prior path would cause the cone to 
recreate the pressure wave. The advent of electronic technology has allowed 
us to convert the pressure wave into a voltage reading that can be transferred 
onto a variety of storage media, for example as a changing degree of 
magnetization along a cassette tape. The basic idea in analogue technology, 
however, is still the same - to represent sound by the amplitude of its 
vibration over time. This tells us that one basic representation of sound is as 
a changing function of time t, which we denote x(t) as shown in Figure 1. 

M. Bosi et al., Introduction  to  Digital Audio  Coding  and Standards
© Kluwer Academic Publishers 2003



4 Introduction to Digital Audio Coding and Standards 

x(t) 

t 

Figure 1. Time-domain representation of a sound tone 

When we listen to sound, however, we hear clear distinctions between 
tonal content that tells us something about the sound. For example, some 
sounds seem high pitched like the squeaking of a sticky door while others 
are low pitched like the boom of a kettledrum. Tonal content is naturally 
described in terms of the frequencies contained in the sound. Since we 
perceive sounds in terms of their tonal content, in many instances it is more 
appropriate to describe audio signals as some function X(f) that shows how 
much of the frequency f is present in the signal (see Figure 2). 

t A/2 N2 

x(t) X(f) 

Figure 2. Time-domain versus frequency representation of a sound tone of amplitude A at 
frequency fo 

Audio coding, the main subject of this book, allows for the representation 
of sound in a very compact way without losing its perceptual characteristics. 

2. WHAT IS A DIGITAL AUDIO CODER? 

What exactly is a digital audio coder? Any sound in nature has analogue 
characteristics. Since we live in a computer era, we would like to have this 
information in a digital form so that we can record, process, transmit and 
play it digitally. A typical digital audio coder, or codec for encoder-decoder, 
is a device that takes analogue audio signals as input and transforms them 
temporarily into a convenient digital representation. This transformation 
process takes place in the encoder stage of the coder. Once we have the 
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signal represented as a series of numbers then we can store it, process it, or 
transmit it. At some point, we would like to be able to listen again to the 
sound. To do so we need to transform the signal from its digital 
representation back to an analogue signal so that the human ear can detect 
and enjoy it. This inverse transformation from digital back to analogue takes 
place in the decoder stage of the coder. 

~~illl))) [10010101] 'Ill)))~ 

Figure 3. Digital audio coding chain 

In general, an audio coder or codec is an apparatus which has as input an 
audio signal and as output a perceptually identical (or very close) delayed 
copy of the input signal. In Figure 3, the typical digital audio coding chain 
is shown. It is very important to emphasize that the very first stage of the 
audio coding chain is the source of the sound and the very last stage of the 
audio coding chain is the human ear. These two parts of the coding chain 
are important because they can play an important role in the design of the 
audio coder. If we can somehow develop a good understanding of the sound 
source then we can optimize the way we represent the audio signal, i.e. we 
can use a more compact description of the sound. Taking into consideration 
that the last stage is the human ear and applying models of the ear and its 
processing of acoustical stimuli, we can also reduce the amount of 
information contained in our representation of the audio signal that is 
irrelevant to our perception. 

3. AUDIO CODING GOALS 

Once we decide that we would like to obtain a digital representation of 
the audio signal, a number of trade-offs come into play in order to carry out 
this transformation. In general, we would like to maximize the perceived 
quality but we also would like to minimize the amount of information 
needed to represent the signal. The challenge in designing an audio coding 
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system is to balance these two conflicting goals while maintaining an 
acceptably low cost system. 

Some of the most important factors we need to take into consideration 
when we are designing or assessing an audio coder are: 

• Fidelity 
• Data rate 
• Complexity 
• Delay 

The balance between these factors will be determined by the application the 
technology is meant to support. 

Fidelity addresses how perceptually equivalent the output of a codec is to 
the original input signal. The overall system quality is the most important 
attribute of any coding system. Depending on the application, however, we 
may have differing requirements for acceptable quality. So-called 
"telephony quality" is considered acceptable for applications that require 
intelligibility of the spoken words but not adequate for applications 
involving electronic distribution of music in which we would like to have 
"CD-like" quality audio signals, for example. Unfortunately, higher fidelity 
usually requires higher data rates, greater system complexity, and higher 
system delays. 

The data rate of the audio coding system is linked to the throughput, the 
storage, and the bandwidth capacity of the overall system. Typically, we 
know the restrictions of the medium we are using for storage, transmission 
and playback of the audio signals under consideration. These restrictions, 
combined with the target quality of our application, are the parameters that 
determine our system data rate. Higher data rates typically imply higher 
costs in transmission and storage of the digital audio signals. 

The complexity of carrying out the encode/decode process in a system 
translates into hardware and software costs in the encoder and decoder. 
Again, the target application will give guidance as to what trade-offs are 
acceptable here. For example, in a point-to-multipoint broadcast application, 
low cost and widely disseminated decoders are usually desired. In this case, 
we usually try to keep as much of the required processing complexity in the 
encoder to decrease the cost of the decoders. Moreover, by appropriately 
designing the encoder/decoder system, one can also maintain the ability to 
make some improvements to the coding process without having to alter (or 
replace) the installed base of decoders in the marketplace. In contrast, when 
we need to be able to encode/decode audio signals in real-time, like for 
example in desktop video-conferencing over the internet, then keeping the 
complexity low in both encoder and decoder is important. It should be noted 
that, with the current trend of decreasing memory costs and increasing 
computer horsepower, what was prohibitive in terms of complexity a few 
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years ago, is currently considered acceptable. Some may even argue that 
complexity will soon become a non-issue. Implementation cost, however, is 
still a very important factor in the design of a coder. 

Other important factors in the design of audio coders include coding 
delay (for example in telephony and teleconferencing), scalability (for 
example in internet broadcasts to users with very different connection 
speeds), and error robustness (for example in wireless transmission). 

In general, we will assume that the design goal of any audio coding 
system is to provide high fidelity with low data rates, while maintaining the 
complexity of the system as low as possible. 

4. THE SIMPLEST CODER - PCM 

The simplest, best-understood, and most established audio coder is based 
on pulse code modulation, peM. Block diagrams of the peM encoder and 
decoder are shown in Figure 4. In the peM encoder, the analogue audio 
signal is sampled at regular time intervals and then the signal amplitude of 
each sample is quantized into one of a limited set of digital codes, each 
representing a range of signal amplitude. While during the sampling process 
we don't lose any information if we sample often enough, the quantization 
process is inherently a lossy process and some of the information contained 
in the original signal is irrevocably lost. 

In the decoder stage of the peM scheme, the quantized codes are 
decoded and then the discrete time samples are interpolated to create an 
output analogue signal. The higher the number of discrete values employed 
in the quantization process, the more accurately the output signal will 
approximate the input signal. 

PCM Encoder: 

C\ C\ 
CJ 

PCM Decoder: 

[001011100101] 

iii II I JIll 
11\\1 10010111001011 

Figure 4. The PCM coder 
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5. THE COMPACT DISK 

One widely employed application of the audio PCM scheme is the 
compact disk (CD) format. Introduced in the mid-eighties by Sony and 
Philips, the CD was the result of many years of research in storage, laser 
reader technology, and error correction. Its popularity exponentially 
increased over the years to the point where we now find millions of units in 
homes entertainment systems, cars, "boom boxes", and computer systems. 
The CD today has become a consumer standard for audio quality in the 
marketplace against which other audio coding systems are often compared. 

In the CD format the audio signal is digitally represented as a stereo 
signal (i.e. two channel audio signal) sampled at time intervals of 0.023 ms 
or equivalently with a sampling frequency, Fs, of 

Fseo = 44.1 kHz. 

where the time interval between adjacent time samples equals the reciprocal 
of the sampling frequency. This sampling frequency is adequate to preserve 
frequency content up to 22.05 kHz. From the psychoacoustics point of view, 
the CD sampling frequency is well selected since the average upper 
frequency limit for human hearing is around 20 kHz [Zwicker and Fastl 90]. 
It should be noted that the CD preserves a much wider range of frequency 
content than previously established analogue systems. For example, LPs 
typically only allow for frequency content below 10 kHz. 

Some of you may wonder why such an "odd" number is employed rather 
than, for example, using a sampling rate of 40 kHz or 48 kHz which seem 
more natural choices. In fact, the 44.1 kHz sample rate is merely a historical 
artifact arising from the fact that VCR technology was used to store audio 
data in the early days of CD development [Watkinson 89]. 

The audio sample precision depends on the number of bits, R, employed 
to represent a sample. In the CD format R equals: 

Reo = 16 bits per sample. 

This precision allows for up to i 6 = 65536 discrete levels to represent the 
audio sample amplitudes and it can cover a nominal dynamic range of over 
90 dB, which again widely exceeds the dynamic range of LPs which is 
typically less than 50 dB. 

In the case of a digital system like the CD, one measure of its quality is 
given by the signal to noise ratio (SNR) measured in decibel, dB. Typical 
values for SNRco approach 90 dB. While in general this signal to noise ratio 
is quite good, psychoacoustics studies show that in the mid-range 



Chapter 1: Introduction 9 

frequencies (between 2 and 5 kHz) it is not sufficient for all listeners. In this 
frequency range the human ear is very sensitive and more bits per sample are 
needed to transparently reproduce sounds. Ideally, 18-20 bits per sample are 
needed for describing audio samples in this frequency content. 

The data rate or bitrate of a system, I, in bits per second, (or kb/s kilo, 
thousands, bits per second or Mb/s Mega, Millions, bits per second) per 
channel is given by the sampling frequency times the audio sample 
precision. In the case of the CD we have: 

ICD = FseD * Reo = 705.6 kb/s per audio channel 

or 

IcDTotal = 706.5 * 2 = 1.4112 Mb/s. 

The maximum length of music that can be stored on the CD is about 75 
minutes. The total amount of storage devoted to audio on the CD is less than 
800 MBytes. The maximum CD duration again comes from the historical 
development of the CD and the fact that some of the storage area in the CD 
is devoted to error correction codes and control data [Immink 98]. 

6. POTENTIAL CODING ERRORS 

Several types of errors can be introduced into the signal during any 
coding scheme, even one as simple as PCM. Errors can be introduced from 
inadequate sampling, poorly designed quantization, and from corruption 
during transmission or storage. The following are the main types of 
potential errors that can occur in an audio coder: 

Sampling Errors - What happens if we sample the audio signal at time 
intervals too widely spaced? In doing so we irrevocably shift some of the 
signal's frequency content to where it doesn't belong. The signal 
frequencies above half the sampling frequency are mirrored to lower 
frequencies giving rise to a noticeable distortion called "aliasing". Aliasing 
can be avoided by either s~lecting an adequate sampling frequency or by 
passing the signal through a low-pass filter that eliminates the frequency 
content that would be aliased. (Although low-pass filtering can cause 
audible changes in a signal, the resulting changes are far less annoying than 
aliasing errors are.) 

Quantization Errors - We encounter two types of quantization errors: 
overload errors and round-off errors. Overload errors occur when the input 
signal range exceeds the maximum value of the quantizer. This type of error 
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is very annoying and needs to be carefully avoided. In contrast, round-off 
error is always present in the quantization process and the goal in audio 
coding is to reduce it to inaudible levels. A good portion of this book is 
devoted to understanding how to design coders that minimize the audible 
effects of round-off error. 

Storage and transmission errors - Storage media and transmission 
channels can introduce errors in stored or transmitted signals. Additional 
bits can be included in a stored/transmitted signal to detect and even correct 
limited numbers of errors. Although error detection and correction is a very 
important topic in developing data systems to support audio coding, we 
consider it beyond the scope of this book. For the sake of simplicity, we will 
in general assume ideal transmission channels and storage media for the rest 
of this book. 

7. A MORE COMPLEX CODER 

We noted while examining the CD format that, even at its high data rates, 
potentially audible round-off errors may be introduced in the mid-range 
frequencies of sound. If the application goal is to produce a perceptually 
transparent sound while operating at CD data rates or lower, "smarter" audio 
coding schemes are needed. 

As an example of a smarter approach, consider an encoder that employs a 
transformation of the signal representation from the time domain (like in 
PCM) to the frequency domain so that it can dynamically allocate bits 
through the frequency spectrum based on the frequency content of the signal. 
In this manner, the coder can try to take bits from frequencies where our 
ear's dynamic range is lower and move them to the mid-range frequencies 
where the ear is very sensitive. In the decoder, the inverse bit allocation and 
transformation from the frequency to the time domain is applied. In Figure 
5 a block diagram of such a transform coder is shown. 
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Figure 5. An example of a more complex coder than PCM 
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One may ask: "Do we really need such complex coders?" If we examine 
the CD representation of the audio signals we soon realize that a lot of 
repetitive information is stored when representing the signal. In other words, 
information that is not necessarily needed to uniquely reconstruct the signal 
is accumulated. For example, the PCM representation of a sine wave is a 
long series of time sampled values. If we were to instead describe the sine 
wave in the frequency domain, we would need only to store its frequency, 
amplitude and phase to completely characterize the signal (see also Figure 
2). By doing so we greatly reduce the amount of data needed to represent 
the signal while not losing any information. 

In general, although pure deterministic waves such as sine waves are 
improbable for sound, the statistical nature of audio signals is quasi-periodic. 
This important characteristic of sound implies that more often than not the 
PCM representation of sound contains a significant amount of redundant 
information. This redundancy can be reduced by simply applying a 
frequency transformation to the signal and appropriately allocating bits to 
the populated region of the spectrum. Other methods for reducing 
redundancies in the signal can also be used such as prediction methods and 
entropy coding (e.g., Huffman coding) that exploit symbol likelihood 
statistics. 

The PCM representation of a signal often also contains a significant 
amount of irrelevant information, i.e. signal content which is inaudible. For 
example, information about sounds in the low frequency range which are too 
soft to be heard or normally audible sounds that are masked by louder 
sounds. This information does not need to be included in the coded signal. 
Perceptual audio coders reduce signal bit rate by reducing both redundancy 
and irrelevancy in the audio signal representation. In the next chapters of 
this book we will examine the basic principles and implementation choices 
used by state-of-the-art audio coders to carry out this bit rate reduction. 
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9. EXERCISES 

a) Data rates: 
Compute the data rates for the following audio signals: 
1. A mono signal (i.e. single channel signal) sampled at 8 kHz using 8 

bits per sample 
2. A stereo signal sampled at 44.1 kHz using 16 bits per sample 
3. Five channel (L, C, R, LS, RS) audio sampled at 44.1 kHz using 16 

bits per sample 
4. Five channel (L, C, R, LS, RS) audio sampled at 96 kHz using 24 bits 

per sample 

b) The need for compression: 
There has been recent discussion in the audio market about the need to 
move to higher sample representation precision and greater sample rates. 
In particular, a format using 24 bits per sample and a sample rate of 96 
kHz has been discussed. Let's look at some implications for using such a 
format for passing 5-channel audio. 
1. How much storage is needed for 2 hours of this type of audio signal? 
2. If the CD format throughput for audio is equal to 1.411 Mb/s (Mega 

or Millions bits per second), what compression ratio is needed to pass 
this type of signal through a CD system? 

3. If the DVD Video format throughput for audio is equal to 6.144 Mb/s, 
what compression ratio is needed to pass this type of signal through a 
DVD Video system? 
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Quantization 

1. INTRODUCTION 

As we saw in the previous chapter, sound can be represented as a 
function of time, where both the sound amplitude and the time values are 
continuous in nature. Unfortunately, before we can represent an audio signal 
in digital format we need to convert continuous signal amplitude values into 
a discrete representation that is storable by a computer - an action which 
does cause loss of information. The reason for this conversion is that 
computers store numbers using finite numbers of bits so amplitude values 
can be stored with only finite precision. In this chapter, we address the 
quantization of continuous signal amplitudes into discrete amplitudes and 
determine how much distortion is caused by the process. Typically, 
quantization noise is the major cause of distortion in the coding process of 
audio signals. In later chapters, we address the perceptual impacts of this 
signal distortion and discuss the design trade-off between signal distortion 
and coder data rate. In this chapter, however, we focus on the basics of 
quantization. 

In the following sections, we first review the binary representation of 
numbers. Computers store information in terms of binary digits ("bits") so 
an understanding of binary numbers is essential background to the 
quantization process. We also discuss some ways to manipulate the 
individual bits in a binary number. Next, we discuss different approaches to 
quantizing continuous signal amplitudes onto discrete values storable in a 
fixed number of bits. We look in detail at uniform and floating point 
quantization methods. Then we quantify the level of distortion introduced 
into the audio signal by quantizing signals to different numbers of bits for 
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the different quantization approaches. Finally, we discuss how entropy 
coding methods can be used to further reduce the bits needed to store the 
quantized signal amplitudes. 

2. BINARY NUMBERS 

We normally work with numbers in what is called "decimal" or "base 
10" notation. In this notation, we write out numbers using 10 symbols 

(0,1, ... ,9) 

and we use the symbols to describe how we can group the number in groups 
of up to 9 of each possible power of ten. In decimal notation the right-most 
digit tells us how many ones (10°) there are in the number, the next digit to 
the left tells us how many tens (101), the next one how many hundreds (102), 

etc. For example, when we write out the number 1776 we are describing a 
number that is equal to 

Computers and other digital technology physically store numbers using 
binary notation rather than decimal notation. This reflects the underlying 
physical process of storing numbers by the physical presence or absence of a 
"mark" (e.g., voltage, magnetization, reflection of laser light) at a specific 
location. Since the underlying physical process deals with presence or 
absence, we really have only two states to work with at a given storage 
point. 

"Binary" or "base 2" notation is defined analogously to decimal notation 
but now we only work with 2 symbols (0,1) and we describe the number 
based on grouping it into groups of up to 1 of each possible power of 2. In 
binary notation, the rightmost column is the number of ones (2°) in the 
number, the next column to the left is the number of twos (i), the next to the 
left the number of fours (22), etc. For example, the binary number 

[01100100] 

represents 
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Note that to minimize the confusion between which numbers are written in 
binary and which are in decimal, we try to always write binary numbers in 
square brackets. Therefore, the number 101 will have the normal decimal 
interpretation while the number [101] will be the binary number equal to five 
in decimal notation. 

If we had to write down a decimal number and could only store two 
digits then we are limited to represent numbers only from 0 to 99. If we had 
three digits we could go all the way up to 999, etc. In other words, the 
number of digits we allow ourselves will determine how big a number we 
can represent and store. Similarly, the number of binary digits ("bits") limits 
how high we can count in binary notation. For example, Table 1 shows all 
of the binary numbers that can be stored in only four bits counting up from 
[0000], 0, all the way to [l111], 15. Notice that each number is one higher 
than the one before it and, when we get to two in any column we need to 
carry it to the next column to the left just like we carry tens to the next 
column in normal decimal addition. In general, we can store numbers from 
o to 2R_l when we have R bits available. For example, with four bits we see 
in the table that we can store numbers from 0 to 24_1 = 16-1 = 15. If binary 
numbers are new to you, we recommend that you spend a little time studying 
this table before reading further in this section. 

Table 1. Decimal numbers from 0 to 15 represented in 4-bit binary notation 
Decimal Binary (four bits) 

o [0000) 

1 (0001) 

2 [0010) 

3 [0011] 

4 [0100) 

5 [0101) 

6 [0110) 

7 (0111) 

8 [1000) 

9 (1001) 

10 (1010) 

11 [ 1011) 

12 [1100] 

13 (1101) 

14 [1110) 
15 [1111) 
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2.1 Signed Binary Numbers 

We sometimes want to write both positive and negative numbers in 
binary notation and so need to augment our definition to do this. Recall that 
in decimal notation we just add an additional symbol, the minus sign, to 
show what is negative. The whole point of binary notation is to get as far as 
we can keeping ourselves limited to just the two symbols 0, 1. There are two 
commonly used ways of expressing negative numbers in binary notation: 

I) "folded binary" notation or "sign plus magnitude" notation 
2) "two's complement" notation. 

In either case, we end up using one bit's worth of information keeping track 
of the sign and so can only store numbers with absolute values up to roughly 
half as big as we can store when only positive numbers are considered. 

In folded binary notation, we use the highest order bit (i.e., left-most bit) 
to keep track of the sign. You can consider this bit to be equivalent to a 
minus sign in decimal, in that the number is negative when it is set to 1 and 
positive when it is set to O. For example, with four bits we would use the 
first bit as a sign bit and be able to store absolute values from 0 to 7 using 
the remaining three bits. In this notation, [1011] would now signify -3 
rather than 11. 

Two's complement notation stores the positive numbers the same as 
folded binary but, rather than being symmetric around zero (other than the 
sign bit), it starts counting the lowest negative number after the highest 
positive one, ending at -1 with all bits set to 1. For example, with four bits, 
we would interpret binary numbers [0000] up to [0111] as 0 to 7 as usual, 
but now [1000] would be -8 instead of the usual +8 and we would count up 
to [1111] being -1. In other words, we would be able to write out numbers 
from -8 to +7 using 4-bit two's complement notation. In contrast, folded 
binary only allows us to write out numbers from -7 to +7 and leaves us with 
an extra possible number of -0 being unused. 

Computers typically work with two's complement notation in their 
internal systems but folded binary is easiest for humans to keep straight. 
Since we are more concerned with writing our own code to translate 
numbers to and from bits, we adopt the easier to understand notation and use 
folded binary notation whenever we need to represent negative numbers in 
this book. 

2.2 Arithmetic Operations and Bit Manipulations 

Binary numbers can be used to carry out normal arithmetic operations 
just as we do with normal decimal arithmetic, we just have to remember to 
carry twos rather than tens. As a few examples: 
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3 + 4 = [II] + [100] = [Ill] = 7 

5 + I = [101] + [l] = [l1O] = 6 

where in the last expression we carried the 2 to the next column, 

In addition, most computer programming languages provide support for 
some special binary operations that work bit by bit in binary numbers. 
These operators are the NOT, AND, OR, and XOR operators. The NOT 
operator flips each bit in a binary number so that all Is become Os and vice
versa. For example: 

NOT[lIOO] = [0011] 

The AND operator takes two binary numbers and returns a new number 
which has its bits set to 1 if both numbers had a 1 in that bit and sets them to 
o otherwise. For example: 

[1100] AND [1010] = [1000] 

Notice that only the left-most or "highest order" bit position had a one in 
both input numbers. 

The OR operator also has two binary numbers as input but it returns a 
one in any bit where either number had a one. For example: 

[1100] OR [1010] = [1110] 

Notice that only the right-most or "lowest order" bit didn't have a one in 
either number. 

Finally, the XOR (exclusive OR) function differs from the OR function 
in that it only returns 1 when one of the bits is one but not when both are 
one. For example: 

[1100] XOR [1010] = [0110] 

Notice that the highest order bit is now zero. 
Having defined binary numbers, we would like to be able to manipulate 

them. The basic idea is to define storage locations as variables in a computer 
program, for example an array of integers or other data types, and to read 
and write coder bits to and from these variables. Then we can use standard 
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programming (binary) read/write routines to transfer these variables, their 
values being equal to our stored bits, to and from data files or other output 
media. The binary digits themselves represent various pieces of data we 
need to store or transmit in our audio coder. 

Suppose we have a chunk of bits that we want to read from or write to. 
For example, we could be writing a computer program and using 2-byte 
integer variables to store 16 bits in. Remember that a byte is equal to 8 bits 
so that a 2-byte integer variable gives us 16 bits with which to work. To read 
and write bits from this variable we need to know how to test and set 
individual bits. Our knowledge of binary notation provides us with the tools 
to do this. We can test and set bits using bit masks and the AND and XOR 
operations. Let's talk about some ways to do this. 

A bit mask is a series of bits where specific bits are set to determined 
values. We know from binary notation that the number 2° is represented in 
binary with the nth bit to the left of the right-most bit set equal to 1 and all 
others zero. For example: 

23 = [1000], 22 = [0100], 2' = [0010], and 2° = [0001] 

Therefore we can easily create variables that have single bits set to one by 
using the programming language to set integer variables equal to powers of 
two. We call such a variable a "bit mask" and we will use it for setting and 
testing bits. 

The AND operator lets us use a bit mask to read off single bits in a 
number. Remember that the AND operator only returns a one when both 
bits are equal to one and zero otherwise. If we AND together a bit mask 
with a number, the only possible bits that could be one in the result are the 
ones the bit mask has set to one. If the number has ones in those positions, 
the result will be exactly equal to the bit mask; if the number has zeros in 
those positions then the result will be zero. For example: 

[0100] AND [abed] 

equals 

[0100] for b = 1 

or 

[0000] for b =0 
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The XOR operator lets us use a bit mask to write a sequence of bits into a 
bit storage location. When we XOR a bit mask with a number, the bit values 
that are masked are flipped from one to zero and vice-versa. For example: 

[0100] XOR [abed] 

equals 

[aOed] for b = I 

or 

[alcd] for b = 0 

This means that we can take a number with zeros in a set of bit locations and 
use the XOR to flip specific bits to one. 

If we aren't sure that the bit storage location was already set to all zeros, 
we can erase the values in that location before writing in new values. We 
can do this by first creating a number that has all ones in its bit location, for 
example 2R -1 for unsigned variables and -1 for signed ones - remember 
computers use two's complement arithmetic. We then flip all the bits in the 
region we want to erase to zero by using XOR and bit masks. Finally, we 
AND this number with our bit storage location to erase the values. For 
example, to clear the right-most 2 bits in the 4-bit location [abcd], we create 
the number [1111], we flip the last 2 bits to get [1100], and then we AND 
this with the bit storage location to get [abcd] AND [1100] = [abOO]. Now 
we are ready to write bits into that location by using XOR to flip the bits we 
want equal to one. 

Another set of operations that we sometimes find useful are shift 
operations. Shift operations move all bit values to the right or to the left a 
given number of columns. Some computer programs provide support for the 
bit-shift operators, denoted « n here for a left shift by n and denoted » n 
for a right shift by n, but you can use integer mUltiplication and division to 
create the same effect. Basically, a multiplication by two is equivalent to a 
left bit-shift with n = 1; multiplying by 2" is equivalent to a left shift by n, 
etc. Remember that when bits are left shifted any new position to the right is 
filled in with zeros. For example: 

3 * 2 = [0011] « I = [0110] = 6 

and 
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3 * 22= [0011]« 2 = [1100] =12 

Similarly, a division by two is equivalent to a right bit shift by one; dividing 
by 2" is equivalent to a right shift by n, etc. Remember that when bits are 
right shifted any new position to the left is filled in with zeros. For example: 

12 + 2 = [1100] » 1= [0110] = 6 and 12 + 22 = [1100] » 2 = [0011] =3 

If we have a set of eight 4-bit numbers that we want to write into a 32-bit 
storage location, we can choose to write all eight into their correct locations. 
An alternative is to write the first (i.e., left-most) one into the first four bits 
and left-shift the storage location by four, write in the next one and left shift 
by four, etc. Likewise, we could read off the first four bits, right shift by 
four, etc. to extract the stored 4-bit numbers. 

Computers store data with finite word lengths that also allow us to use 
shift operators to clear bits off the ends of data. Character variables are 
typically eight bits, short integers are usually 16 bits, and long integers are 
usually 32 bits in size. We clear off n left bits by shifting left by n and then 
shifting right by n. The way zeros are filled in on shifts means that we don't 
get back to our original number. For example: 

([11111111]«2)»2=[11111100]>>2=[00111111] 

Note that this is very different from normal arithmetic where multiplying and 
then dividing by four would get us back to the starting number. To clear off 
n right bits we shift right by n and then shift left by n. For example: 

([1111 1111] »2)« 2 = [0011 1111] «2 = [1111 1100] 

Having learned how to work with binary numbers and bits, we now turn 
to the subject of translating audio signals into series of binary numbers, 
namely to quantization. 

3. QUANTIZATION 

Quantization is the mapping of continuous amplitude values into codes 
that can be represented with a finite number of bits. In this section, we 
discuss the basics of quantization technology. In particular, we focus on 
instantaneous or scalar quantization, where the mapping of an amplitude 
value is not largely influenced by previous or following amplitude values. 
This is not the case, for example, in "vector quantization" systems. In vector 
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quantization a group of consecutive amplitude values are quantized into a 
single code. As we shall see later in this chapter when we discuss Huffman 
coding, this can give coding gain when there are strong temporal correlations 
between consecutive amplitude values. For example, in speech coding 
certain phonemes follow other phonemes with high probability. If the reader 
is interested in this subject, good references are [Gray 84, Gersho and Gray 
92]. While vector quantization is in general a highly efficient technique at 
very low data rates, i.e. much less than one bit per audio sample, it makes 
perceptual control of distortion difficult. In audio coding, vector 
quantization is employed for intermediate quality, very low data rates (see 
for example MPEG-4 Audio [ISo/lEe 14496-3]). 

As we saw in the last section, R bits allow us to represent a maximum of 
2R different codes per sample, where each of these codes can represent a 
different signal amplitude. Dequantization is the mapping of the discrete R
bit codes onto a signal amplitude. The mapping from continuous input 
signal amplitudes onto quantized-dequantized output signal amplitudes 
depends on the characteristics of the quantizer used in the process. 

Signal amplitudes can have both positive and negative values and so we 
have to define codes to describe both positive and negative amplitudes. We 
typically choose quantizers that are symmetric in that there are an equal 
number of levels (codes) for positive and negative numbers. In doing so, we 
can choose between using quantizers that are "midrise" (i.e., do not have a 
zero output level) or "midtread" (i.e., do pass a zero output). Figure 1 
illustrates the difference between these two choices. Notice that midrise has 
no zero level and quantizes the input signal into an even number of output 
steps. In contrast, midtread quantizers are able to pass a zero output and, due 
to the symmetry between how positive and negative signals are quantized, 
necessarily have an odd number of output steps. With R number of bits the 
midtread quantizer allows for 2R -1 different codes versus the 2R codes 
allowed by the midrise quantizer. In spite of the smaller number of codes 
allowed, in general, given the distribution of audio signal amplitudes, 
midtread quantizers yield better results. 

ootl~ 

7fin 
Midtread 

""tv 
~ 
Midrise 

Figure 1. Midtread versus midrise quantization 
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3.1 Uniform Quantization 

We first examine the simplest type of quantizer: a uniform quantizer. 
Uniform quantization implies that equally sized ranges of input amplitude 
are mapped onto each code. In such a quantizer, the input ranges are 
numbered in binary notation and the code for an input signal is just the 
binary number of the range that the input falls into. To define the input 
ranges and hence the quantizer itself we need three pieces of information: 

1) whether the quantizer is midtread or midrise, 
2) the maximum non-overload input value Xmax (i .. e. a decision as to 

what range of input signals wilI be handled gracefulIy by the 
quantizer), and 

3) the size of the input range per code ~ (which is equivalent 
information to the number of input ranges Nonce Xmax is selected 
since N = 2 * xmaxl~). 

The third data item defines the number of bits needed to describe the code 
since, as we learned in the last section, R bits alIow us to represent 2R 
different codes. 

For a midrise quantizer, R bits allow us to set the input range equal to: 

Midtread quantizers, in contrast, require an {)dd number of steps so R bits are 
used to describe only 2R -1 codes, and so a midtread uniform quantizer with 
R bits has the slightly larger input range size of: 

Since the input ranges collectively only span the overalI input range from 
-Xmax to Xmax, the question arises as what to do if the signal amplitude is 
outside of this range. This event is handled by mapping all input signals 
with amplitude higher than the highest range into the highest range, and 
mapping alI input signals with amplitude lower (i.e., more negative) than the 
lowest range into that range. The term for this event is "clipping" or 
"overload", and it typically causes very audible artifacts. In this book we 
adopt the convention of defining units of amplitude such that Xmax = 1 for our 
quantizers. In other words, we describe quantizers in terms of how they 
assign codes for input amplitudes between -1 and 1. 
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3.2 Midrise Quantizers 

Figure 2 illustrates a two-bit uniform midrise quantizer. The left hand 
side of the figure represents the range of input amplitudes from -1 to 1. 
Since it is a 2-bit midrise quantizer, we can split the input range into 4 bins. 
Because we are discussing a uniform quantizer, these 4 bins are equally 
sized and divide the input range as shown in Figure 2. The bins are 
numbered using "folded binary" notation (recall from last section that this 
uses the first bit as a sign bit) and the middle of the figure shows codes for 
each bin: they are numbered consecutively from the bottom as [11], [10], 
[00], [01], literally, -1, -0, +0, +1. 

Having quantized the input signal into 2-bit codes, we have to address 
how to convert the codes back into output signal amplitudes. We would like 
to do this in a manner that introduces the least possible error on average. 
Take, for example, bin [00] that spans input amplitudes from 0.0 up to 0.5. 
Assuming that the amplitude values are uniformly distributed within the 
intervals, the choice of output level that has the lowest expected error power 
would be to pick the exact center of the bin, namely 0.25. Analogously, the 
best output level for the other bins will be their centers, and so the quantizer 
maps codes [tl], [10], [00], [01] onto output values of -0.75, -0.25, 0.25, 
0.75, respectively. 

1.0 -- La 
01 3/4 

00 .. 1/4 

0.0 --

10 ·114 

11 .. ·3/4 

-1.0 _'- -1.0 

Figure 2. A two-bit unifonn midrise quantizer 

Uniform midrise quantizers with more than two bits can be described in 
similar terms. Figure 3 describes a general procedure for mapping input 
signals onto R-bit uniform midrise quantizer codes and also for dequantizing 
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these codes back onto signal amplitudes. To better understand this process, 
let's apply it to the two-bit quantizer we just described. 

Consider an input amplitude equal to 0.6 which we can see from Figure 2 
should be quantized with code [01] and dequantized onto output amplitude 
0.75. According to the procedure in Figure 3, the first bit of the code should 
represent the sign of the input amplitude leading to a zero. The second bit 
should be equal to 

INT(2*0.6) = INTO.2) = I 

leading to the correct code of [01] for an input of 0.6, where INT(x) returns 
the integer portion of the number x . 

In dequantizing the code [01] the procedure of Figure 3 tells us that the 
leading zero implies a positive number and second bit corresponds to an 
absolute value of 

(l + 0.5)/2 = 1.5/2 = 0.75 

Putting together the sign and the absolute value gives us the correct output 
value of 0.75 for an input value of 0.6. 

We recommend that you spend a little time trying to quantize and then 
dequantize other input values so you have a good feel for how the procedure 
works before continuing further in this chapter. 

Quantize: 

code(number; R) = [s][lcodelJ 

where 

s = {O number ~ 0 
1 number < 0 

I d I {
2R-l -1 when Inumberl~ 1 

co e= 
INT(2R- 1 Inumberi) elsewhere 

Dequantize: 

number( code; R) = sign*1 numberl 

where 

. {I if s = 0 
sign = 

-1 if s = 1 

Inumberl= (Icodel + 0.5)/ 2R - 1 

Figure 3. Quantization/dequantization procedure for an R-bit uniform midrise quantizer 
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3.3 Midtread Quantizers 

Figure 4 illustrates a two-bit midtread uniform quantizer. Notice how the 
two bits are only used to describe three input amplitude bins. This means 
that we have divided the input range into thirds rather than quarters leading 
to a larger bin-size than in the midrise case. We have numbered the bins 
consecutively [11], [00], [01], literally, -1, 0, 1, and have chosen not to use 
the [10] code. The dequantized values are still the centers of the bins which 
are -2/3,0, and +2/3, respectively, in this case. Notice that the zero value is 
passed. Audio signals often have quiet portions so quantizers that can 
represent a signal as having zero amplitude tend to sound better. For this 
reason, it is usually worth the cost of throwing away one possible code value 
and using mid tread quantizers for audio coding. 

1.0 

01 213 

0.0 00/10 o 

11 ------I .. ~I -2/3 

-1.0 -'---", -1.0 

Figure 4. A two-bit unifonn midtread quantizer 

Figure 5 describes a procedure for implementing an R-bit uniform 
midtread quantizer. Let's again see how a value of 0.6 is quantized using 
this procedure. As before, the first bit is the sign bit, which should be zero 
for this input. The second bit should be equal to 

INT«3*0.6+1)12) = INT(2.812) = INT(1.4) = 1 

leading to a code of [01]. In dequantizing we see that the first bit gives us a 
positive amplitude and the second bit gives an absolute value of 2 * 113 = 
2/3. In other words, the procedure agrees with Figure 4 and says the 0.6 
should be mapped onto an output amplitude of +2/3. Again, we recommend 
that you try out a few more input amplitudes before moving on in this 
section. 
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Quantize: 

code(number; R) = [sJUcodell 

where 

s = {O number:?: 0 
1 number <0 

Icodel= {2R - 1 -I when Inumberl:?: 1 
INT(((2R -1)lnumberl+I)/2) elsewhere 

Dequantize: 

number( code; R) = sign*1 numberl 

where 

. {I if s = 0 
sign = 

-I if s = 1 

Inumberl=2.lcodel/(2 R -I) 

Figure 5. Quantization/dequantization procedure for an R-bit uniform midtread quantizer 

The uniform quantizer has a maximum round-off error equal to half of 
the bin width (i.e., ,1.12) at any, non-overload input level. However, this error 
level could be huge relative to a very low amplitude signal. Since the 
perception of round-off distortion is more related to the relative error in 
amplitude than to the absolute size of the error, this means that uniform 
quantizers perform significantly worse on low power input signals than they 
do on higher power signals. This observation is the inspiration behind non
uniform quantization, which is described in the next sections. 

3.4 Non-Uniform Quantization 

In general, there is no requirement that the step sizes of a quantizer be of 
uniform size. Quantizers with step sizes that vary with input amplitude are 
called "non-uniform" quantizers. Although non-uniform quantization can be 
implemented using table lookups for the step sizes, it is more often 
implemented using the "companding" method, which we briefly discuss 
here. 

In the companding method, an input x is passed through a monotonically 
increasing function 

y= c(x) 

prior to being uniformly quantized. Dequantization then is carried out by 
first dequantizing the uniformly quantized code into a value y' and then 
passing that value through the inverse function 
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The function c(x) is normally anti-symmetric around x=O so that it maps 
negative values of x onto negative values. This implies that we can fully 
define c(x) if we specify c(ixl). If we consider both our input signal and our 
uniform quantizer to be normalized so that they run from -1.0 to 1.0, then 
the companding function c(lxl) should map inputs from 0 to 1.0 onto the 
range from 0 to 1.0. The requirement that c(x) be monotonically increasing 
is so that c(x) is easily invertible. 

To get a feel for how companding affects quantization, let's see how the 
size of the quantizer bins varies with input level x. We know that the 
quantizer bins are uniformly sized with regard to the level of y since y is 
uniformly quantized. If we do our quantization using a large number of bits 
so that the bins are small, then, over the size of a bin, the mapping y = c(x) is 
approximately linear and we have that 

y(x) '" c(xo) + dc/dx (x-xo) 

for some fixed Xo in the bin. This tells us that the width in x of a quantizer 
bin is scaled down by a factor of dc/dx from the width in y (see Figure 6). 
For example, if we pick a function c(x) that has a high slope for small values 
of x, then we have lower quantization noise in that region as compared to 
uniform quantization. However, since the function c(lx/) must run 
monotonically from 0 to 1.0, a high slope for low values of x implies a lower 
slope and hence more quantization noise for higher values of x. Thus, we 
can use the companding function to move quantization noise from low 
amplitude inputs to higher amplitude inputs. Non-uniform quantization can 
be used to slow down the drop-off in signal to noise ratio as the signal 
amplitude decreases at the cost of lowering the peak signal to noise ratio of 
the quantizer. 
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1.0 r--------------:~ 

y 

0.0 OL.L.'-'-......L.._.L..-_----"'--____ -! 

0.0 1.0 

x 

Figure 6. Effect of companding on quantizer bin widths for a four-bit midtread quantizer 

3.4.1 Power-Law Companding 

There are two common functional types used in companding: power law 
companding and logarithmic companding. In power law companding we use 
a function of the form: 

where choosing the parameter p so that it lies between 0 and 1.0 makes sure 
that the slope of c(x) is high for low values of x. We will see in Chapters 11 
and 13 that power law companding is used in MPEG Layer III and MPEG 
AAC where p = 0.75. 

3.4.2 Logarithmic Companding 

In logarithmic companding we use a companding function based on the 
function log(x). Unfortunately, log(O) is equal to -00 so this function cannot 
be used without adjustment. One common form of logarithmic companding 
is the so-called "Illaw" (or "mu law") companding, which uses a function of 
the form: 
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where the base of the logarithm b doesn't affect the function (since a change 
of base would just multiply both numerator and denominator by a fixed 
factor) and the parameter Il determines the slope of dc/dx near zero. The 
slope of c(x) near x=O is equal to j..L/ln(I +Il) and so values of Jl» 1 are 
typically used. Notice how the I inside the logarithm avoids problems at 
x=O. 

Another common form of logarithmic companding is the so-called "A 
law" companding which uses a function of the form: 

C A (I x I) = 1 ~In(A) 1
1+ln(A1x 1) forlxl>lIA 

---I x I fori x I~ I1A 
1 + In(A) 

Notice how the problem at small x is explicitly addressed by changing the 
functional form to linear for Ixl smaller than lIA. Again, having a high slope 
near x=O implies that values of A» 1 are typically used. 

Both Illaw and A law companding have found significant application in 
the telecommunications industry and have been standardized by the CCITT 
(Telephone and Telegraph Consultative Committee, now known as the ITU
T, International Telecommunication Union Telecommunications Sector). 
The particular values of Il and A selected in the standards, j..l=255 and 
A=87.56, were so chosen so that the quantization characteristics, when used 
with an 8 bit uniform quantizer, can be reproduced digitally by manipUlating 
the results of a longer uniform quantizer. In fact, the floating point 
quantization scheme that is presented in the next section is a variant of the 
digitally-companded A law scheme. The main difference is that the 
standardized 87.56 A law compander is carried out with a midrise quantizer 
rather than midtread. Nowadays, almost all logarithmic companding is 
carried out digitally through the use of various floating point quantizers. For 
more information on non-uniform quantization methods, the reader is 
encouraged to consult [Jayant and Noll 84]. 

3.5 Floating Point Quantization 

The basic idea of floating point quantization is to scale the quantizer bin 
size to the size of the input signal: low input signals would use very small 
quantizer bins and high input signals will have larger bins. To implement 
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this approach in a coder requires, however, that we know how big the bin 
sizes are when we dequantize the signal. This requires passing bits that 
describe the bin size. In other words, we split the bits in the code into two 
sets. Some bits are used to describe the bin size, where this set of bits 
represents the "scale factor" or "exponent" of the amplitude value. The rest 
of the bits are used to uniformly quantize the signal with those size bins, 
where this set of bits represents the "mantissa" of the amplitude value. 
Floating point quantization will give up accuracy for high-level signals since 
the scale factor bits that could have described bins are now used to tell the 
coder when the bins are smaller, but gains significant accuracy for low level 
signals, since the bins are now better sized for the signal. In general, the 
signal to noise ratio, SNR, will depend on the number of mantissa bits and 
will stay roughly constant over the whole range of input signal powers. This 
contrasts with uniform quantization where the SNR is highest at high powers 
(but low enough to avoid clipping) and decreases as the signal power 
decreases. We see examples of this in the next section. You can peek ahead 
to Figure /0 to see a graph of this behavior. 

We describe here a particular implementation of floating point 
quantization that is very similar to linearized A-law companding as was 
specified by the CCITT based on [Jayant and Noll 84]. The performance of 
the method depends on the number of scale factor bits Rs and mantissa bits 
Rm. Note that the total bits per sample R equals 

At high level inputs this method is roughly equivalent to a uniform 
quantizer with 

In contrast, however, this quantizer performance will not degrade as the 
signal power is lowered until it reaches a level determined by the number of 
scale bits Rs. Once below this lower limit, the performance of this quantizer 
will also degrade but it will be comparable to how a uniform quantizer with 

performs for such input signals. For example, eight bits divided into three 
scale bits and five mantissa bits perform for medium to high level signals 
about equivalently to a six-bit uniform quantizer sized to the signal power, 
and perform for low level signals like a 12-bit uniform quantizer. 
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To convert from a number into a scale-mantissa floating point code with 
Rs scale bits and Rm mantissa bits: 

I. Quantize the number as an R bit code where R=2Rs-l+Rm. 
II. Count the number of leading zeros in Icodel. If the number of leading 

zeros is less than 2Rs_l then set the scale equal to 2Rs_I minus the 
number of leading zeros; otherwise set the scale equal to zero. 

III. If scale equals zero then set the first mantissa bit equal to s and set the 
remaining Rm-l bits equal to the bits following the 2Rs_I leading zeros 
in Icodel; otherwise set the first mantissa bit equal to s and set the 
remaining Rm-l bits equal to the bits following the leading zeros_ 
omitting the leading one. 

To convert from scale-mantissa floating point code with Rs scale bits and 
Rm mantissa bits into a number: 

I. Create an R bit code where R=2RS -I +Rm from the mantissa and scale 
factor where s is the first mantissa bit and Icodel 
A. has 2Rs -I-scale leading zeros 
B. followed by the remaining Rm-I mantissa bits if scale is zero, 

otherwise followed by a one and then the remaining mantissa 
bits 

C. followed by a one and as many trailing zeros as will fit if scale is 
greater than one. 

II. Dequantize the R bit code into the number. 

Figure 7. Procedure for quantizingldequantizing using a floating point quantizer 

31 

Figure 7 describes the floating point quantization and dequantization 
procedures. The basic idea is to first uniformly quantize the input signal 
using the highest number of bits for which the floating point quantizer is 
comparable. Then the scale bits are used to keep track of the number of 
leading zeros in the uniformly quantized code so one can strip them off the 
code. Finally, the mantissa bits are used to store the highest order bits in the 
remaining code, taking advantage of the fact that you know that the leading 
zeros were followed by a one. In order to dequantize, we apply the 
procedure in reverse. The scale factor tells us how many zeros to add to the 
front of the stripped off code (and leading 1, when appropriate) while we use 
the mantissa bits to recreate the rest of the code as accurately as possible. 
For code bits beyond what we stored in the last mantissa bit we pick the 
middle of the unknown range by following the last mantissa bit with a 1 and 
then zeros. For example, if we had three unknown trailing bits we would not 
know what they were ranging from [000] = 0 up to [111] = 7. We split the 
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difference and use [100] = 4. Finally, we dequantize this code to get our 
output amplitude. 

Figure 8 shows how floating point quantization is carried out for the case 
of Rs = 3 scale bits and Rm = 5 mantissa bits. This eight bit total floating 
point quantizer reaches an accuracy at low signal levels comparable to a 12-
bit uniform quantizer so we first quantize our input signals using a 12-bit 
uniform quantizer. We use one of the five mantissa-bits to store the sign bit, 
using the remaining four mantissa-bits and the three scale-bits for storing the 
code. Notice that three scale bits can count up to seven leading zeros. We 
get to the 12-bit accuracy at low signal levels when one mantissa bit is the 
sign, the three scale bits tell us that the next seven bits are zero, and we use 
the remaining four mantissa bits to capture the next highest order bits in the 
code (12 = I + 7 + 4). Note that by convention the scale factor is set equal to 
zero when there are the maximum allowed seven leading zeros and the scale 
factor then counts up to seven as the number of leading zeros drops to none. 
The convention arises from the scale factor being equal to the number of left 
shifts that need be applied to the stripped off code (and leading one, when 
appropriate) described by the mantissa bits. This choice has no impact on 
accuracy of the coder and you could just as easily do it in the more natural 
approach where the scale factor is the number of leading zeros. We use this 
representation until the signal power reaches a level where the 12-bit 
quantization has less than seven leading zeros. In this case, we know that 
the first bit following those zeros is a one and does not need to be stored so 
we use the four mantissa-bits to store the four bits after the leading one. 
From this point all the way up to overload levels the quantization acts like a 
uniform quantizer with six bits corresponding to the sign bit, plus the leading 
one, plus the four other mantissa bits. As we see in the last line of the 
example, for the lower order bits beyond what we stored in the mantissa bits 
we split the difference and use a I followed by zeros when we recreate the 
12-bit code. Once the 12-bit code is created we dequantize it back onto 
output signals as described in the previous section for uniform quantizers. 
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[sOOOOOOOabcd] - scale = [000] [sOOOOOOOabcd] 
maRt = [sabcd] -

[sOOOOOOlabcd - scale = [001] [sOOOOOOlabcd] 
maRt = [sabcd] -

[sOOOOOlabcde] - scale = [010] _ [sOOOOOlabcdl] 
maRt = [sabcd] 

• 
• 
• 

[slabcdefghij] - scale = [111] 
[slabcdlOOOOO] 

maRt = [sabcd] -

Figure 8. Applying floating point quantization with Rs=3 scale bits, Rm=5 mantissa bits 

3.5.1 Block Floating Point 

In building coders, we often use a variant of floating point quantization 
referred to as "block floating point" quantization or "block companding". 
Block floating point shares the bit-cost of the scale bits across several 
mantissa values. In other words, several floating point numbers are encoded 
using the same value of the scale factor. This cuts down on the number of 
scale bits used per number but, if the numbers are of different sizes, limits 
the ability of floating point quantization to adjust its bin sizes to the numbers 
being quantized. In this case, the signal SNR decreases for those values that 
are lower than the one used to set the exponent for the block. In general, to 
implement block floating point quantization, the scale factor for the group of 
numbers is set to the scale factor of the number with the largest absolute 
value. That single scale factor is then used to floating point quantize and 
dequantize all of the numbers in the group using floating point quantization 
but without assuming that there is a leading 1 in any mantissas. The reason 
that you cannot assume a leading 1 is that you won't know at dequantization 
time which number was the one that was used to set the scale factor. For 
example, any number with a magnitude more than a factor of two smaller 
than the magnitude of the number that set the scale factor will have a leading 
zero in t)1e mantissa. 

In summary, quantization is a critical step in the digitization process and 
in the design of audio coders. We can choose between midtread and midrise 
quantizers where midrise quantizers have slightly smaller round-off error but 
midtread quantizers accurately pass zero values. In general, we recommend 
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the use of midtread quantizers for audio coders. Floating point quantizers 
allow you to allocate bits to match the quantizer bins to the size of the signal 
being quantized. Floating point quantization gives up some accuracy for 
high power signals but gains both much better accuracy for low power 
signals and a more consistent performance over a wide range of input signal 
powers. Block floating point quantization is a useful compromise method 
that uses fewer bits per number for scale factor storage by sharing scale 
factors across multiple signal values. 

4. QUANTIZATION ERRORS 

In the previous sections, we described how to implement quantizers and 
qualitatively discussed their performance. In this section, we take a more 
quantitative approach in describing quantization errors. Quantization errors 
are important because they are typically the major source of distortion in the 
audio coding process. Coder design requires trading off the bitrate of the 
coder against the fidelity of the decoded signal - more bits increases bitrate 
load but reduces the quantization error. Using some form of bit allocation to 
control the level of quantization error is a key feature of audio coders. We 
will discuss in later chapters how to optimize this trade-off; our goal for this 
section is the simpler task of describing the quantization error that results 
from using a given number of bits. 

One way to characterize the quantization error is to compare the input 
signal, Xin(t), with the output signal, Xout(t), and measure the power in the 
difference or "error" signal q(t), where 

get) = xout(t) - Xin(t) 

However, a more perceptually relevant measure would be to scale the error 
signal by the input signal to get the relative power of the error signal. We 
use this approach and describe quantization error in terms of its SNR 
measured in decibels (dB). The SNR in dB is defined as: 

Notice that in these units a low quantization error corresponds to a high 
SNR. 

The SNR is certainly not a perfect(perceptual) measure of quality. In 
fact, many would say that it is a terrible one since it ignores many important 
perceptual effects including signal masking, different noise sensitivity at 
different frequencies, etc. SNR, however, is the general-purpose quality 
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measurement most widely adopted. The reason is that it is objectively 
measurable and easily understood. Other objective measurements like, for 
example, perceptual objective measurements, rely on parameterized models 
of human perception and only in recent years have successfully addressed 
audio quality measurements (see also Chapter 10). In any event, for this 
section we stick with the SNR and return to the issue of human perception 
and perceptual measures of coder quality in later chapters. 

4.1 Round-off Error 

There are two types of quantization error and they sound very different: 
round-off error and overload or clipping error. 

Round-off error comes from mapping ranges of input signal amplitudes 
onto a single code (and hence output level); the wider the range of input 
amplitude that maps onto a single code, the worse is the round-off error. We 
can estimate the relationship between round-off error and the number of bits 
in a uniform quantizer by assuming that the amplitude falls randomly into 
each quantization bin. 

With such an assumption, the round-off error is equally likely to be any 
value between -M2 and M2. In other words the probability density of the 
error signal q(t) at any time is approximately equal to 1I~ in the range 
between -M2 and M2 and zero elsewhere. Note that this assumption is well 
approximated when the quantizer has a large number of levels, but it is not 
true for quantizers with only a small number of levels, an extreme example 
being delta modulators. 

Given the error probability distribution, we can calculate the expected 
error power for the quantizer: 

In the case of a uniform quantizer with R bits we have that ~ "" 2 *xmaxl2R 

leading to 

2 
2 X max <q >""---

3*22R 

If we feed this quantizer a signal with an input power equal to <Xin 2> then we 
can expect the SNR (in dB) from the quantizer to be roughly equal to 
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SNR = 10 loglO« Xin 2> / < q2 » 

[ 
2 3*22R ) '" 10 loglO < X in > --2-

X max 

[
<X.2» 

",lOlog lO 10 2 +20* R * log 10(2) + 10 * log 10 (3) 
X max 

[
<x.2» 

'" 10 loglO 10 2 + 6.021 * R + 4.771 
X max 

From this equation, we can see that the SNR increases as the signal 
power increases, at least until we start hitting overload, and that we improve 
the SNR by about 6 dB for every bit we add. The first term in this equation 
is the input signal power measured in dB relative to the quantizer xmax. This 
relative measure is the relevant measure of signal power for a uniform 
quantizer, which is why we can choose to set our quantizer Xmax equal to 1 
without any loss of generality. Figure 9 shows both of these effects for a 
uniform quantizer that is fed a sine wave input signal with amplitude A less 
than Xmax• In this case, the expected power of the input signal is <Xin2> = 
A2/2. Notice that the curve for 16 bits is roughly 50 dB higher than the 8-bit 
curve in agreement with the 6-bit rule of thumb (8 * 6 '" 50). Also, notice 
how the SNR increases with signal power. 

SNR for Sine Wave Input 
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--16 bits 
• • •• 8 bits 
. ...... 4blts 

Figure 9. SNR for a sine wave input as a function of input level and number of bits 
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4.2 Overload error 

Overload error comes from signal amplitudes that are too high in level 
for the quantizer. As we discussed in the previous section, these amplitudes 
are clipped to the highest and lowest quantizer steps. When the signal is 
well-sampled, overload error tends to present itself in bursts with quite 
audible effects. This error comes from input amplitudes IX;n(t)1 greater than 
the quantizer's maximum amplitude Xmax (usually defined to be 1 in this 
book). If we can describe the probability distribution (or frequency 
distribution for known signals) of input signal amplitudes we can 
characterize the amount of overload error for a given quantizer xmax . We 
would like to set the quantizer's Xmax high enough so that clipping doesn't 
occur, however, high Xmax implies wide levels and hence large round-off 
error. Quantizer design requires a balance between the need to reduce both 
types of errors. 

4.3 Error Effects 

Figure 10 gives an example showing the effects of both types of 
quantization error for an input signal whose amplitude is random and 
uniformly distributed over an amplitude range between zero and A. In this 
case the expected power is related to the maximum amplitude A by 

This figure shows the SNR of midtread uniform quantizers with various bit 
resolutions as well as showing the SNR of a 3-scale-bit, 5-mantissa-bit 
floating point quantizer. Notice that such a signal begins to overload the 
quantizer at input levels equal to -4.771 dB rather than at 0 dB. This is 
because 0 dB says that on average the signal has power equal to xma/, but by 
this point the highest amplitudes seen may be much larger than xmax. The 
maximum amplitude is just equal to Xmax for uniformly distributed 
amplitudes when the input level is -4.771 dB (= 10*loglO(1/3». Notice again 
the improvement in SNR with signal power for the uniform quantizers and 
the roughly 6 dBlbit improvement as R increases. Also notice how the 3-5 
floating point quantizer is equal to the 6-bit uniform quantizer at high signal 
powers, holds on to its high SNR as the signal power drops, and finally 
drops just like the 12-bit uniform quantizer at very low level signals. 
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SNR vs Input Level for Uniform Distribution 
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Figure 10. SNR for an input signal with random, uniformly distributed amplitudes for 
different types of quantizers (MT=midtread uniform quantization, FP = floating point) with R 

=12,8,6 

5. ENTROPY CODING 

At this point in the book, we have learned how to represent amplitudes 
relative to an analogue audio signal with discrete codes that represent the 
quantized signal amplitudes. The codes we have discussed to this point have 
all been the result of scalar quantization with equal numbers of bits. We can 
often lower the data rate, however, by translating from these codes to a 
different symbol representation that uses a variable number of bits per code. 
The idea is to make common codes shorter so that the average bit rate will 
go down. Implementing this idea requires us to decide what codes are more 
common or, in other words, to estimate the probability of each possible code 
that might be seen. This requires us to describe something about the source 
of the signal. Having developed such probabilities, we can use "entropy 
coding" or "noiseless coding" methods to design variable bit length codes 
that reduce the overall number of bits needed to transmit the coded signal. 

As an example, consider a 2-bit quantized signal that has the codes [00], 
[01], [10], [11]. Suppose we had a signal that we wanted to encode, whose 
frequency counts for each of these codes was 70%, 15%, 10%, 5%, 
respectively. Consider using the following code mapping instead: [OO]~[O], 
[01]~[1O], [IO]~[IIO], and [ll]~[lll]. Notice that this new mapping is a 
"comma code" in that the zero symbol tells the decoder when the code 
terminates with less than 3 bits. This new code mapping has a lower bit rate 
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on average for the signal since now the average bits per code has been 
reduced from two bits per code down to 

<R> = 70% * I + 15% * 2 + 15% * 3 = 1.45 bits!code 

We can translate our signal into the new mapping before storing or 
transmitting it and then translate back only when we are ready to decode the 
signal. Over a long signal, we will have managed to store or transmit the 
signal with less than % of the bits needed for the original coding scheme. 
This example should make clear that exploiting information about code 
probabilities could allow us to squeeze bits out of a signal without any loss 
of information. Of course, to capture these savings we need to know how to 
decode the signal, which requires us to pass information. Any information 
we need to pass eats up some of the bit savings and needs to be taken into 
account when assessing the data rate of the system. 

How might we develop code probabilities? First of all, some codes may 
be more common than others in certain classes of audio signals. If we knew 
that our coder was going to be passed a signal from that class, we would 
have some information about the code probabilities. Secondly, we could 
study the specific signal we wanted to encode and develop the probabilities 
from that analysis. In batch mode, we could study the whole signal before 
encoding it or, in streaming mode, we could run statistics on recent signal 
data that has gone by. Of course, this type of analysis would have 
implications as to the complexity and delay of the coder. In some cases, the 
bit reduction benefits might not be worth the complexity cost. Finally, we 
could exploit some type of prediction routine to predict the next code symbol 
and use codes to characterize the difference between the predicted value and 
the actual value - for such a system we would expect small values to be 
more common than large ones and could develop estimates of the 
probabilities of the difference codes. 

Having developed code probabilities, we next should ask ourselves if the 
savings we can get from employing entropy coding is worth the time and 
effort of implementing it. "Entropy" is the measure that can answer this 
question for us. The entropy is a function of the probabilities Pn of the next 
code symbol being the nth code and is defined as 

codes 

Entropy == I Pn log2 (1/ Pn) 
n 

When we are pretty sure what code will come out next, the entropy will be 
very low and when we have little idea as to which code will come out next, 
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the entropy will be high. Shannon [Shannon 48] proved that the entropy as 
defined here exactly equals the lowest possible number of bits per sample 
any coder could produce for this signal. 

To get a better feel for this measure calIed entropy, let's look at the case 
with only 2-code symbols. If the probability of the first symbol is equal to p 
then the probability of the other symbol is equal to I-p and the entropy is 
equal to 

Entropy = p !og2(l/p)+ (l-p))og2(I/(l-p)) 

Figure 11 shows a graph of the 2-code entropy as a function of p. When p = 
o or p = I we know for sure what the next code will be and we find that the 
entropy is equal to zero. Since we know what the next symbol will be, we 
don't need to send any bits. Maximum lack of knowledge about the next 
symbol is when p = 50%. The entropy is equal to one for this value and we 
find that one bit is required to distinguish between the two outcomes. The 
interesting case is when p « 0.5 but not equal to zero (or p » 0.5 but not 
equal to 1). Here Shannon's theorem teIls us that there exist coding schemes 
that can encode a single-bit code using less than 1 bit per code symbol on 
average. 
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Figure 11. Entropy with 2-code symbols as a function of code probability p 

Going back to the general definition of entropy for arbitrarily many code 
symbols 

codes 

Entropy == LPn !og2(IIPn) 
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we can see that there will not be any contribution to entropy for any symbol 
with probability zero (if it isn't going to show up, there is not need to 
allocate bits to it). Likewise, the overall entropy will be zero if anyone 
symbol has probability I and all other symbols correspondingly have 
probability zero. In this case, we know what is coming beforehand so there 
is no need to send any information at all. 

The maximum value of the entropy comes when all code symbols are 
equally likely. In this case, we won't get any savings from employing 
entropy coding methods. For example, consider the entropy of 2R equally 
probable code symbols. Since they are equally probable, the probability of 
each symbol is 1I2R and the entropy is equal to: 

In other words, using R bits for each of the 2R equally probable codes is the 
best one can do. What we learn is that optimal coders only allocate bits to 
differentiate between symbols with near equal probabilities. 

5.1 Huffman Coding 

Huffman coding is a method for creating code symbols based on the 
probabilities of each symbol's occurrence. Huffman coding is a variable 
length code in that different symbols are given different length codes. In 
specific, Huffman coding gives short codes to more common symbols and 
longer codes to rarer ones. Shannon proved that the average number of bits 
per sample <R>Huffman in a Huffman code is within one bit of the entropy: 

Entropy ~ < R >Huffman ~ Entropy + I 

Huffman coding can reduce bits over fixed bit coding if the symbols are not 
evenly distributed. 

It should also be noted that additional coding gain could often be 
achieved, at the cost of additional delay and complexity, by grouping 
consecutive symbols into a new set of longer symbols before creating the 
Huffman code. This additional coding gain from vector quantization comes 
about from two reasons: I) it allows the Huffman code to exploit 
correlations between consecutive symbols in developing the codes, and 2) it 
allows the maximum difference from optimal coding of 1 bit per symbol to 
be spread out over more symbols. We will see examples of using vector 
Huffman coding in MPEG Layer III and in MPEG AAC (see also Chapters 
11 and 13). 
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The Huffman code depends on the probabilities of each symbol. One 
creates Huffman codes by recursively allocating bits to distinguish between 
the lowest probability symbols until all codes are accounted for. To decode 
the Huffman code you need to know how the bits were allocated. Either you 
can recreate the allocation given the probabilities or you can pass the 
allocation with the data. The encoding algorithm goes as follows: Find the 
2 lowest probability symbols and allocate a bit to distinguish between them. 
Consider the pair of symbols that you just distinguished as a single symbol 
with their combined probability and repeat the previous step until all 
symbols have been distinguished. 

Figure 12 shows the development of a Huffman code for a case with 4 
symbols with quite unequal probabilities. Notice that this is the example we 
examined at the very start of this section. Notice also that the two lowest 
probability symbols [10] and [11] get allocated a bit and then combined into 
a symbol with 15% probability. Now the two lowest probabilities are [01] 
and the combined [10]/[ 11] symbol and another bit is allocated to distinguish 
this pair. Finally, one last bit is needed to distinguish [00] from the 
combined [10]/[10]/[11] symbol. The final result is that [00], [01], [10], [11] 
get replaced with [0], [10], [110], [Ill], respectively. As we saw before, 
this new coding scheme reduces the average bit rate from 2 bits per sample 
down to 1.45 bits per sample. 

Code: 

Probability: 

Original: 

HutTman: 

00 

70% 

00 
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01 

15% 

01 

10 

10 11 

10% 5% V Alloc,te bit 

15% 

10 

110 

11 

111 

Figure 12. Huffman coding for four symbols with very unequal probabilities 

Figure 13 shows the development of a Huffman code for the case with 
four symbols with equal probabilities. Since all four symbols have the same 
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probability, we arbitrarily decide to first allocate a bit to the last two and 
combine them. Now the first two symbols are the lowest probability pair 
and so we allocate a bit and combine them. Finally, we need another bit to 
distinguish between the combined [00]1[01] and the combined [10]/[11] 
symbols. The result is that Huffman coding has just reproduced the initial 
coding scheme with no net gain. Again, we emphasize that Huffman coding 
only gives you gains when the symbols you are encoding have very different 
probabilities. 
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Figure 13. Huffman coding for four symbols with equal probabilities 

In summary, we have learned that entropy is a measure of the minimum 
number of bits needed to represent a given signal. Entropy coding allows us 
to exploit redundancies in the signal representation in order to develop a new 
representation that requires fewer bits for the same information. These 
redundancies are identified and reduced based on the symbol probabilities of 
the various codes - if some symbols occur with much greater likelihood than 
others we can represent them with fewer bits. Huffman coding was 
presented as one commonly used implementation of these ideas. 

6. SUMMARY 

In summary for this chapter, we have shown that quantization can turn 
continuous amplitudes into discrete codes. We have seen that quantization 
produces errors and that different quantization schemes have different error 
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effects. We have discussed how quantization error is the primary source of 
coding error in most perceptual coders and have analyzed the SNR produced 
using different numbers of bits in both uniform and floating point 
quantization. Finally, we have discussed how entropy coding techniques can 
be used to reduce the number of bits necessary to transmit or store quantized 
data. In the next chapters, we turn to the issues of frequency representation 
of audio signals and what types of errors can be heard by the human ear so 
that we will be in a position to decide what trade-offs should be made 
between fidelity and bit rate reduction. 
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8. EXERCISES 

a) Working with bits: 
Text is normally stored as 8 bit ASCII codes (of which only the lowest 
seven bits are used to store the basic character set). For this exercise, you 
will create a lossy text codec that stores text using only five bits per 
character. In doing so, you will gain experience in dealing with 
reading/writing binary coded files. 
1. Write a function that takes the M lowest bits from an unsigned integer 

and writes them starting at the Nth bit location in an array of BYTES 
(unsigned character variables). 

2. Define a mapping from the basic ASCII character set onto only five 
bits. (Obviously, you will need to sometimes map multiple ASCII 
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characters onto the same five-bit code. For example, you will need to 
map both capital and small letters onto the same code.) 

3. Write a text encoder/decoder that allows you to read in ASCII text 
files (e.g., .txt files from Notepad), map the text into five bit codes, 
pack the coded text into arrays of BYTES, write the packed arrays 
into a coded file, read in your coded files, decode your coded files 
back into ASCII codes, and write out your decoded text file. 

4. Test your five-bit text codec on several sample text files. Check file 
sizes to see what compression ratio you achieved. How readable is 
your decoded file? 

5. Change your mapping to use two of your codes as control characters. 
Let one code signify that the next character is capitalized. Let the 
other code signify that the next character comes from a different set of 
mappings onto five-bit codes (i.e. include some important characters 
that weren't included in the basic mapping). How does this change 
impact compression ratio? How does this change impact readability? 

b) Quantization and quantization noise: 
In this exercise you will develop quantization routines that you will use 
when developing audio coders in later exercises. 
1. Write functions that quantize floating point numbers from -1.0 up to 

1.0 using R-bit midtread uniform quantization; R-bit midrise uniform 
quantization; and Rs scale factor bits, Rm mantissa bits midtread 
floating point quantization. 

2. Create a version of Figure 10 using 1.1 kHz sine waves sampled at 8 
kHz as input. 

c) A first audio coder: 
In this exercise you will build a simple audio coder that allows you to test 
the effects of different quantization routines. You will also put in place 
the basic routines for reading and writing audio files that will be useful in 
later exercises. 
1. Find a 16-bit PCM audio file format that 1) is well documented, 2) 

you can play on your computer, and 3) has sound samples you can 
find. (For example, information about the WA V file format is readily 
available on the internet. The Sound Recorder utility can be used to 
record and play PCM wave files.) Describe the file format. Get 
yourself a few good quality sound samples for testing codecs. Make 
sure you can play your samples. 

2. Write an audio encoder/decoder that reads in 16 bit PCM audio files, 
dequantizes the audio samples to floating point values from -1.0 to 
1.0, quantizes the samples using the quantization functions you 



46 Introduction to Digital Audio Coding and Standards 

prepared for the prior exercise, packs the quantized samples into 
arrays of BYTES, writes the results into a coded file format you 
define, reads in your coded file, converts your data back into 16 bit 
PCM codes, and writes out your decoded audio data into an audio file 
you can play. Verify that your coder is bug-free by making sure that 
files coded using 16-bit midtread uniform quantization do not sound 
degraded when decoded. 

3. Test your codec on some sound samples using 1) four-bit midtread 
uniform quantization, 2) four-bit midrise uniform quantization, 3) 
eight-bit midtread uniform quantization, and 4) three scale bits, five 
mantissa bits midtread floating point quantization. What compression 
ratios do you get? Describe the quantization noise you hear. 

4. Estimate symbol probabilities for each of the 15 codes used in four-bit 
midtread uniform quantization using your sound samples. Use these 
probabilities to define a set of Huffman codes for your four-bit 
quantization codes. Modify your codec to read/write the coded file 
format using these Huffman codes when encoding using four-bit 
midtread uniform quantization. How much do the Huffman codes 
improve the compression on your sound samples? 



Chapter 3 

Representation of Audio Signals 

1. INTRODUCTION 

In many instances it is more appropriate to describe audio signals as 
some function of frequency rather than time, since we perceive sounds in 
terms of their tonal content and their frequency representation often offers a 
more compact representation. The Fourier Transform is the basic tool that 
allows us to transform from functions of time like x(t) into corresponding 
functions of frequency like X(f). In this chapter, we first review some basic 
math notation and the "Dirac delta function", since we will make use of its 
properties in many derivations. We then describe the Fourier Transform and 
its inverse to see how signals can be translated between their frequency and 
time domain representations. We also describe summary characteristics of 
signals and show how they can be calculated from either the time or the 
frequency-domain information. We discuss the Fourier series, which is a 
variation of the Fourier Transform that applies to periodic signals. In 
particular, we show how the Fourier series provides a more parsimonious 
description of time-limited signals than the full Fourier Transform without 
any loss of information. We show how we can apply the same insight in the 
frequency domain to prove the Sampling Theorem, which tells us that band
limited signals can be fully represented using only discrete time samples of 
the signal. Sampling allows us to convert continuous-time signals x(t) into 
discrete-time samples x[n] without loss of information if the sampling rate is 
high enough. Finally, we introduce prediction principles to represent a time 
series of audio samples in a more compact way than its peM representation. 

M. Bosi et al., Introduction  to  Digital Audio  Coding  and Standards
© Kluwer Academic Publishers 2003



48 Introduction to Digital Audio Coding and Standards 

2. NOTATION 

Before jumping straight into the Fourier Transform equations, we need to 
review some basic math notation and the "Dirac delta function", since we 
will make use of its properties in many derivations. In this book we try to 
use math notation symbols such as 

x, y, t, f, e, <P E 9\ 

for variables that vary continuously over their allowed range (i.e. real 
numbers). In contrast, we try to use symbols such as 

i, k, I, m, n, M, NEg 

for variables that are discrete over their allowed range (i.e. integers). 
The Fourier Transform involves complex numbers and we use the 

symbol j to denote the square root of -I. Complex numbers can be 
represented as 

z= x + jy 

where x is called the "real part" of the complex number z and y is called the 
"imaginary part"l. Audio signals are usually real-valued, but it is sometimes 
convenient to consider complex-valued signals as well. 

If z(t) is a complex-valued signal and x(t) and y(t) are real-valued signals 
that represent its real and imaginary parts, respectively, then we can also 
write 

x(t) = Re { z(t)} and yet) = 1m { z(t) } 

The "complex conjugate" of z is denoted as z* and is equal to 

* . z = x - JY 

The "magnitude" (or "norm" or "modulus") of z is denoted as Izl and is equal 
to 

1 Sometimes the letter i is utilized instead of j to indicate the imaginary part of a complex 
number. In this book we adopt the "engineering notation" and employ j. 
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We can also write out the magnitude of z as 

I I ( * )y, ( *)Y' z=zz =zz 

We often work with sinusoidal signals and make heavy use of the "Euler 
Identity" which defines an exponential of pure imaginary argument as a 
complex sum of a cosine and a sine: 

e j9 = cos(S) + j sineS) 

We can use the definition of the magnitude to check that an exponential of 
pure imaginary argument has magnitude equal to I. We call such a complex 
exponential a "pure phase" since the magnitude is I but there is still a phase 
angle e that is specified. The "argument" (or "phase angle") of any complex 
number can be defined in terms of such an exponential by dividing the 
complex number by its magnitude and defining the argument as the angle e 
in the expression ei9 that has the same real and imaginary parts. 

The Euler identity can also be used to convert sine and cosine into sums 
of complex exponentials: 

cos(S) = ± (e j9 + e -j9 ) 

sineS) = L (e j9 - e -j9 ) 

The reason for wanting to do this is that analytical calculations are 
typically much easier with exponentials than with sines and cosines. 

3. DIRAC DELTA 

The Dirac delta function oCt) is actually a "distribution", which is a 
generalized kind of a function, equal to zero everywhere except for at one 
point where its value is infinite: 

{
oo t = 0 

OCt) == o elsewhere 

This would be a useless function were it not for a property of the function 
that it has finite integral equal to 1. 
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~ 

fO(t) dt = I 

Since O(t) is zero everywhere except for at t = 0, an integral over a delta 
function only gets weight at t = ° and we can pick off values of functions 
using the following: 

~ 

ff(t)O(t - to)dt = f(t o ) 

One way to derive the Dirac delta function is as the limit of a simple 
rectangular function: 

o(t) = lim fA(t) where fA(t)==jl~1 
A->O 

o elsewhere 

which is useful in trying to understand how the delta function behaves. For 
example, we can use this definition to derive how to rescale the argument of 
a Dirac delta function: 

o(at)= lim fA(at)= lim -,I,fA/u(t)=-,I, lim fB(t)=-,I,O(t) 
A->O A->O a a B=A/u->O a 

The limit of a rectangular function is not the only way to derive the Dirac 
delta function. Another derivation is as the limit of the sinc function as 
follows 

I':() I· {A· (A)} I· sin(1tAt) u t = 1m SIne t = 1m --'----'-
A->~ A->~ m 

where the sinc function is defined as 

sine(x) == sin(1tx)/1tx 

We can use the second definition of the Dirac delta function to derive a 
critical relationship that allows us to invert the Fourier Transform (see 
below): 
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= {FI2} { . } fe±j21tftdf = lim fe±j21tftdf = lim sm(1tFt) = 8(t) 
F ..... = F ..... = 1tt 

-= -F/2 

The final property of the Dirac delta function that we find useful is the 
Poisson sum rule that relates an infinite sum of delta functions with a sum of 
discrete sinusoids: 

= = 
~)(a-n)= ~>j2mna 

n=--<>o 01=-00 

We can see that the right hand side is infinite (each term in the sum is equal 
to 1) when a is integer and it averages to zero for non-integer values -
exactly the behavior described by the sum of Dirac delta functions on the left 
hand side. This relationship will be useful to us when we discuss the Fourier 
Transform of periodic or time-limited functions below. 

4. THE FOURIER TRANSFORM 

The Fourier Transform is the basic tool for converting a signal from its 
representation in time x(t) into a corresponding representation in frequency 
X(f). The Fourier Transform is defined as: 

= 

X(f) == f x(t} e - j21tftdt 

and the inverse Fourier Transform which goes back from X(f) to x(t) is equal 
to: 

= 

x(t} = fX(f) e j21tftdf 

We can check that the inverse Fourier Transform applied to X(f) does 
indeed reconstruct the signal x(t): 
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fX(f) ej'''''df " I [1*)"j'''''d, 1 ej'''''df 

,1[ }-~"'{H)df 1 *)d, 

~ 

= foes - t) x(s)ds 

= x(t) 

The inverse transform shows us that knowledge of X(f) allows us to build 
x(t) as a sum of terms, each of which is a complex sinusoid with frequency f. 
When we derive Parseval's theorem later in this chapter, we will see that 
X(f) represents strength of the signal at frequency f. The Fourier Transform 
therefore is a way to pick off a specific frequency component of x(t) and to 
calculate the coefficient describing the strength of the signal at that 
frequency. The Fourier Transform allows us to analyze a time signal x(t) in 
terms of its frequency content X(f). 

Note that, although we deal with real-valued audio signals, the Fourier 
Transform is calculated using complex exponentials and so is complex
valued. In fact, for real valued signals we have that 

X(f)*=X(-f) 

which implies that the real part of X(f) is equal to the average of X(f) and 
X(-f), and the imaginary part is equal to their difference divided by 2j. The 
Euler identity tells us that cos(21tft) has real-valued, equal coefficients at 
positive and negative frequencies while sin(21tft) has purely imaginary 
coefficients that differ in sign. Likewise, any sinusoidal signal components 
differing in phase from a pure cosine will end up with imaginary 
components in their Fourier Transforms. We are stuck with working with 
complex numbers when we work with Fourier Transforms! 

We can get some experience with the Fourier Transform and verify our 
intuition as to how it behaves by looking at the Fourier Transform of a pure 
sinusoid. Consider the Fourier Transform of the following time-varying 
signal: 

x(t) = A cos(2nfot + <1» 
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Notice that this signal is just a pure sinusoid with frequency fo and is 
identical to a pure cosine when the phase term equals zero, 4> = 0, and 
identical to a pure sine when 4> = -rrJ2. 

We can calculate the Fourier Transform of this function to find that: 

~ 

X(f) = fx(t)e-i2rrftdt 

~ 

= fACOS(21tfot+$)e-i2rrftdt 

~ ~ 

=1ei<j> f e-i21t(f-fo)tdt+1e-i<j> f e-i21t(f+fo)tdt 

Notice that the Fourier Transform has components only at frequencies equal 
to positive and negative fa. The period of this time-varying signal is To= lifo 
and we can see that it only has frequency components at frequencies equal to 
integer multiples of liTo. We shall see shortly that this is a general property 
of periodic functions. Due to the presence of the phase terms e±i<j> - these 
phase terms come from the phase of the sinusoid- we can see that the Fourier 
Transform is in general complex valued. By inspection one can also see that 
X(f)*=X(-f) as required for real signals x(t). Finally, notice the great deal of 
data reduction associated with representing this signal with the three 
parameters: A, fo, and 4>, as opposed to having to store its value at every 
point in time x(t). The fact that most audio signals are highly tonal makes 
the Fourier Transform an important part of the audio coder's toolkit! For 
further reading on the Fourier Transform and its properties, we recommend 
[Brigham 74]. 

5. SUMMARY PROPERTIES OF AUDIO SIGNALS 

We often wish to summarize the general properties of an audio signal so 
that we can define coders that work well for broad classes of similar signals. 
Some of the most important properties include the bias <X>, the energy E, 
the average power P, and the standard deviation cr. In defining these 
quantities, we consider a finite-extent signal that is non-zero only between 
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times -T/2 and T/2 for some time scale T. You may often see these 
definitions written taking the limit as T ~ 00, but, in reality, we always do 
our calculations over some finite time scale T. 

The mean or bias of a signal is a measure of the average signal amplitude 
and is typically equal to zero for audio signals: 

T/2 

<x>=+ fx(t)dt 
-T/2 

The average power of the signal is a measure of the rate of energy in the 
acoustic wave and is defined as 

T/2 

P =+ Jx(t)2 dt 
-T/2 

Notice that power is defined as an average over time of the instantaneous 
power pet) = X(t)2. If we think of x(t) as a voltage, this should hearken back 
to the electrical definition of power as Voltage2/Resistance. 

The energy of a signal is the integral of the instantaneous power over 
time and is equal to 

T/2 

E= fx(t)2dt=PT 
-T/2 

The standard deviation (J is a measure of the average power in the signal 
after any bias has been removed, and is defined by: 

TI2 

(j2 = + J(x(t)- < x »2dt = p_ < X >2 

-T/2 

Notice that the power and the square of the standard deviation are equal 
when there is no bias, as is usually the case for audio signals. 

To get a feel for these signal properties let's calculate them for a pure 
sinusoid with frequency fo. We look over a time interval T much longer than 
the period of the sinusoid To. Since the average of a sinusoid over an 
integral number of periods is equal to zero, we can see that the bias of this 
function is approximately equal to zero and we have that 

<x> ",0 
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We know that the average of cosine squared over an integral number of 
periods is equal to h, so we can see that 

Since the bias is about zero we can then write that 

Finally, we can use the relationship between energy and average power to 
see that 

E=PT 

Notice that all of these properties are well-behaved in the limit as T ~oo 
except for the signal energy which becomes infinite for the sinusoid. In 
contrast, the bias, power, and standard deviation are all driven to zero for a 
finite extent signal as T ~oo since all the zero signal values outside the signal 
extent dominate the time averages. Again, in practice, all of these properties 
are usually calculated over a finite extent and taking the limit as T ~oo is an 
unnecessary but surprisingly common operation. 

The Fourier Transform of a signal can also be used to calculate the above 
signal properties. For example, the bias is related to the Fourier Transform 
with frequency equal to zero: 

< x >= +X(O) 

where, if the true signal is not time limited, we limit the signal to the time 
window from -T/2 to T/2 consistently with our definitions of the signal 
summary properties before taking the Fourier Transform. In other words, we 
calculate the Fourier Transform using the time-limited signal: 

X(t),={X(t) T/2<t:<;;T/2 
o elsewhere 

instead of the true signal x(t). The statement that audio signals tend to have 
zero bias is equivalent to the statement that the Fourier component at zero 
frequency is usually extremely small. 

As another example, Parseval's theorem tells us that the energy in a 
signal can be written as an integral over the square of the frequency domain 
signal XC£): 
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~ 

E == II X(f) 12 df 

This theorem shows us that we can consider X(t) to be a measure of the 
contribution to the signal energy from a particular location in the frequency 
domain. We often call the quantity IX(t)12 the "power spectral density", psd, 
in recognition of this fact. 

We can prove Parseval's theorem as follows: 

lOX(f)",..ndf 1 x(t) dt 

_1 X(f) [_1 x(t)eJ21tftdt}f 

~ 

== I X(f)X(f) * df 

~ 

== II X(f) 12 df 

Given the energy and the bias, the other signal properties can be quickly 
derived. 

Let's now calculate the signal properties for our sinusoidal example using 
the frequency domain information in the Fourier Transform instead of the 
time domain information. If we take the Fourier Transform of the time
limited sinusoid (see Figure 1), we find the following Fourier Transform: 
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~ 

X(f) = jx(t)e-j21tftdt 

where 

T/2 

= fA cos(27tfot + <1» e- j2![ft dt 
-T/2 
TI2 

fA1(ej21tfot+j<P + e-j21tfot-i<P )e-j21tftdt 

-T/2 

T/2 T/2 
=1-e j<p j e-j2![(f-fo)tdt +1- e- j<P J e-j2![(f+fo)tdt 

-T/2 -T/2 

= 1-ei<PoT (f - fo) + 1-e -i<P0T (f + fo) 

0T(f)::: sin(1tTf) 
1tf 
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which, we can recall from our definition of the Dirac delta function, 
approaches a Dirac delta function for large T. We find that the Fourier 
Transform of this time-limited sinusoid looks like the Fourier Transform of 
the infinite sinusoid other than the replacement of Dirac delta functions with 
similar functions of finite frequency width. 

Fourter Transform of O.o5s of x(t)=cos(21I; 1000Hz t) 

f(Hz) 

Figure 1. Fourier Transform of a time-limited sinusoid 
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To the degree that T » To, neither term will give much contribution to 
the Fourier Transform at f = 0 (since they are centered at f = fa and f = -fo) 
so we again have that 

<x> = F(O)rr "" 0 

To the degree that the Mf ± fo) functions are narrow enough to not overlap 
significantly, we can approximate the energy as: 

~ ~ ~ 

E = fl X(f) 12 df "" ~2 fST(f _fO)2df + ~' fST(f + fo)2df 

where the integrals over the squared &ref ± fo) functions can be integrated to 
find that they are each equal to T. This result also leads to estimates of 
average power and standard deviation that agree with our direct calculation 
in the time domain. In summary, one can see that the Fourier Transform 
information can also be used to describe the signal properties. 

When we used the Fourier Transform to calculate the signal properties in 
the time interval from -T/2 to T/2, we time-limited the signal. One way to 
look at this time-limiting is to say that we multiplied the original signal x(t) 
by a window function wTCt) equal to 1 in the time interval from -T/2 to T/2, 
and equal to zero elsewhere: 

wT(t) = {
I T/2<t~T/2 

o elsewhere 

When we looked at the resulting signal in the frequency domain, we found 
that it looked like the Fourier Transform of the original signal other than the 
fact that the Dirac delta functions were spread out a bit. This result is a 
specific example of the convolution theorem of the Fourier Transform. 

The convolution theorem states that multiplication by a function in the 
time domain (e.g., windowing) corresponds to convolution (i.e. spreading) 
by that function in the frequency domain. In addition, the convolution 
theorem also states that convolution in the time domain corresponds to 
multiplication in the frequency domain. Defining the convolution of two 
functions Xl(t) and X2(t) as follows: 

~ 

y(t)= fXl('t)X2(t-'t)d't=x1(t)OX2(t) 
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we can then prove the convolution theorem: 

X(t)WT(t) = (I x(f)ej21tf'df)(I WT(g)eJ2ng'dg J = I x(f)eJ2nr'(I WT(g)eJ2ng'dg}f 

= I x(flei2rrft(IwT(g - f)ej2n(g-- rHdg}f = I X(f{I WT(g - f)ei2ng'dg}f 

= 1(1 X(f)WT(g - f)df }i2ng'dg = I(X(gl 0 WT(gl)e]2ng'dg 
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where the last expression represents the inverse Fourier Transform of the 
convolution of X(f) and WT(f). Notice how the Fourier Transform of the 
product is equal to the convolution of the Fourier Transforms. The reverse 
can also be proven as follows: 

~ 

= JX(f)H(f)e i2rrft df 

where x(t) represents the audio signal convolved with a filter having impulse 
response h(t). Notice how this form of the theorem shows that filtering 
multiplies the frequency content of a signal with the frequency content of the 
filter. In Chapters 4 and 5 when we discuss filter banks, we will make 
frequent use of this result for discrete-time functions. 

6. THE FOURIER SERIES 

Suppose we only care about a signal over a finite time interval of time T 
which we define as being from time -T/2 up to time T/2. We saw in the 
previous section that the summary properties of the signal can be calculated 
either from the signal values in that time interval or from the Fourier 
Transform of the signal windowed to that time interval. In fact, the Fourier 
Transform of the windowed signal 

~ T/2 

X(f) = fX(t)WT(t) e-j2trftdt = fx(t)e-j2trftdt 

-T/2 
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has enough information to perfectly reconstruct the signal in the time 
interval since the Fourier Transform can be inverted to recover the 
windowed signal. 

We shall see in this section that we do not even need all of the Fourier 
Transform data to fully reconstruct the signal in the time interval. Rather, 
we can fully reconstruct the time-limited signal using only the values of X(D 
at discrete frequency points f = kiT where k is an integer. We carry out this 
data reduction by replacing the windowed signal with a signal equal to it in 
the time interval from - T/2 to T/2 but repeated periodically outside of that 
interval. As long as we only care about signal values in the time interval 
from -T/2 to T/2, making this change will not affect the results. 

Let's calculate the Fourier Transform of such a signal that is periodic 
with period T so that x(t + nT) = x(t) for all t and any integer n. In this case, 
we have that: 

~ TI2 

X(f)= fx(t)e-i2Itftdt= I f x(t+nT)e-i21tf(t+nT)dt 
n=~ -T/2 

~ T/2 T/2 ( ) 
= I fx(t)e-i21tf<t+nT)dt=_TfI2x(t)e-i2Itft nte-i21lDIT dt 
n=~ -T/2 

= f x(t)e-i2Itft ~ Io(f-k/T) dt 
T/2 (~ ) 

-T/2 k=~ 

1 ~ T/2 

=T Io(f-k/T) fx(t)e-i2ltkt/Tdt 
k=~ -T/2 

=~ IO(f-k/T)X[kl 
T k=~ 

where we have used the Poisson sum rule that relates an infinite sum of 
Dirac delta functions to an infinite sum of complex exponentials and have 
defined the quantities X[k] as 

T/2 

X[k] == fx(t)e-i2ltktlTdt 

-T/2 

Notice that the Fourier Transform of this period signal is non-zero only at 
the discrete set of frequencies f = kiT. The inverse Fourier Transform for 
this periodic signal then becomes 
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x(t) = fX(f)ei2nftdf = ~ fX[k]ei27tktlT 
-= k~-= 

Noting that X[k] is just the Fourier Transform of our time-limited signal, 
this result shows us that a periodic version of our time-limited signal can be 
exactly recovered using only the Fourier Transform values at the discrete 
frequency points f = kiT where k is integer. This transformation of a periodic 
signal x(t) to and from the discrete frequency values X[k] is known as the 
"Fourier Series", which we have just seen is a special case of the Fourier 
Transform. 

We can apply the Fourier Series to non-periodic signals if we are only 
interested in the signal values in a limited time interval. If we window our 
signal to the time interval of interest then we can fuIIy represent the signal in 
that interval by its content at only the set of discrete frequencies. However, 
as we saw from the convolution theorem, the windowed signal has frequency 
content that is a blurred version of the original signal. Moreover, we find 
that many frequency components are needed to accurately reproduce the 
signal if there is too sharp a discontinuity in the windowed signal at the edge 
of the time interval. For this reason, we typically use smooth windows to 
transition the signal to zero near the edges of the time interval before taking 
transforms. In Chapter 5 we will discuss how careful selection of window 
shape and length can keep the frequency domain blurring to a minimum 
while also limiting the creation of high frequency content from edge effects. 

7. THE SAMPLING THEOREM 

The Sampling Theorem [Shannon 48] teIIs us that continuous-time 
signals can be fully represented with discrete-time samples of the signal if 
we sample the signal often enough. Moreover, the theorem specifies exactly 
what sample rate is needed for a signal. 

Suppose we have a signal whose frequency content is entirely contained 
in the frequency range from -Fmax to Fmax. Since the frequency content is 
zero outside of this frequency range, the signal can be fully recovered given 
only the frequency content in this region by taking the appropriate inverse 
Fourier Transform. If we choose some frequency interval F, > 2*Fmax. we 
can periodically continue the signal's frequency spectrum outside of the 
range from -FJ2 to FJ2 without corrupting any of the frequency content 
needed to recover the original signal. The same reasoning that tells us that a 
time-periodic function only has discrete frequency components can be 
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employed to show that a frequency-periodic function only has discrete-time 
components. 

Repeating the line of reasoning used formerly to derive the Fourier Series 
leads us to the following representation of the spectrum that has been 
periodically continued in frequency with "period" Fs: 

I ~ F,/2 

X(f) =F L x[n]e-j21t1lflF, where x[n] == fX(f)ej21tnflF'df 

s n=- -F,/2 

We can draw several immediate conclusions from this result. 
Firstly, if we define T == IlFs then we find that x[n] is exactly equal to 

x(nT). They are equal because the true Fourier Transform of the frequency
limited signal is equal to its periodically-continued version in the frequency 
range from -Fsl2 to F/2 and zero elsewhere. This implies that the inverse 
Fourier Transform of the real X(f) at time t = nT is exactly what we defined 
x[n] to be. In other words, the periodic X(f) is fully defined in terms of the 
true signal x(t) sampled with sample time T (i.e. sample rate Fs). 

Secondly, since the periodic X(f) is fully defined from the signal samples 
then the continuous-time signal x(t) must also be fully defined by the 
samples. This can be shown by throwing out the frequency content of the 
periodic X(f) outside of the frequency range from -FJ2 to FJ2 to recover the 
signal's true Fourier Transform X(f). We can then take the inverse Fourier 
Transform of the true X(f) to recover the full signal: 

~ F,/2 

x(t) = f X(f)e j21tftdf = f X(f)e j21tftdf 
-F,/2 

F,/2 (~ ) 
-)2 ~s n~x[n]e-j21tnff e j21tftdf 

, 

~ (1 F,/2 1 = L x[n] F f ej21tf(t-nT)df 
n=- s -F,/2 

= f x[n](Sin(1tF:< (t - nT») 
n=- 1tFs (t - nT) 

= f x[n](Sin(1t(Fst-n») 
n=- 1t(Fst - n) 
~ 

= L x[n] sinc(Fs t - n) 
n=--oo 
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In other words, the signal x(t) can be fully recreated from only the samples 
x(nT) by sinc function interpolation, where sinc (x) = [sin(ltx)]/ltx. 

Having drawn the conclusion that the signal x(t) can be fully represented 
by its samples x(nT), we need to remember the assumptions leading to that 
result. The critical assumption was that the periodicity frequency Fs was 
greater than twice the highest frequency component in the signal, i.e. Fs ~ 2 
Fmax. Without this assumption, we would not have been able to recover the 
true spectrum from the periodically continued one. This constraint relates 
the sampling rate Fs (T = 11 Fs) to the frequency content of the signal. We 
call this minimum sample rate 2 Fmax the "Nyquist frequency" of the signal. 
The Sampling Theorem tells us that we can do all our work with discrete
time samples of a signal without losing any information if the sampling rate 
is larger than the Nyquist frequency. 

In addition, the Sampling Theorem tells us that the frequency spectrum of 
sampled data is periodic with period Fs. If we sample a signal with 
frequency components greater than FJ2 (i.e. Fs is smaller than the Nyquist 
frequency) then the Sampling Theorem tells us that the frequency spectrum 
will be corrupted. In particular, high frequency content will be irretrievably 
mixed in with the frequency content from lower than FJ2. This frequency 
mix up is called "aliasing" and it produces a very unpleasant distortion in the 
original signal. Normally, we low-pass filter any input signal that might 
have frequency components above FJ2 before we sample it to prevent 
aliasing from occurring. For example, telephone service is typically sampled 
at 8 kHz so it is low-pass filtered down to below 4 kHz before sampling. 
(Yes, you do sound different on the phone!) 

In the next section we discuss how prediction can be used to represent a 
time series of audio samples while reducing the number of bits needed to 
encode the sample. 

8. PREDICTION 

We often find that we can predict a quantized audio sample with 
reasonable accuracy based on the values of prior samples. The basic idea is 
that, if the difference between the actual quantized sample and the predicted 
sample is typically much smaller in magnitude than the range of sample 
values, we should be able to quantize the differences using fewer bits than 
were needed to quantize the actual samples without increasing the 
quantization noise present. 

What do we mean by prediction? Prediction means recognizing a pattern 
in the input data and exploiting that pattern to make a reasonably accurate 
guess as to the next data sample prior to seeing that sample. For example, if 
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we were trying to quantize a slowly varying parameter describing our sound 
signal, we might be able to predict the next value based on simple linear 
extrapolation of the two prior samples: 

Y pred [n] = y[n -1] + (y[n -1]- y[n - 2]) = 2y[n -1]- y[n - 2] 

As another example, sound in an excited resonant cavity, for example, a 
struck bell, decays away at a predictable rate given the resonance frequency 
and decay time: 

where fo is the resonance frequency, 't is the decay time, and Fs is the sample 
rate. Notice how both of these examples predict the next value as a weighted 
sum of the prior values: 

N 

Y pred [n] = :2>k y[n - k] 
k=l 

where N is known as the "order" of the prediction. (In the two examples 
presented N was equal to 2 so they would be known as second order 
predictions.) Such a weighted sum of prior values is known as an "all-poles 
filter" and is a common method of prediction in low bit rate speech coding. 

Suppose we had a way to predict samples with reasonable accuracy, how 
would we use it to save bits? One way to do this is to quantize the 
prediction error rather than the signal itself. If the prediction works 
reasonably well then the error signal e[n] = y[n] - ypred[n] should be small. 
For example, Figure 2 compares an input signal y[n] (from a resonant cavity 
with a resonance frequency of 2 kHz and a decay time of 10 ms that is being 
excited by both noise and periodic pulses) with the error signal from using 
the second order predictor described above. Notice that, although the input 
signal covers most of the range from -1.0 to + 1.0, other than the occasional 
spike (corning from the periodic pulses) the error signal is mostly contained 
in the region from -0.01 to +0.01. In other words, this example shows a 
typical amplitude reduction of roughly a factor of 100 in the scale of the 
prediction error versus that of the input signal. If we know how much 
quantization noise was allowed in the signal, we would need about 6 fewer 
bits to quantize the error signal to the same level of quantization noise as is 
needed to quantize the input signal. 
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Figure 2. Prediction leads to an error signal with much lower amplitude than the original 
input signal 
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As a very stylized example of how we can achieve this bit rate reduction, 
let's consider a case where we can predict the next 16 bit quantized sample 
to within three quantizer spacings 99% of the time. (Although a predictor 
that can get within three quantizer spacings of a 16 bit quantized sample is 
quite unlikely, this exaggerated example should make the mechanics of bit 
rate reduction by prediction more clear.) In this case, we could code the 
difference signal using 3 bits according to the following pattern: 

Error Code 
-3 [111 ] 
-2 [110] 
-1 [101 ] 
0 [000] 
1 [001] 
2 [010] 
3 [011] 

beyond [100] 

where any sample whose predicted value was more than 3 quantizer spacings 
away would have the [100] code followed by the full quantized code of the 
input sample. If the original samples were quantized at 16 bits then this 
encoding of the prediction errors would have an average bit rate of 3.16 bits 
per sample (3 bits to code the prediction error plus another 16 bits 1 % of the 
time when the predicted value is beyond 3 quantizer spacings away from the 
input signal). 
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If we also knew that the prediction error was clustered around low values 
we could supplement prediction with an entropy coding routine to further 
reduce the required bit rate. For example, if the prediction error in the prior 
example had the following probability distribution: 

Error Prob 
-3 1% 
-2 3.5% 
-1 15% 
0 60% 
1 15% 
2 3.5% 
3 1% 

beyond 1% 

we could encode it using the following Huffman code table: 

Error 
-3 
-2 
-1 
o 
1 
2 
3 

beyond 

Prob 
1% 

3.5% 
15% 
60% 
15% 
3.5% 

1% 
1% 

Code 
[1111110] 

[ 11110] 
[110] 

[0] 
[10] 

[1110] 
[ 111110] 
[1111111] 

to get an average bit rate of 2.03 bits per sample. 
In implementing prediction in a coder there are a number of issues that 

need to be confronted. First of all, a decision needs to be made as to the 
form of the prediction. This depends a lot on the source of the data being 
predicted. The all-poles filter approach has been used in low bit rate speech 
coding, often implemented with 10th order prediction. The all-poles filter 
approach is attractive for predicting speech samples since we know that 
speech is formed by passing noise-like (e.g., the hiss in a sibilant) or pulsed 
(e.g., glottal voicing) excitation through the resonant cavities of the vocal 
tract and sinuses, but the appropriate prediction routine for other types of 
information could very well take very different forms. 

Secondly, the parameters describing the prediction function must be 
determined. In predictive speech coding, the filter coefficients (the ak in the 
all-pole filter expression above) are usually set to minimize the variance of 
the error signal. This is carried out on a block-by-block basis where the 
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block length is chosen to be shorter than the typical phoneme time scale. 
The resulting matrix equation for the ak depends on the autocorrelation of the 
signal over the block (averages of y[n-k]*y[n-p] over all block samples n for 
various values of k and p) and has been studied sufficiently that very high 
speed solutions are known. For other forms of prediction equation, 
corresponding parameter fitting routines need to be defined. 

Thirdly, information about the predictor form and coefficients needs to 
be passed to the decoder. Such information requires additional bits and 
therefore removes some of the performance enhancement from prediction. 
This loss is kept to a minimum by using a set of predictor coefficients as 
long as is possible without causing significant degradation of the prediction. 
For example, in low bit rate speech coding each set of predictor coefficients 
is typically used for a passage of 20-30 ms. 

Fourthly, to limit the growth of quantization errors over time, prediction 
is almost always implemented in "backwards prediction" form where 
quantized samples are used as past input values in the prediction equation 
rather than using the signal itself. The reason is that the quantization errors 
produced during backwards prediction only arise from the coarseness of the 
quantizer while the errors in "forward prediction" form (i.e., doing the 
prediction using the prior input samples and not their quantized versions) can 
add up over time to much larger values. 

Finally, a coding scheme must be selected to encode the prediction 
errors. Quantizing the error signal with a lower Xmax and fewer bits than are 
used for the input signal is the basic idea behind the "differential pulse code 
modulation" (DPCM) approach to coding. Choosing to use a quantizer 
where X max changes over time based on the scale of the error signal is the 
idea behind "adaptive differential pulse code modulation" (ADPCM). (For 
more information about DPCM and ADPCM coding the interested reader 
can consult [Jayant and Noll 84].) In low bit rate speech coding several very 
different approaches have been used. For example, in "model excited linear 
prediction" (MELP) speech coders the error signal is modeled as a weighted 
sum of noise and a pulse train. In this case, the error signal is fit to a 3-
parameter model (the relative power of noise to pulses, the pulse frequency, 
and the overall error power) and only those 3 parameters are encoded rather 
than the error signal itself. As another example, in "code excited linear 
prediction" (CELP) speech coders the error signal is mapped onto the best 
matching of a sequence of pre-defined error signals and the error signal is 
encoded as a gain factor and a codebook entry describing the shape of the 
error signal over the block. (For more information about predictive speech 
coding the interested reader can consult [Shenoi 95]. Also, see Chapter 15 to 
learn more about the role of CELP and other speech coders in the MPEG-4 
Audio standard.) 
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9. SUMMARY 

In this chapter, we discussed the representation of audio signals in both 
the time and frequency domains. We used the Fourier Transform and its 
inverse as a means for transforming signals back and forth between the time 
and frequency domains. We learned that we only need to keep track of 
frequency content at discrete frequencies if we only care about signal values 
in a finite time interval. We also learned that we can fully recover a signal 
from its discrete-time samples if the sampling rate is high enough. Having 
learned that we can work with only discrete-time samples of a signal, we 
learned how to represent a series of quantized audio in a more compact way 
by predicting samples from previous ones. 

In the next chapters, we address the issue of time-to-frequency mapping 
discrete quantized samples and learn how we can use the computer to 
transform finite blocks of signal samples into equivalent information in the 
frequency domain. Once in the frequency domain, we have greater ability to 
use the tonal properties of the input signal and the limits of human hearing to 
remove redundant and irrelevant data from how we store and transmit audio 
signals. 

10. APPENDIX - EXACT RECONSTRUCTION OF A 
BAND-LIMITED, PERIODIC SIGNAL FROM 
SAMPLES WITHIN ONE PERIOD 

Let's consider a band-limited, periodic signal, x(t), with a maximum 
frequency Fmax and period To. We can recover the exact input signal from its 
samples if we can sample it with a sample rate Fs = lIT ~ 2Fmax using the 
reconstruction formula 

All samples contribute to x(t) when t "* nlFs with a contribution that drops 
slowly with distance in time according to the function sin [1t(t-t')]ht(t-t'). 

In the particular case of a periodic signal, we can choose to sample an 
integer number of times per period, i.e., T = 1fFs = TofM S; 1I2Fmax, so for 
each period the sample values are the same. In this case defining n -= m + 
kM and noting that x[n + kM] = x[n], we have: 
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x(t) = L L x[m) -~--,,-' --~ 
k~~ m~M-' (Sin(1t(tF - m - kM»)J 

k~~ m=O 1t(tF, - m - kM) 

= 'f mI<'_I)kMx[m)( sin(1t(tFs -m») J 
k~~ m~{} 1t(tFs - m - kM) 

= mI-'X[m) sin(1t(tFs - m») 'f ( (_I)kM ) 
m=O k~~ 1t(tF, - m - kM) 

Combining positive and negative k terms with equal Ikl, we obtain: 

m~M-' ~ I k~~( 2(-I)kM(tF -m) J} 
x(t) = L x[m] sin(n(tF, - m) + L 2 s 2 

m~O n(tF, - m) k~' n[(tFs - m) - (kM) ] 

By using [Dwight 61]: 

with a = (tF, - m)/M, x = 0 for M odd, and x = 1t for M even, we obtain: 

() m~-' [ ] sin(1t(tF, - m») 
xt= L..xm ' 

m~O Msin(-fr(tF, -m») 
for Modd 

m~M-' sin(1t(tF - m»)cos(~(tF - m») 
x(t) = L x[m) s. It M s 

m~O Msm("M(tFs -m») 
for Meven 

You can recognize that these equations allow us to reconstruct the full signal 
x(t) from a set of samples in one period of the periodic function. For M odd, 
the function multiplying the sample values is referred to as the "digital sine" 
function in analogy with the sinc function interpolation formula derived in 
the discussion of the Sampling Theorem. 
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12. EXERCISES 

a) Signal Representation and Summary Properties: 
Consider the following signal: 

{
sin(2000m) sin( 41t t) 

x(t) = 
o elsewhere 

forO ~ t ~1' 

which represents a 1 kHz sine wave windowed with a sine window to a 
duration of 1,4 second. Do the following: 
1. Graph the signal 
2. Compute the signal summary properties from the time domain 

description of the signal. 
3. Compute and graph the Fourier Transform of this signal. 
4. Compute the signal summary properties from the frequency domain 

description of the signal. 
5. Sample this signal at an 8 kHz sample rate. 
6. Use sine function interpolation to estimate the original signal from its 

samples, and compare with the original signal. Explain any differences. 

b) Prediction: 
Consider the signal 
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y(n) = e COSnffiO n_ {
-an > 0 

o n<O 

where a = 0.05 and <00 = 0.3 1t. Consider also a (rectangular) windowed 
version of this signal 

_ R ) {y(n) - M :s; n :s; M 
y (n = 

M 0 elsewhere 

where M = 128 (i.e. rectangular window of length 2M+ 1 centered at n = 0). 
Finally, consider a 2-term LPC predictor A(z) == alz -I + azz -z so that we try 
to predict a signal yen) as ypredict(n) = aly(n-l) + azy(n-2). 
1. Define the excitation (Le. prediction error) x(n) as x(n) == yen) - ypredict(n). 

Show for arbitrary signals yen) that the transfer function relating x(n) to 
yen) is equal to 1/( 1- alz -I - azz -z). This transfer function can in general 
have two complex poles (i.e. the denominator is quadratic in z -I). 
Assume that the poles are complex conjugates of each other (i.e. one 
pole is c = rde and the other is c * = re-ie) and determine al and az in terms 
ofr, e. 

2. Take the z-transform (see Chapter 5) of our specific yen) and relate r, e 
to a, <.00 by identifying the pole locations of yen). Given r, e we also 
know at. az (from part 1), so calculate the prediction error x(n) for our 
two-point predictor applied to our yen) using its true pole locations. 

3. Use the z-transform of yen) to calculate the Fourier Transform of yen) 
(i.e. Y(ro) is the z-transform evaluated at z = d OO) and graph IY(ro)lz. 
Take a close-up look at the positive frequency pole and fit a Lorentzian 
to the peak of the form 

K 

where A, W, K are constants to fit by eye, analytical calculation, or 
numerical fitting. What is your best fit for A, W, K? Show a close-up 
graph at your fit vs. IY(ro)lz at the peak. How do you think A, W relate 
to a, <.Oo? 

4. Define the prediction error energy as 

~ 

E = L (y(n) - Y predict (n»2 
0=-00 
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Substitute ypredict(n) = aly(n-l) + a2y(n-2) and write E as a quadratic 
function of al and a2. An alternative approach to that of part 2 for 
finding the predictor coefficients is to minimize E(al,a2) w.r.t. al and a2. 
Do this by setting both 

equal to zero. Write the result as a matrix equation for 

in terms of the matrix elements 

~ 

<l>(k, I) = Ly(n - k)y(n -I) 
0=-00 

5. Obviously we can't actually calculate <j)(k,l) values since they require us 
to use infinite length signals. We can, however, calculate a windowed 
approximation to <j)(k,l) using our windowed (and zero padded) signal 

Define 

Y R (n) 
M 

and show that it can be calculated as a sum of a finite number of terms. 
Also show that it only depends on Ik-ll terms in the form 

$~ (k,l) = g ~ (Ik -II) 

Re-write the matrix equation from part 4 using the windowed 
approximation and show that we only need three numbers to solve for x. 
Namely, show that we only need to know 
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R R R 
g M (0), g M (1), g M (2) 

to fill in the matrix elements in the equation for x. 
6. Using M = 128, calculate 

R R R 
g (0), g (1), g (2) 

M M M 

for our signal and solve the matrix equation to find at and a2. Use the 
relations from parts 1, 2 to calculate the pole estimates a, roo 
corresponding to this estimate of at and a2. Also use this estimate of at 
and a2 to calculate the prediction error x(n) == y(n) - Ypredict(n). Graph this 
prediction error vs. that calculated on part 2. Calculate the prediction 
error energy in both cases: which is lower? Which do you think is a 
"better" predictor? Explain. 

7. Repeat part 6 with one of the other windows discussed in Chapter 5 (e.g. 
Hanning, Kaiser-Bessel) in place of the rectangular window. In other 
words, for some other window type W, use 

y W (n)={W(n)y(n) -M$n$M 
M 0 elsewhere 

To estimate 

W W W 
g M (0), g M (1), g M (2) 

and solve for the LPC predictor pole location. Compare the rectangular 
window's pole estimates a, roo with these for your window for the cases 
M = 32, 64, 128, 256. 



Chapter 4 

Time to Frequency Mapping Part I: The PQMF 

1. INTRODUCTION 

In this and the following chapter, we discuss common techniques used in 
mapping audio signals from the time domain into the frequency domain. 
The basic idea is that we can often reduce the redundancy in an audio signal 
by subdividing its content into its frequency components and then 
appropriately allocating the bit pool available. Highly tonal signals have 
frequency components that are slowly changing in time. The data necessary 
to fully describe these signals can be significantly less than that involved in 
directly describing the signal's shape as time passes. 

Frequency domain coding techniques have the advantage over time 
domain techniques like, for example, predictive coding schemes such as 
ADPCM (see also Chapter 3 and [Jayant and Noll 84]), in that the number of 
bits used to encode each frequency component can be adaptable. Allocating 
different numbers of bits to different frequency components allows us to 
control the level of quantization noise in each component to ensure that we 
have the highest coding accuracy in the frequency components that most 
need it. In this sense, the frequency-domain signal representation provides 
an ideal framework for exploiting irrelevancies in the signal. This issue is 
intimately related to the main topic of Chapters 6 and 7, where we discuss 
how studies of human hearing allow us to determine which frequency 
components can accept significant quantization noise without producing 
audible artifacts. 

The basic technique of time to frequency mapping is to pass the ·signal 
through a bank of filters that parse the signal into K different bands of 
frequencies. The signal from each frequency band is then quantized with a 

M. Bosi et al., Introduction  to  Digital Audio  Coding  and Standards
© Kluwer Academic Publishers 2003
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limited number of bits, putting most of the quantization noise in frequency 
bands where it is least audible. The quantized signal is then sent to a 
decoder where the coded signal in each band is dequantized and the bands 
are combined to restore the full frequency content of the signal. In most 
cases, an additional filter bank is needed in the decoder to make sure that 
each band's signal is limited to its appropriate band before we add the bands 
back together to create the decoded audio signal. An immediate issue with 
such an approach is the fact that, by splitting the signal into K parallel bands, 
we have multiplied our data rate by a factor of K. To avoid raising the data 
rate when passing the signal through the encoder filter bank, we throwaway 
all but one out of every K samples or in other words we "down sample" by a 
factor of K. In Figure I, a general overview of the time to frequency 
mapping process is shown. Remarkably, we shall see that we can cleverly 
design filter banks such that the original signal is fully recoverable from the 
down-sampled data. 

Input 
Signal 

x 

Filler Bank Down·sampling Data is quantized,packed, 
parses frequency preserves delivered to decoder. and 

content into bands data rate dcquanlized 

Yo 

YI 

Encoder 

I 

Yo 

I 

YI 

I 

YK 

Up-sampling Filtcr Bank limits 
restores sample frequency conlent 

rate of data to initial bands 

+ 

Decoder 

Figure 1. Overview of the time to frequency mapping process 

Output 
Signal 

X' 

In this chapter we discuss the constraints on the design of filter banks for 
parsing signals into their frequency domain content and meet some of the 
more commonly used filter banks in audio coding. We first introduce the 
discrete time generalization of the Fourier transform, the Z transform. The Z 
transform is a basic technique used in filter design for sampled data and is 
the easiest way to derive the basic filter bank coding techniques. We then 
introduce two-channel perfect reconstruction filter banks to get a better 
understanding of how filter design constraints allow us to recover the 
original signal from down-sampled frequency bands. We discuss how to 
create filter banks that generalize the two-channel frequency parsing to 
higher numbers of bands (e.g., 32 bands). We then present in detail a 
particular filter bank, the "pseudo quadrature mirror filter" PQMF, that has 
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had a major impact in audio coding. As an example of its applications, the 
32-band PQMF used in the MPEG audio coders is described in detail. 

2. THE Z TRANSFORM 

In Chapter 3 we saw that band-limited signals can be recovered from 
sampled data provided that the sample rate Fs =IITs is higher than twice the 
highest frequency component in the signal. We saw in our derivation of the 
Sampling Theorem (you can derive this by replacing 2*Fmax with Fs) that we 
can represent the frequency content of such a signal in the frequency range 
from -F.l2 to F.l2 using the following Fourier series: 

~ -j21t~ 
X(f)=t Lx(nTs)e F, , 

n=--oa 

The time domain content of such a band-limited signal can then be 
recovered using the inverse Fourier Transform to find that: 

F,/2 

x(t) = SX(f)e i21tft df 
-F,/2 

However, we need to be careful about making sure that the signal is band
limited to within the frequency range from -F.l2 to F/2 since sampling will 
"alias" any spectral components outside this frequency range into this 
frequency range. Moreover, since it is based on the Fourier series, any 
attempt to use the above formula for X(f) outside of this frequency range 
will find the frequency content in the range periodically continued 
throughout all possible frequencies. We can use this pairing of sampled 
time-domain data and frequency domain content in its own right to define a 
frequency representation of any sampled time-domain data as long as we 
recognize the limitations of this pairing in describing the true frequency 
content of a signal. Such a pairing is called the "discrete-time Fourier 
Transform". 

The Z transform is a generalization of the discrete-time Fourier 
Transform. Define the mapping of the frequency f onto the complex number 

z( f)=ei21tf/Fs 
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Notice that z(D is a complex number with values on the unit circle and 
periodic in frequency with period Fs. In terms of z, we can write the forward 
transform of the discrete time Fourier Transform as: 

~ 

X(O =* Lx(nTs ) z(O-n 
n::::-oo 

The Z transform generalizes this forward transform to arbitrary complex 
values of frequency, i.e. values of z off the unit circle. 

Given a data series x[n] and a complex number z, the Z transform of x[n] 
is defined as: 

~ 

X(z) = L x[n] z-n 
n=-oo 

Notice that we can immediately associate a Z transform of a sampled data 
series with the discrete-time Fourier Transform of that data using 

x[n] = x(nTs), z = z(f) = ei21tflF" and defining X(f) = X(z(f)/Fs 

Like the discrete-time Fourier Transform, the Z transform has an inverse 
transform requiring an integration in the complex plane (see for example 
[Rabiner and Gold 75]), however, we will not need to use the inverse Z 
transform in this book. In this book, we mostly use the Z transform as a 
convenient way to derive analytical expressions for Fourier Transforms of 
sampled data. 

2.1 Important Properties 

Three extremely important properties of the Z Transform are its linearity, 
the convolution theorem, and the delay theorem. Linearity of the Z 
transform says that, given two data series xt[n] and xz[n] then the Z 
transform of any linear combination of the series: 

is just the linear combination of the Z transforms: 

Y(z) = A Xt(z) + B Xiz) 

This is derived readily from the definition of the Z transform: 
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~ ~ 

Y(z) = Ly[n] z-n = L(Axl[n]+ Bx 2[nJ) z-n 
0=-00 0==---00 

~ ~ 

= A L x 1 [n] z -n + B L x 2 [n] z-n 
0=-00 n=--oo 

= AX l (z) + BX 2 (z) 

The convolution theorem states that the Z transform of the convolution of 
two data series is equal to the product of the Z transforms. In other words, if 
we define the convolution of two data series xl[n] and x2[n] as: 

~ 

y[n]=x l [n]ox2[n]= Lx l [n-m]x 2 [m] 
m=-oo 

then we have that 

This can be shown as follows: 

~ ~ ~ 

Y(z)= Ly[njz-n = L Lx l [n-mjx 2[mjz-n 
0=-00 0=-00 m=-oo 

00 00 00 00 

= L Lxl[n -m]z-<n-m)x2[m]z-m = L Lx l [p]z-Px 2[m]z-m 
n =--00 m=-oo p=~m=~ 

Since passing a signal through a linear, time-invariant filter is equivalent 
to convolving the signal with the filter's impulse response function, the 
convolution theorem tells us that the Z transform of a filtered signal is just 
the product of the original signal'S Z transform and the Z transform of the 
filter's impulse response function. 

The delay theorem states that the Z transform of a signal delayed D time 
samples is equal to ZO times the signal's Z transform. This can be readily 
seen from the Z transform of a data series yen] = x[n-D]: 

~ ~ ~ 

Y(z) = Ly[n]z-n = Lx[n-D]z-n = Lx[m]z-m+o =X(z)zo 
0=---00 0=--00 m=-oo 
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These three properties together tell us how to calculate the Z transform of 
a signal passed through a chain of filters: for all filters in series multiply the 
Z transforms, whenever parallel paths are summed add the Z transforms, and 
whenever delay lines are used multiply by ZD. 

2.2 Down-Sampling 

Before proceeding to the design of perfect reconstruction filter banks, we 
need to establish two more properties of the Z transform: the effects of 
down-sampling and up-sampling on a signal's Z transform. We need these 
properties because, as shown in Figure I, we typically down-sample the data 
coming out of the filter bank to keep the data rate constant and then we 
typically up-sample the data (Le. intersperse zeroes between data points) 
prior to recombining the sub-band signals to space it out back to the original 
data rate. We first derive the effect of down-sampling and then derive the 
effect of up-sampling. 

Prior to deriving the effects of down-sampling, we take a brief digression 
to discuss a useful result that makes the derivation easier. This result 
concerns the properties of the Kth roots of 1. 

The K different Kth roots of 1 are symmetrically located on the unit circle 
and can be enumerated as 

{ Xr = ei21tr/K for r = 0, ... , K -1 } 

Due to their symmetric location on the unit circle, the sum of the roots is 
equal to zero. An interesting property of the roots of 1 is that the set of each 
of the roots raised to the mth power: 

is just another enumeration of the full set of roots provided that m is not a 
multiple of K. For example, consider the cube roots of 1 (see also Figure 2): 

The set of cube roots to the first power is trivially the set itself. The set of 
cube roots to the second power is again the set itself but in a different order: 

However, the set of cube roots to the 3rd power is just 1 repeated: 
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And so on ... 
This property of the Kth roots of 1 allows us to establish the following 

sum rule for powers of the roots: 

~ Iei2mro/K = {I if m = nK 
K r=O 0 otherwise 

We make use of this rule in our derivation of the Z transform for down
sampled data. 

Imaginary Axis 

Real Axis 

Figure 2. The cube roots of I 

We now derive the Z transform of down-sampled data. Consider the data 
series yen] = x[nK] which represents data down-sampled by a factor of K. 
The Z transform of yen] is equal to: 

+00 +00 +00 

Y(z)= Ly[n]z-n = L x[nK]z-n = Lx[m]z-m/Kom.nKforsomen = 
n=-oo n=-oo m=--oo 

Notice that the Z transform of down-sampled data is the sum of K terms. 
What does this mean? 
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Let's think about it in the frequency domain. Suppose we have data 
sampled with a sample rate Fs. If we down-sample this data by K, then each 
data point is spaced farther out in time and the new sample rate is equivalent 
to FJK. This means that any spectral content of the original signal outside 
of the frequency range of -FJ2K to FJ2K will be aliased. The K-l extra 
terms in the down-sample Z transform are the aliasing terms of this spectral 
content. How do we see this in the frequency domain? First of all, we must 
realize that we consider all data series to be sampled with the same 
underlying sample rate. This means that, although the down-sampled data is 
really sampled with an effective sample rate of FJK, the data is viewed in 
the time domain as a new data series sampled at the usual sample rate Fs. In 
other words, we can directly use the above associations between the Z 
transform and the discrete time Fourier transform, using Fs for the sample 
rate, to relate the discrete time Fourier Transform of yen] to that of x[n]. 

We find that: 

1 K-\ 

Y(f)=- IX(flK-rFs/K) 
K 1"=0 

We can see from this that the effect of down-sampling, other than signal 
power reduction due to the factor 11K, is to: 

1) spread out the spectral bandwidth by a factor of K (r = 0 term) and 
2) to alias any part of the spectrum pushed outside of the range -F/2K 

to FJ2K (r * 0 terms). 
For example, the contribution of Y(f) at f = 0 comes not only from X(f) at f 
= 0 but also at values of X(f) at f = r F/K for r = 1, ... , K-l. When we try to 
develop perfect reconstruction filter banks, considerable effort will go into 
making sure that we can undo the aliasing caused by down-sampling. In 
Figure 3, the effects of aliasing caused by the down-sampling process are 
shown. 
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Case II: Aliasing 
+--""""-~-+ -.=-----

----
·f,/4 0 +f,/4 ·f,/4 0 +f'/4 

Figure 3. Aliasing effects in the down-sampling process 

2.3 Up-Sampling 

The effect of up-sampling data by a factor of K (i.e. intersperse K-l 
zeroes between each data point) is just to replace z in the Z transform by ZK. 

This result is quickly derived by considering the Z transform of the data 
series 

{
x[m] if n = mK 

y[n] = . o otherwise 

which is equal to 

~ ~ ~ 

Y(z) = Ly[n]z-n = Lx[m]z-mK = Lx[m](zK)-m =X(zK) 
n=-oo m=-oo m=---oo 

In the frequency domain this becomes Yet) = X(Kt) so we can see that 
up-sampling shrinks the spectrum bandwidth by a factor of K. Note, 
however, that X(t) is periodic with period Fs and so up-sampling will bring 
images of these copies of X(t) into the Yet) spectrum. When we develop 
perfect reconstruction filter banks, we filter out these extra images with a 
band-pass filter corresponding to the frequency band of that signal 
component. In Figure 4, the effects of imaging caused by the up-sampling 
process are shown. For an in-depth description of multirate systems and 
filter banks the reader can consult [Vaidyanathan 93]. 



84 Introduction to Digital Audio Coding and Standards 

Yet) 

V\/ 
-fs/2 o +fs/2 -fs/2 o +fs/2 

Figure 4. Imaging effects in the up-sampling process 

3. TWO-CHANNEL PERFECT RECONSTRUCTION 
FILTER BANKS 

Having developed all of the pieces we need, let's move ahead and 
describe how to design a two-channel perfect reconstruction filter bank. We 
then discuss how the two-channel filter bank can be extended to create 
multi-channel perfect reconstruction filter banks. 

In a two-channel perfect reconstruction filter bank (see Figure 5), we 
pass the signal x[n] through two parallel filters with responses ho[n] and 
hJ[n]. Ideally, these two filters split the frequency spectrum between them 
so that different signal components will be isolated in each data stream. This 
will give us twice the data rate so we need to down-sample the data by a 
factor of two. In a real coder we would then quantize the two data streams, 
pack them together and send the packed data stream to the decoder, and then 
unpack and dequantize the two data streams before the next steps in the 
chain below, introducing quantization noise on the way. In this chapter we 
ignore the effect of quantization noise and try to characterize the steps by 
which the two uncorrupted intermediate data streams yo[n] and YJ[n] can be 
combined into a new signal x'[n] which is exactly equal to the original signal 
x[n] other than possibly being delayed. What we will do to the intermediate 
data streams is to up-sample them (so they really reflect the original sample 
rate again), pass them through filters with responses go[n] and gJ[n], and then 
add them together. The challenge to us is to define filters ho[n], hJ[n], go[n], 
and gJ[n] that allow perfect reconstruction of the input data x[n]. 
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Figure 5. Two-channel perfect reconstruction filter bank 
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To begin our analysis we calculate the Z transform of signal x'[n] in 
terms of the input signal and the four filter responses. At each step, we use 
the properties described in the previous section for applying filters, adding 
signals, down-sampling, and up-sampling. First we write down the Z 
transform of x'[n] in terms of the Z transforms of Yarn], YI [n], go[n], gl[n]: 

Then we write down the Z transforms of yo[n], YI[n] in terms of x[n] and the 
filters horn] and hl[n]: 

Finally, we put it all together to get the final result: 

X'(z) = t(Ho (z)Go (z) + HI (z)G I (z) )X(z) + 

t(Ho(-z)Go(z) + HI (-z)G I (z))X(-z) 

Notice that the equation described above has one term proportional to 
X(z) and another proportional to X( -z) - in the frequency domain the X( -z) 
term represents the aliasing of spectral components at frequency f - F,/2 onto 
frequency components at frequency f. The first thing we need to do in our 
filter design is to make sure that the coefficient of the aliasing X(-z) term is 
zero. 

3.1 Aliasing Cancellation 

One way to set up the filter banks so that there is no aliasing of the signal 
is to define the synthesis filters go[n], gl[n] in terms of the analysis filters 
horn], hl[n] such that their Z transforms satisfy: 
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Ga(z) = -HI (-z) 

GI(z) = Ho(-z) 
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Notice how this choice of filters eliminates the X(-z) term and we are only 
left with the relationship that 

X'(z) = t(- Ho(z)HI (-z) + HI (z)Ho(-z»)X(z) 

The Z transform relationships between the analysis and synthesis filters 
can be written in the time domain as: 

go[n] = -(-I)"hl[n] 

gl[n] = (_I)" horn] 

These relationships can be quickly derived by comparing the Z transform 
relationship term by term for different powers of z. 

3.2 Perfect Reconstruction: the QMF Solution 

Having defined synthesis filters to eliminate aliasing, we still need to 
pick analysis filters that lead to perfect reconstruction. There are multiple 
ways known to do this but we focus here on one of the most common types: 
the Quadrature Mirror Filters, QMF [Croisier, Esteban and Galand 76]. The 
QMF solution defines the filter hI [n] in terms of the filter ho[n] as: 

Notice that, if ho[n] is a low-pass filter then hI [n] will be high-pass (see 
Figure 6). We can see this by going to the frequency domain where we find 
that 

If the filter ho[n] is low-pass filter then it has frequency components near 
f = 0 but not near f = FJ2. The frequency domain relationship then shows us 
that the filter hl[n] has response near f = 0 like that of ho[n] near FJ2, not 
much pass-through, while it has response near FJ2 like that of ho[n] near 
zero, lots of pass-through. In other words, hl[n] will be high-pass and have 
its highest frequency response magnitude near Fsf2 and correspondingly near 
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-Fsl2. We can rewrite the definition of all 3 of the other filters in terms of 
ho[n]: 

HI (z) = -Ho(-z) 

Ga(z) = Ha(z) 

GI(z) = Ho(-z) 

hI[n] = _(_I)n horn] 

go[n] = horn] 

gI[n] = (_I)" horn] 

,,~/ ..... ,. .....• 
-fsJ2 o fsl2 

~, ...... . ..••...... 

-fsl2 o fs/2 

Figure 6. Qualitative relationship of frequency content in the two-channel QMF analysis 
fi lters ho and hi 

Having defined all of the other filters now in terms of ho[n], we can 
rewrite the Z transform of the output signal as: 

The output signal is just a delayed but perfectly reconstructed copy of the 
input signal if we can construct a filter ho[n] which satisfies the following: 

3.2.1 An Example: the Haar Filter 

To get a feel for the QMF solution, let's examine the exact 2-tap solution: 
the Haar filter. The Haar filter ho[n] has impulse response 

ho[n]={ ,fi,,fi ,O,O, ... } 

The Z transform of this filter Ho(z) is equal to 

It satisfies the perfect reconstruction condition since 



88 Introduction to Digital Audio Coding and Standards 

which shows us that if we build a QMF filter bank using it, the output should 
equal the input signal delayed by I sample. 

Let's check. The impulse responses of the other filters hJ[n], go[n], and 
gJ [n] are defined in terms of the filter ho[n], and in the Haar case are: 

go[nJ={ Jz, Jz ,O,O, ... } 

gJ[nJ={ Jz,- Jz ,O,O, ... } 

If we start with an input signal x[n] ={ ... , 0, 0, x[O], x[ 1], x[2], ... } then the 
signals yo[n], YJ[n] will be equal to 

yo[nJ={ ... ,0, Jz (x[OJ+x[I]), Jz (x[2J+x[3]), ... } 

YJ[nJ={ ... ,0, Jz (x[OJ-x[I]), Jz (x[2J-x[3]), ... } 

After up-sampling and filtering with the synthesis filters these 2 series 
become 

{ ... ,O,O, Y2( x[OJ+x[I]), Y2( x[OJ+x[l]), Y2( x[2J+x[3]), Y2( x[2J+x[3]), ... } 

{ ... ,O,O, Y2( x[OJ-x[I]), -Y2( x[OJ-x[I]), Y2( x[2J-x[3]), -Y2( x[2J-x[3]), ... } 

respectively. Finally, when added together to get the output signal, we find 
that x[n] = { ... , 0, 0, x[O], x[\], x[2], ... } as expected. 

Although Haar filters can be used to create a two-channel perfect 
reconstruction filter bank, the shortness of the filter impulse response makes 
the frequency localization quite poor for the two channels. The reason for 
using longer filters is to get a much shorter transition region between the 
pass-bands of the two analysis filters (see Figure 7). Unfortunately, no finite 
order FIR filter with more than 2 taps has been found to solve the QMF 
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perfect reconstruction condition. Although no exact solution has been 
found, filter design techniques have been developed to find longer FIR filters 
that approximate the QMF perfect reconstruction conditions extremely well. 

o fs/2 

Haar Filters QMF 

Figure 7. Qualitative comparison of frequency response of the Haar filter QMF solution with 
that of longer approximate solutions to the QMF perfect reconstruction condition 

3.3 Perfect Reconstruction: the CQF Solution 

The QMF solution is not the only possible solution to the 2 channel 
perfect reconstruction equations. Another solution has been found that is 
better adapted to implementation using FIR filters: the Conjugate Quadrature 
Filter (CQF) solution [Smith and Barnwell 86J. For this solution the 
synthesis filters go[n], gl[n] are just the time reverses of the analysis filters 
ho[n], hl[nJ. For FIR filters of length N this implies that: 

go[n] = horN -1- n] 

gl[n]=hl[N-l-n] 

Like in the QMF solution, the analysis filter hl[n] is a version of the low
pass filter horn] modulated by (-1 t to make it high-pass, but in this solution 
it is the time reverse of ho[n] that is modulated rather than ho[n] itself. In 
specific, the relationship between the two analysis filters for even length N 
is: 

If we rewrite these CQF relationships in the z domain we find that: 
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Go(z) = z-(N-I)Ho(Z-I) 

G I (Z) = Z-(N-I)H I (Z-I) 

HI (z) = z-(N-I)Ho(-Z-I) 

A quick substitution into the 2-channel alias cancellation condition shows 
that these choices ensure alias cancellation for even length N. Substitution 
into the 2-channel perfect reconstruction condition shows that the base filter 
ho[n] must be designed to satisfy 

where the delay D = N-I. We can look at this condition in the frequency 
domain and we see that our two analysis filters must satisfy the "power 
complementarity" condition that: 

Several standard methods exist for developing FIR filters that exactly satisfy 
this condition, see for example [Vetterli and Kovacevic 95] for a summary of 
design methods. The value of this CQF solution is that it is the basis for 
expanding the two channel results to multiple channel filter banks. 

4. THE PSEUDO-QMF FILTER BANK, PQMF 

Having shown with the two channel case that careful design of the 
analysis and synthesis filters can lead to perfect reconstruction filter banks, 
for practical applications we need many more channels than two. For 
example, in Chapter 6 we will see that the human ear's frequency response 
naturally divides into 20-30 "critical bands". How can we create perfect 
reconstruction filter banks with closer to that number of channels? 

Early work on multi-channel filter banks tried to cascade QMF filter 
pairs to subdivide the spectrum into multiple channels. This tree structure 
approach has the disadvantage of long impulse responses and high 
computational complexity. A more efficient, parallel multi-band approach 
that represents an approximate generalization of the two channel CQF 
solution was developed variously called the "pseudo-QMF" [Nussbaumer 
81], PQMF, and "polyphase quadrature" [Rothweiler 83] filter bank. We 
refer to it as the PQMF filter bank. The basic idea is to take a narrow low
pass filter and modulate copies of it to span the frequency domain. The filter 
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is then defined so that it decays fast enough so that there is negligible 
overlap between next-near-neighbor filters and so that near-neighbor filters 
cancel aliasing and satisfy a CQF-type perfect reconstruction equation. 

The PQMF solution to developing near-perfect reconstruction filter banks 
was extremely important historically. The Layer I and Layer II coders in 
MPEG-l and MPEG-2 use this approach to time to frequency mapping. The 
ability of the PQMF filter banks to reconstruct input signals with extremely 
high accuracy and their efficient implementation allowed the development of 
early perceptual audio coders. 

4.1 Basic Structure 

The PQMF filter bank consists of K channels, each of which is a low
pass filter h[n] modulated by a cosine. The exact form of the analysis and 
synthesis filters is: 

hk en] = h[n]Co{ 1t( k ~ t }n - (N;I))+ <h 1 
for k=O, ... ,K-I 

gdn] = hdN -1- n] 

where N is the length of hen]. The phase<l>k is determined by an anti-aliasing 
conditions between adjacent bands and satisfies the relationship: 

(h - (h-l = 1-(2r + I) 

where r is an integer. Note that the synthesis filters are just the time reverses 
of the analysis filters as in the CQF solution. 

Recall that cosine has a delta-function frequency response at positive and 
negative frequencies. The convolution theorem, i.e. products in the time 
domain lead to convolutions in the frequency domain, tells us that hk[n] has a 
frequency response equal to that of H(t) shifted to both frequencies 

(k + 1) 
fk = ± __ 2_Fs 12 

K 

The K channels therefore lay down 2K copies of H(t) to divide up the 
frequency spectrum between -FJ2 and Fs 12. This means that the full-width 
of the low-pass filter H(t) should be equal to FJ2K, i.e. the pass-band should 
be for frequencies up to I~ - F/4K. 
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The perfect reconstruction requirements are that we design h[n] so that its 
frequency components beyond Ifl = F/2K are negligible and that for lower 
frequencies we satisfy the PQMF power complementarity equation 

IH(f)12 + IH(-F/2K+f)12 = 2/F/ for 0::; If I::; F/4K 

Notice the similarity of this requirement to the power complementarity 
condition of the CQF solution. 

4.2 The MPEG PQMF 

MPEG-l and 2 Layers I, II, (and also the hybrid filter of Layer III, see 
Chapter 11) use 32 channel PQMF filter banks where the base filter h[n] has 
511 taps [ISO/IEC 11172-3 and ISO/IEC 13818-3]. The PQMF filter bank 
used in these coders employs the following analysis and synthesis filters, 
hk[n] and gk[n] respectively: 

hdnl = h[nlCOS[( k+~}n-16) 3~] 

gk [nl = 32 h[n1CO{ ( k +~}n + 16) 3~] 
k =0,1, ... ,31 

n = 0,1, ... ,511 

where k is the frequency index and n is the time index. The filter coefficients 
describing the prototype filter h[n] are shown in Table 1. (The filter 
coefficients for n > 256 can be found from the symmetry relation h[256+n] = 
h[256-n]). A good closed form approximation of the standard coefficients 
can be found in [Searing 91]. The filter length N is equal to 513, of which 
the first and last coefficients are zero. 
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Table 1. MPEG-I Audio PQMF prototype filter coefficients h[n] [ISO/lEe 11172-3] 
hIO)= OOllJJXlX) hf32J= -OUXlJIJR2S h[6tI= -UO:X)IOt~ h(%1- O.(llJ2J8&i8 hll28): Q,(mI71317 hl.lOOJ:: ..(11))2457142 hfllJ2l= ..(10)3134727 hl22-1I= UOl7876148 
h[ll= ..o.CXl):.mm h[33):= -UOOJ)l47l12 111651'" -<l00J103iJ51 11[911;:: Q{l)'P.A747K 11I1N]= O.~3674 h/i61j= -QtnYllJ711 hlt9)]= -0002841473 h[2251o:: aOI87.'ifl8«i 

~:;:: ~~~ :~~: ~~:~ ::~: ~::= ~::: ~= :::~l: ~'= h[I62I= -aOO1&D3~ h(1941= -0.002521515 11(2);1= nOl%?>i247 

111-1\= -il.ooxmm hl361= -QocmI95~ h[68I= -UOXlUlQ,,2 h[lool= U0Xl3:¥m1 hl1321= OCUI868M ~:~!: ~~~ ~::l: ~.:~~ ::::: ~.~~~ 
h[51:o .().onmm h[37J::o -UCXXII2I4~ 1I(6I)J= -0(0)100719 h[1011= U(lm11456 h(l33)= Ctc:xm29220 bll65J= -O.OO3~ 111197J::o -O(lHJfJ517 hl229lo:: 00222287111 
h161:= -o'UIXlXI,m 11138)::;0 -O.o:.mZH6S hl70l= ·(l(WIOO\9 h[I(2)= UUX)K»358 111134)= 0011783920 h066\= -Q~ h[I98J=- .0.(((971317 hI2})]= o.0230041~ 
h(7J= -O.~ h[39]:o" -tl00Xl252n hJ7I];,: -U0CXI1OO42 hlIOO]" Uloon&:m h/l35]= 0.OXJ7J19·I.:'i hIl67]" -O00?622532 hll99I'" ..().too:'iJ.W38 hI231!== 0023007185 

::~:: 1= :~~:: ~= :~~:: ~::=~ ~:~:: ~=~ :~:~l: ~:~~ ~:::: ~~;!: ~:l: ~:!U;:: ~:~~:: ~~~~~~ 
h(IOj= ,(),,0XXlXR54 h[42]= --O.<XXm2425 h(74]= -o.QX)I02.~2( h[I(k)I'= o.flXl:'i.l216.1 hll38]o: 000J539lJ3 h,(170]= .,(HJJ.Kl48R24 h[M]: 0.001011848 hl234lo:: o.02611IIDI 
/ltll)= .().In)X)1431 hH31= -n~ hJ7S]= -O.OXUJ9l82 bll07]o:: o.rIX'fJ7ff173 hll}}}", o(m·~.m hlm]= -(H1Ul747tR hlm]= (1001573563 hI2351= o.02m38«l 
h(12)= .()Jffl:n1431 hl4.tl== --o.~ h(16J= -o.o.xmS367 hllCl!J= Oocx)sIJ782 hll40l= O.(XXJ371!6.)} 11(172]= --o'(J).I2IX)5g1 h[~]= 0.002161503 hI2361=:: 0.0278IS~2 
h{13]'" ..Qooxxmm hI45]= ..o.oonlO531 h[71J= -o.OXJ1.X)122 hIH))]= I.W)})..f659l hI141/: (l00J288486 h{1731'" -(J.(X)4395962 h(3JSI= U0027742.}} h(237'== 0.028532982 
h(14]= --O.m:nmm hl461= --O.(XID0392 h(78]= --O.oo:x:&WX h./1I0]== o.OX))HOO2J h(l421= 0.(0)1916119 hI!?4]: -o.~ h(DS'= o.OO?411293 hI238]== 0.029224873 
hjl5)= .oJnm:2384 h1411= -tlfXXlWj253 h/79,= ..Qar0m24 bllll]-= 0.flXJ714302 hI143,= 0.00Ul8215 hlI75J= ..Q(X)..f5Xl48$ h[3J7]= U0J.m2I89 h(2JJ]= O.~ 
h(16]= -O.OOXD2384 hj48I'" -noo:ot9591 h[IIO)= -U0CID:i9618 h[1I2J== 0.flXJ7412{}1 h(J4-l]= -1J.00Xl214S8 II(I76J= -0.0:»638195 hln]= 0.0.»756451 h(240)== 0.00052ffi38 
h{J7J= -O..oo:nJ2!I61 h[49]= ..Qoo:m2929 hI8!1: .Q1l:U.X:Qi58 I\(II3J= 0cm779152 h(l45]= -OJUH37329 hfl17]= -1l!X)4(OII24 h(».l,,,, OOOS462I'Xl h[241)::= UU3IJ32698 
h(18]= -OJlXnn338 h(~]= -O.00lJS579: h[82]= -O.0'ID5Il'i45 hI1l4,,,, O~ h[I46]", -0.(0)25987 h(178)= --0.001728317 hl2JOI= 0.()))189346 h1242J= 0.G.317())8!o 
hll9j= .oCl.OO)3138 hlSlj= -Ooo::xJSlXll5 hI83]", -O.<r0J39577 h{1IS)", 0001138757 h[147,= -O.OOB88J45 hll79l= --0.004748821 h(2111= oo::w.nlUZ7 h[2431= 0032243n> 

~~:: ~:=~ :g~:: ~= :~~: ~=:8 ~::~:: ~=~~ :g::: ~=~1 ~:~l: ~:~~~~ ~~:~:: ~= :g~:: ~~rn~ 
hl22J= -OOOXl).l16& hiS-lI= --U00l.Ji\M h[Ml= Oru.um~ hfI18]= U{DJ)Jw.il h[I~I= -O.~ h(1821= --O.OOI'703O-l5 hl214j= o.fl})2878M h(246]= 0G.3J6S9935 
h(Z3J= ..o.ro:m"i245 h{55J=- -00C0013433 hl87J= UOO))J71«) h(1I9]=- UtIXJJ3555S h[15iJ= -O.cx:m56535 h(1831= -o'~I62 hl215]= o.OiOlG.3703 hl247]", 0.034055710 
11[241= -OOOXJ)SI99 hl56]= --O.OXlJ7617I h[88j= o.<XXm4332 h(I20'=- U~151 h[I52J= .()JJJIlI1G.31 hjl84j= -0.004573822 h(216j= 001003339) h(248''''- o.o.wl2861 
h(25J= --O.oo:mn76 h[S7J=..Q()llID585 h[89J= 01.lIDS2929 h(1211= 0lX.Oil68933 h[I53J= --O.OOI2t9817 h(185J= --O.OOU77024 h(217)=- OOlJ11~17 hl249]= 0CB413C»]4 
h(2t:i]= .o.OOXXJ1629 hISS]= --O.CXJll:0923 ht90J= 0.0CXXJ7'20/0 h[122J= O(DJ.}8li~ h\l~J= -0.001432419 h[186]= .Qlx)'BS7815 hl218]=- UOI26216J2 hf2~J'" UG.35OO7OO) 
hl27l=- ..o.OOlnU<ki h(59/= --U00llI7261 h[91]= Uoom3937 h(123]:: UlO»I!9437 h[IS5)", -OJXJlS97881 h[IS7]= -o.oomS2~ hI2l9)= 0.013489246 hl2S])= UG.3s:!~ 

~~:: ~= :~~:: ~= ::~:: ~::~: ~:~::: ~=: :::~:: ~~:~= ~:::: ~=~ ~::: ~~:~~~~ :g~:: ~~~~ 
h(lJl'" .o.OOX)11444 hl62l= -O.oo::o;l6321 h[94]= U(O)I65462 h(12t!'= uo::n:.m821 h[I~I= .().00211(Xl)4 h(1'Xl]=: -O.(msnO?6 him!", 0.016112roJ h(254j:: 0(135694122 
ht31[=- .o.00x)12398 hl63J= --O.CXXlmI82 h[95j= 0.00.)191212 hlm,= U{lXP8]115 h[I9}J= .()'(XJ2283(Rn h(19lj= --O.OO34OI7~ h[2Z3I= 001f1-)9.U76 hf255]= Offi5758972 

hl2Yl]= 0035]Il(00] 

We can relate the above filter bank description to our general form of the 
PQMF by noting that the phase <l>k in the MPEG PQMF is equal to: 

<h = 2: ( N - 1- K )(k + 1.) 
2 K 2 

which satisfies the near-neighbor alias-cancellation requirement that 
<h - <h-l is equal to an odd multiple of rrl2 for these values of N = 513 and K 
= 32. In addition, the encoder gain has been set to preserve the amplitude of 
input sinusoids on encoding to provide a gain reference for the 
psychoacoustic thresholds. The impulse response of the prototype low-pass 
filter h[n] compared with hk[n] for k = 0, 1 is shown in Figure 8. The 
frequency response of the prototype is shown in Figure 9. 
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Figure S. MPEG Audio PQMF prototype filter impulse response h[nl and hk[nlfor (a) k = 0 
and (b) k = I 
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Figure 9. MPEG Audio PQMF prototype filter frequency response in units of F,I64. 
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Each filter hk[n] is a modulated version of the prototype h[n]. The 
positive and negative frequency components of the modulating cosine lead 
to a frequency response with the frequency response of the prototype filter 
appearing in both positive and negative frequency locations with center 
frequencies fk given by 

fk =±~(k+~J 
2K 2 

for k = 0, 1, 2, .. , 31 and with each copy having a nominal bandwidth of 
F/64. In Figure 10, the frequency response of the first 4 filters of the 
MPEG Audio PQMF is shown. Notice how each successive set of filter 
pairs is shifted outward in frequency by F/64 from the prior pair. 

As shown in Figure 10, the prototype filter does not have sharp cut-off at 
its nominal bandwidth of F/64. Because of this transition region, the 
frequency content of adjacent bands shows a certain amount of overlapping 
(see Figure 10). The phase shifts <j)b in absence of quantization, ensure 
complete cancellation of the aliasing terms between neighbor bands in the 
synthesis stage of the decoder. Although the PQMF is not a perfect 
reconstruction filter bank, the MPEG prototype filter design guarantees a 
ripple of less than 0.07 dB for the composite frequency response of the 
analysis and synthesis filter banks [Noll and Pan 97]. 

PQMF Pilterbank 

oS .. ·2 ., 0 

32"I(O.s-fs) 

Figure 10. Frequency response of the first four bands of the MPEG Audio PQMF in units of 
F,I64 
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4.3 Implementing the MPEG PQMF 

In the standard implementation of the PQMF analysis stage the input buffer 
contains a time sequence x[n] of 512 samples that is multiplied by the filter 
coefficients to get the current output for each channel. Since the last filter 
coefficient is equal to zero, the filter bank is implemented as if the filter 
length is N = 512. Remembering that the PQMF is critically sampled, the 
filter bank can be implemented as a block transform on a 512-sample block 
that takes in 32 new samples in each pass. 

A direct implementation of the PQMF filter bank results in 512 *32 = 
16384 multiplications and 511 *32 = 16352 additions for each set of 32 new 
samples (or about 512 multiplications and additions per sample). In the 
standard specifications (see Figure 11), a description of a medium 
complexity implementation, which involves about 80 multiplications and 
additions per sample is given as follows: 

63 7 

ym[k]= IM[k,r]* I[C[r+64p]*x m[r+64p]] for all m and k=O, ... ,31 
r=O p=O 

where 

M[k, r] = cos( (k +~}r-16) 3~) 
int( -"-) 

C[n]=(-l) 64h[n] 

In these equations, k is the frequency index, Ym[k] is the output of the kth 
analysis filter after processing the mth block of 32 new input samples and 
xm[n] represents a block of 512 audio input samples time-reversed with xm[n] 
equal to x[32*(m+l)-1-n]. A comparison ofC[n] with the impulse response 
of the filter prototype h[n] is given in Figure 12. Other efficient PQMF 
implementations involve the utilization of fast algorithms for the 
computation of the discrete cosine transform [Kostantinides 94] with an 
additional reduction of over a factor of six in the number of multiplications 
and additions with respect to the medium complexity implementation 
described in the standard. 
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32 new input samples 

Make room for new samples: 
for i = 0 to 479 x[i+32] = x[i] 

and add in new samples in reverse order: 
for i = 0 to 31 x[31-i] = next sample 

Apply window to samples: 
for i = 0 to 511 Z[i] = x[i] * C[i] 

Perform partial sum of Z[i]: 

7 

for r = 0 to 63 S[r] = LZ[r+64j) 
j=O 

Matrix multiply to get sub-band samples 

63 

for k = 0 to 31 y[k] = LM[k,r)*S[r) 
r=O 

32 sub-band samples 

Figure 11. Flow chart of the MPEG PQMF analysis filter bank from [ISO/lEe 11172-3) 

97 
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MPEG PQM, Analysis Windows 
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Figure 12. Comparison of C[nJ with the impulse response of the filter prototype h[nJ 

The standard also specifies a medium complexity, efficient 
implementation for the synthesis filter bank. This specification is shown in 
flow-chart form in Figure 13. In this specification, the synthesis window 
D[i] is equal to 32*C[i] for i =0,1, ... 511 and the matrix N[k,r] is given by 

N[k,rl=c0s(( k+~}r+16) 3~) 

The complexity for the synthesis filter is again greatly reduced from naIve 
implementation down to about 80 multiplications and additions per sample. 
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32 new sub-band samples y[k] 

~ 
Make room for new z[r] values: 

for i = 0 to 991 z[i+32] = z[i] 
and matrix multiply in new samples: 

31 

for r = 0 to 63 z[r] = LN[k,r]* y[k] 
k;() 

~ 
Build 512 vector Uri]: 

for i = 0 to 7 
for j = 0 to 31 

U[64*i+j] = z[128*i+j] 
U[64*i+32+j] = z[128*i+96+j] 

• Apply window: 
for i = 0 to 511 W[i] = Uri] * D[i] 

+ 
Perform partial sum for output samples: 

15 

for i = 0 to 31 xli] = I W[i+32j] 
j=O 

32 output samples 

Figure 13. Flow chart of the MPEG PQMF synthesis filter bank from [ISO/lEe 11172-3] 

5. SUMMARY 

In this chapter we have learned that we can create filter banks that parse a 
signal into its high and low frequency components without any loss of 
information or increase in that data rate. We have then seen how this 
technology can be generalized into the creation of near-perfect 
reconstruction filter banks that can subdivide audio signals into reasonably 
narrow frequency bands. These PQMF methods of creating large numbers 
of frequency channels rely on modulating a prototype low-pass filter into the 
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appropriate frequency band location. The PQMF filter banks developed in 
this manner were very important to the historical development of audio 
coding but become hard to work with as the number of desired frequency 
channels becomes very large. In the next chapter we turn towards transform 
coding methods as a means to create filter banks that can be used more 
efficiently to create filter banks with large numbers of frequency bands. 
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7. EXERCISES 

CQF filterbanks: 
In this exercise you will design an N = 4 CQF filterbank. Recall that 
implementing the CQF 2-channel filterbank requires finding a low pass 
prototype filter horn] that satisfies the power complementarity condition 
Ho(z)Ho( liz) + Ho( -z)Ho(-lIz) = 2. One way to create a CQF prototype filter 
horn] is to create a half-band filter pen] that has non-negative Fourier 
Transform and to factor its z Transform into Ho(z)Ho(l/z). A candidate half
band filter pen] can be created by windowing the ideal half-band filter 
sinc[n/2] with a window centered on n=O. 
1. Prove that the power complementarity condition is satisfied if P(z) == 

Ho(z)Ho(l/z) has only odd powers of z other than the constant term (z to 
the zeroth power) which is equal to 1. 

2. If Ho(z) = a + b z -I + c z -2 + d Z -3 then show that P(z) satisfies the 
power complementarity condition if 

a = -sin(8)cos(<1» c = cos(8)sin(<1» 

b = sin(8)sin(<1» d = cos(8)cos(<1» 

Write out the form of P(z) in terms of the angles e and <j>. 
3. If horn] is 4 taps long then pen] will be seven taps long and will run from 

n = -3 to n = 3. Create a candidate half-band filter pen] using a 7-tap 
sine window ws[n]: pen] = ws[n+3]*sinc[nl2]. Notice that this candidate 
filter satisfies the power complementarity condition. However, if the 
Fourier Transform of the candidate filter has negative values it will not 
be possible to factor it to determine horn]. Tune the angles e and <j> so 
that P(z) best fits the z Transform of this candidate half-band filter. 
What are the filter coefficients horn] corresponding to these best fit 
angles e and <j>? 
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4. Use the other CQF filter conditions to determine hI [n], go[n], and gl [n]. 
Graph IHo(DI and IHI(DI in dB relative to IHo(O)1 and compare with a 
similar graph for the Haar filter. 

5. Use these CQF filters to implement a 2-channel perfect reconstruction 
filterbank. Test that the output exactly matches the input using the 
signal x[n] = 0.3 sin[3nn/4] + 0.6 sin[nn/4]. Graph the input signal 
against the outputs of the 2 channels. Now make another graph using 
the signal x[n] = 0.3 sin[3nn/4] ws[n] + 0.6 sin[nn/4] ws[n - 50] where 
ws[n] is a sine window of length N = 100. How are the 2 sub-band 
signals related to the input signal x[n]? 



Chapter 5 

Time to Frequency Mapping Part II: The MDCT 

1. INTRODUCTION 

The PQMF solution to developing near-perfect reconstruction filter banks 
(see Chapter 4) was extremely important. Another approach to the time to 
frequency mapping of audio signals is historically connected to the 
development of transform coding. In this approach, block transform 
methods were used to take a block of sampled data and transform it into a 
different representation. For example, K data samples in the time domain 
could be transformed into K data samples in the frequency domain using the 
Discrete Fourier Transform, DFT. Moreover, exceedingly fast algorithms 
such as the Fast Fourier Transform, FFT, were developed for carrying out 
these transforms for large block sizes. Researchers discovered early on that 
they had to be very careful about how blocks of samples are 
analyzed/synthesized due to edge effects across blocks. This led to active 
research into what type of smooth windows and overlapping of data should 
be used to not distort the frequency content of the data. This line of research 
focused on windows, transforms, and overlap-and-add techniques of coding. 

Although sub-band coding and the transform coding grew out of different 
areas using different building blocks, it became clear that they are just 
different views of the same underlying methodology. The windows used in 
transform coding are related to the low-pass filters that generate sub-band 
filters. The main differences between the techniques has to do with the 
number of bands that are used to parse the signal. In the current view of 
things, coders with a small number of frequency channels (e.g., MPEG 
Layers I and II [ISO/IEC 11172-3]) are still sometimes referred to as sub
band coders, and coders with a larger number of frequency channels (e.g., 
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AT&T/Lucent PAC [Sinha, Johnston, Dorward and Quackenbush 98], Dolby 
AC-2 and AC-3 [Fielder et al. 96], and MPEG AAC [ISOIIEC 13818-7]) are 
sometimes referred to as transform coders. From the mathematical point of 
view, however, there is no distinction between sub-band and transform 
coding. 

In this chapter we will learn about the DFT and how it can be used to 
create a perfect reconstruction transform coder at the cost of enhanced data 
rate. Then we will learn about the Modified Discrete Cosine Transform, 
MDCT, developed by Princen and Bradley in 1986-87 and used in state-of
the-art audio coding schemes such as MPEG AAC. The MDCT can be used 
in a perfect reconstruction transform coder with a very high number of 
frequency bands without requiring an increase in the coder data rate. As we 
shall see, the MDCT can also be seen as a perfect reconstruction PQMF 
filter bank showing the linkages between the material in this and the 
previous chapter. 

2. THE DISCRETE FOURIER TRANSFORM 

In Chapter 3 we discussed the Fourier Transform and its use in mapping 
time signals x(t} into the frequency domain X(f). We learned that band
limited signals, i.e. signals with frequency content only up to a finite upper 
frequency Fmax, can be fully represented with discrete time samples x[n] == 
x(n*Ts} provided that the sampling time Ts is no longer than 1I(2*Fmax} or, 
equivalently, the sample rate Fs == tITs is at least as large as 2*Fmax. 
Moreover, we learned that a time-limited signal, i.e. a signal with non-zero 
values only in a finite time interval, can be fully represented with discrete 
frequency samples X[k] == X(k/T} where T is the length of the time interval. 
What we would really like to be able to do is to work with signals that are 
both time and frequency limited so that we could work with finite blocks of 
time-sampled data in the time domain and convert them into a finite number 
of discrete samples in the frequency domain. In other words, we would like 
to work with a finite extent of sampled data and be able to map it into 
discrete frequencies in a finite range without any loss of information. Can 
we do this? The answer turns out to be not exactly, but, with a careful 
choice of windows, accurately enough. We find that we can window finite 
blocks of our signal so that they remain essentially band-limited. This will 
allow us to define a finite block version of the Fourier Transform, called the 
Discrete Fourier Transform, that maps these blocks of time-samples into a 
finite and discrete frequency-domain representation. Moreover, we shall see 
that this transform can be carried out exceptionally fast for large block 
lengths allowing for much greater frequency-domain resolution than is 
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typically available using PQMF filter banks. Let's see how this comes 
about. 

2.1 Windowing the Signal in the Time Domain 

Suppose we start with a band-limited signal, possibly band-limited from 
being passed through a low-pass filter, that we would like to sample at a 
given sample rate Fs. If the signal is band-limited so that Fmax ~ FJ2, we can 
work with samples x[n] and not lose any information. However, suppose we 
want to work with only a finite block of samples so that we can start making 
calculations without waiting for the signal to finish. In this case, we only 
consider signal values in the interval from t = 0 to t = T. One way to think of 
this time-limiting is that we are multiplying our original signal x(t) by a 
rectangular window function WR(t) equal to 1 from t = 0 to t = T and equal to 
zero elsewhere (see Figure 1). We need to ask ourselves if this time-limited 
signal is still band-limited enough to continue working with only the samples 
x[n]. 

2.1.1 The Rectangular Window 

What happens to the frequency content of the signal after windowing? In 
Chapter 3 we learned about the convolution theorem, which tells us that 
windowing in the time domain is equivalent to a convolution in the 
frequency domain. We can quickly calculate the Fourier Transform of our 
rectangular window to find: 

W (f) - -f ( ) -j2ltftd - TJ -j2ltftd _ -jltff sin(1tff) 
R - wR t e t - e t - e __ 0 1tf 

Notice that this function has a main lobe centered on f = 0 whose width is 
proportional to Iff and it has side lobes that drop off in amplitude like 1I1~ 
(see Figure 2). In general, we find that the main lobe of any window's 
Fourier Transform will get narrower as the window length T increases. 

The Fourier Transform of our time-limited signal equals the original 
signal's Fourier Transform convolved with (i.e. spread out by) the function 
WR(f). The Fourier Transform of this window, however, drops off very 
slowly with frequency implying that the Fourier Transform of the time
limited signal is unlikely to remain band-limited enough to work with the 
sampled data xln]. If we choose to go ahead and work with x[n] anyhow, we 
risk contaminating our analysis with aliasing. Does this mean we are out of 
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luck? No, it just means we need to choose better windows than the 
rectangular window! 
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Figure 1. Time domain comparison of the rectangular, sine and Hanning windows 
for T=128 * Ts 
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Figure 2. Frequency domain comparison of the rectangular, sine and Hanning windows for 

T=128*Ts (Note: Windows are normalized to have integral equal to I prior to graphing.) 

2.1.2 The Sine Window 

The problem with the rectangular window is that its cut-off is very sharp 
at the edge of the window. Sharp changes in the value of a function lead to 
high frequency components in the Fourier Transform. A better selection for 
the window in the time domain would taper down slowly to the edges so that 
there is no sharp discontinuity in window value there. For example, we can 
consider the sine window ws(t) which is equal to 
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ws(t) = sin(mlT) 

when t is between 0 and T and is equal to zero elsewhere (see Figure 1). 
Note that when applied to discrete time signals over N samples this window 
is implemented as 

ws[n) = sin[1t(n+Y2)/N) for n=O, ... ,N-1 

We can calculate the Fourier Transform of this window and we find that 

~ T 

W S (f) = f w s (t)e - j21tftdt = f sine; )e - j21tftdt 
() 

= e-jltfT COS(1tfT)( 1f 1 
1- (2fT)2 

Although the main lobe around f = 0 is wider with respect to the rectangular 
window, the frequency domain amplitude of this window drops off much 
faster than the rectangular window (see Figure 2). Unlike the rectangular 
window, the sine window can be used to time-limit a reasonably-sampled 
signal without expecting it to spread out the frequency content enough to 
cause substantial aliasing. Notice also that the width of the main lobe is 
again proportional to liT showing that longer windows give better frequency 
resolution. 

2.1.3 The Hanning Window 

One might conclude from this discussion that it might be even better to 
use a window such as the Hanning window that doesn't have the sudden 
change in derivative at the edges that the sine window has. The Hanning 
window WHet) is equal to 

for times between zero and T and is equal to zero elsewhere (see Figure 2). 
Note that when applied to discrete time signals over N samples this window 
is implemented as 

wH[n) = Y2(l-cos[21t(n+Y2)/N)) for n=O, ... ,N-1 

Again, we can compute its Fourier Transform and we find that 
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= T 

WH (f) = J W H (t)e - j2rrft dt = H(l- cos(2m IT»)e -j2rrftdt 
o 

= e - jrrfT sin( 1tIT) ( 1/ 2 ) 
1tf \_ (IT)2 

If we compare this Fourier Transform with that of the sine window (see 
Figure 2), we find that the drop-off is indeed much faster for the Hanning 
window (good to avoid aliasing) but the width of its main lobe is much 
larger (bad for accurate frequency identification). In other words, we start to 
face trade-offs in window design: low side lobes energy (linked to the 
importance of spurious frequency components) versus width of the main 
lobe (linked to the frequency resolution of the window). 

2.1.4 The Kaiser-Bessel Window 

The Kaiser-Bessel window allows for different trade-offs between the 
main lobe energy and side lobes energy simply by changing a parameter a in 
its description. The Kaiser-Bessel window WKB(t) is equal to 

~[mx LO_(t~~~2)'] 
w KB (t) = -'---------"-

10 (1tu) 

for times between zero and T and is equal to zero elsewhere. Io(x) is the oth 

modified Bessel function 

Io(x) = I((X/~)k)2 
k=o k. 

Note that when applied to discrete time signals over N+ 1 samples this 
window is implemented as 

for n=O, ... ,N 
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There is no closed-form analytical expression for the Fourier Transform 
of the Kaiser-Bessel window, but we can approximate it as [Harris 78] 

Kaiser-Bessel Window Shapes 
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-alpha=4 
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tITs 

Figure 3. Time domain comparison of different shapes of the Kaiser-Bessel window for 
different values of the parameter IX and the rectangular and Hanning windows for T=128 * Ts 

The Kaiser-Bessel parameter (X controls the trade-off between main lobe 
width and side lobe energy_ For example, for (X = 0 the window is just equal 
to the rectangular window which we saw has a very narrow main lobe, but 
very high side lobes. For (X = 2 the window is very similar in shape to the 
Hanning window and likewise has low side lobe energy, but a wider main 
lobe than the rectangular window. As (X gets larger, the side lobe energy 
continues to decrease at the cost of wider main lobe. Figure 3 shows the 
time-domain shapes of a Kaiser-Bessel window with a very low (X (X = 0.1), 
with (X = 2, and with (X = 4 and their comparison with the rectangular and 
Hanning windows. Figure 4 shows the frequency response of a Kaiser
Bessel window with a very low (X (x = 0.1), with (X = 2, and with (X = 4. 
Notice the clear trade-off between the main lobe width and the side lobe 
energy in the figure. 
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Kaiser-Bessel Window Frequency Response 
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Figure 4. Frequency responses of the Kaiser-Bessel window with different values of a for 
T=128*Ts (Note: Windows are normalized to have integral equal to I prior to graphing) 

There are many windows defined that can achieve different points in the 
trade-off between main lobe width versus side lobe roll-off, and the best 
choice of window is application-dependent. The important conclusion is 
that, depending on the design requirements, we can achieve a good enough 
roll-off rate with non-rectangular windows that we can window a signal to 
finite length and still have a frequency spectrum that is reasonably well 
band-limited. For the reader interested in a complete review of different 
windows and window properties we recommend [Harris 78]. 

2.2 TheDFT 

Suppose we had a signal x(t) that was windowed to finite length and the 
windowed signal is also (reasonably) band-limited. Suppose further that we 
select an adequate sample rate Fs = IITs and that the signal duration is T = 
N*Ts. Since the windowed signal is finite length, we can work only with 
discrete frequency components 

X[k] == X(kff)= X(k*F/N) for k = 0, ... , N-t 

and still recover the full windowed signal x(t). (Note that we have decided 
to use the frequency range from 0 to Fs as our set of independent Fourier 
series components rather than the range from -FJ2 to FJ2.) Since the 
windowed signal is (reasonably) band limited we can work only with a set of 
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sampled values x[n] == x(n*Ts) for n=O, ... , N-l. The Fourier series (see 
Chapter 3) tells us that we can get signal values as a sum over these 
frequency components; so we can write 

1 N-J 1 N-J 
x[n] == x(nTs) =- LX[k]e j21t(kF,/N)(nT,) =- LX[k]ej21tkn/N 

T~o Tk~ 

for n = 0, ... , N-l. Likewise, we can write the frequency components as a 
Fourier series sum over time samples as: 

N-J N-J 
X[k] == X(kFs / N) = Ts L x[n]e -j21t(kF, IN)(nT,) = Ts L x[n]e -j21tkn/N 

n~ n~O 

for k = 0, ... , N-l. This transform pair is known as the "Discrete Fourier 
Transform" or OFT, and is the basis for all applied transform coding. The 
OFT pair is usually written in dimensionless form by absorbing a factor of Fs 
into the definition of X[k] as follows: 

1 N-J 
x[n] == x(nTs) = - L X[k]ej21tkn/N n = 0, ... , N -1 

N k~-{} 

N-J 
X[k] == FsX(kFs IN) = L x[n]e-j21tkn/N k = 0, ... , N -1 

n~O 

Notice the factor of Fs that now appears in the definition of X[k]. 

2.3 The FFT 

One of the main reasons that the OFT became so important to applied 
coding is that it has a fast implementation called the "Fast Fourier 
Transform" (FFT). The forward OFT can be seen as a matrix multiplication 
between a vector of N time samples x[n] and an NxN matrix of phase terms 
(i.e. complex exponentials) leading to a new vector of N frequency samples 
X[k]. The inverse OFT is similarly a matrix multiplication between a vector 
of N frequency samples X[k] and an NxN matrix where now the matrix is 
the inverse of the matrix used in the forward transform. In either case, such 
a matrix multiplication would usually take N2 complex multiplications and 
additions to carry out. Remarkably, the FFT allows us to carry out the exact 
same calculation in roughly N*log2(N) complex multiplication/additions. A 
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dramatic savings for large value of N! For example, a DFf 1024 (=2 10) 

samples long would require roughly 1,000,000 multiplication/additions in a 
straightforward calculation while the FFf would carry it out in roughly 
10,000 multiplicationladditions, i.e., only about I % of the calculation time. 

The trick that led to the development of the FFf is the observation that 
we can take an N-point DFf and tum it into the sum of two N12-point DFfs 
as follows: 

N-I 
X[k]= Ix[n]e-i21tkn/N 

n:o() 

N/2-1 N/2-1 
= I x[2n]e-j21tk2n/N + I x[2n + l]e- j21tk(2n+I)/N 

n=O n:o() 

(
N/2-1 ) (N/2-1 ) = Ix[2n]e-j21tkn/(N12) + I x[2n + Ije-j21tkn/(N/2) e-j21tk/N 

n:o() n:o() 

Notice that this equation says that the N-point DFf evaluated at the kth 
frequency sample is equal to the N/2-point DFf of the even samples at k 
plus a k-dependent complex constant times the N/2-point DFf of the odd 
samples at k. For each of the N values of k, this equation requires one 
addition and one multiplication. Let's see how this result leads to the 
operation count of the FFf. If we had the N12-point DFf results ready at 
our disposal, we can calculate the N-point DFf at each value of k using only 
one addition and one multiplication. How do we get the N/2-point DFf 
results? We can recursively repeat this process B times for N = 2B, until we 
only need to calculate a length two DFf. The final 2-point DFf can be 
directly carried out for each k with one multiplication and one addition, 
which is done in the straightforward way. For each of the B intermediate 
stages, only one addition and one multiplication are required for each of the 
N different values of k. If we add up all of the operations, we find that it 
costs us N multiplications and additions for each of the B stages. In other 
words, a total of roughly N*B = N*log2(N) complex additions and 
multiplications to carry out the entire transform. 

Normally recursive procedures like the one described above require large 
buffers of memory. By exploiting the symmetries of the NxN phase terms in 
the DFf multiplication matrix, Cooley and Tukey [Cooley and Tukey 65] 
developed a very elegant and efficient method for computing the FFf in 
place. In the Cooley-Tukey FFf algorithm, pairs of input data are processed 
in parallel with the so-called "butterfly" operation in a series of log2(N) 
stages (see the flow diagram of Figure 5 for an example). At the end of this 
process, the output values then need to be unscrambled by swapping values 
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associated with bit-reversed indices. Note that the Cooley-Tukey FFf 
algorithm is defined for numbers of input samples equal to powers of 2 (i.e., 
N = 2B for some B). This algorithm is also known as a "radix-2" decimation 
in time FFf algorithm since the n components (time components) are 
separated into the butterfly kernels. 

If the number of input samples for a DFf is even but not a power of two 
then a sequence decomposition to power-of-two sub-sequences can be 
carried out with radix-2 FFfs done for each subsequence and then merged 
into the final result (for more details see for example [Oppenheim and 
Schafer 75]). Note that for analysis purposes, i.e. if the data rate of the 
system is not an issue in the design of the system, one can instead choose to 
zero-pad non-power-of-two length sequences up to the next power of two 
length and then simply perform a radix-2 FFf. 

Note also that you can also carry out an N-point FFf for a real function 
in less than N*log2(N) operations. One can create a new input sequence by 
creating an N/2-point complex series for which the even terms become the 
real parts and the odd terms become the imaginary parts of the new 
sequence. One can then perform an N/2-point (instead of an N-point) FFf 
on the complex series and unwind the results to recover the N-point FFf 
values for the original real-valued series (for more details see for example 
[Brigham 74] and for efficient implementations [Duhamel 86]). 
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Figure 5. Block diagram of the Cooley-Tukey FFf algorithm for N = 4 (w == e-j2Jr!N). 

3. THE OVERLAP-AND-ADD TECHNIQUE 

Having discovered that we can window a band-limited time signal in 
such a way that we can reasonably use the DFf or its fast implementation, 
the FFf, to transform the data into a discrete frequency-domain 
representation, how do we use this information to create an audio coder? 
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The first reason we discussed going into the frequency domain is that we can 
then easily remove redundancy from tonal signals. This reason suggests that 
we expect the frequency domain content to be relatively static over time (at 
least compared to the time-domain data) so that we have a more concise 
description of the signal to store or transmit. Secondly, as we'll discuss 
further in the next chapters, we can exploit frequency-domain masking to 
eliminate irrelevant signal components. We do this by completely throwing 
away inaudible frequency components and by allocating the available bit 
pool in such a way that the added quantization noise falls in areas of the 
spectrum where it will not be detectable. Having windowed the original 
signal to be able to carry out the Off without creating significant aliasing 
effects, however, we need to ask ourselves how we recover the original 
signal from the transmitted/stored frequency domain data. We can carry out 
the inverse transform of the frequency-domain data to get an approximation 
of the windowed input signal but we still need to get the windowing effects 
out of the data. 

The first idea one may have about getting the window effects out of the 
data is just to divide the output of the inverse Off by the window 
coefficients. After all, we know what the window function is at each data 
point since we applied the window in the first place. The problem with this 
approach is that the quantization/dequantization process has typically created 
small errors in the signal. These errors may be inaudible but dividing the 
output of the inverse Off by the window function could amplify the errors 
near the edges of the block of data since the window function is designed to 
go smoothly to zero in that region. If we take our dequantized data and 
divide them by the small values of the window function near the edges of the 
block, we are going to magnify the errors greatly. We need another 
approach. 

The way we solve the window problem is to have our windowed blocks 
of input signal overlap each other and design our windows so that we can 
overlap and add the output signals in such a way that the original input 
signal (other than differences due to the presumably small quantization 
noise) is exactly recovered. We then put requirements on the window 
function so that the overlap-and-added output signal equals the (albeit 
delayed) original input signal in the absence of any quantization noise. 
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Figure 6. Schematic of the window and overJap-and-add approach utilized to encode-decode 
audio data 

The overlap-and-add approach proceeds as shown in Figure 6. For an N
point OFT we decide on an overlap amount N-M. For simplicity, we require 
here that N-M be no larger than N/2 so that only adjacent blocks overlap. 
(For extended overlapping between more than two consecutive block the 
reader can consult [Malvar 92]). An overlap of N-M samples implies that 
each successive block starts M samples after the start of the prior block of 
data and includes M new time samples. In the encoder, we window the N 
data points of a particular block, perform a OFT, and quantize the N OFT 
frequency components. We can then transmit or store the encoded 
frequency-domain data from each block until we are ready to decode it. In 
the decoder, we dequantize each block's N frequency components, perform 
an inverse OFT to create N time samples, window again with a synthesis 
window, and transfer the first M samples of the result to an output buffer and 
the remaining N-M samples to a storage buffer. We add the N-M samples 
from the prior block's storage buffer to the first N-M samples of the current 
block's output buffer and send the M output buffer samples to the decoder 
output stream. 

The reason we choose to window again after decoding is twofold. First, 
we need to make sure that quantization noise in the frequency domain 
remains small near the edges of the inverse-transformed block. Second, the 
analysis and synthesis stages can then be easily carried out symmetrically 
(see for example [Portnoff 80]). If the reader were to choose instead to only 
use analysis windows and not use synthesis windows, the conditions for the 
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analysis windows can be derived from the following results by simply 
setting the synthesis window values to one in each equation. 

In general, each N-sample block overlaps with N-M samples of the prior 
block and N-M samples on the forthcoming block. If, other than differences 
due to quantization noise, this overlap-and-add process is to recover the 
original signal then we must require certain conditions on the analysis and 
synthesis windows wa[n] and ws[n], respectively (see Figure 7). 

In any block region without overlap, where n = N-M, ... , M-l, we require 
that the signal windowed with both the analysis and synthesis windows be 
equal to the original signal. Since we already saw that the DFT is invertible, 
this condition, in terms of the window functions, is equivalent to: 

w~[nl*w~[nl=l forn=N-M, ... ,M-\ 

where the superscript i on the window functions indicates the current block 
index. In the overlap regions, where n = 0, ... , N-M-l for overlap with the 
prior block i-I, and where n = M, ... ,N-l for overlap with the following one 
i + 1, we must require that the sum of the windowed signal from both blocks 
add to the original signal. In terms of the window functions, this is 
equivalent to: 

w~[nl*w~[nl+ w~-I[M +n]*w~-I[M+nl = \ for n = 0, ... , N -M-\ 

Notice that this condition relates the right sides of the windows of one block 
with the left sides of the windows of the following block (see Figure 7). In 
some cases, we use this observation to allow ourselves to change window 
shapes on the fly by employing transition windows with left sides that match 
the prior block's windows and right sides that match the following block's 
windows. 

Shift by M 

I Shift by iM f-0..LI ___ ---,""! M_,IL!M,-L-!_L!N-l'll 
Shift by M I Block i+ I 

~ __ -,--~~" 1.--··_1r-1"~"t!;"i"1 ...... I "' I 
° I IM'I M I 'H ••• }j 

Block i-I 

Figure 7. Overlap regions of the different blocks 
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If we choose to work with identical analysis and synthesis windows then 
we find that the perfect reconstruction conditions simplify to: 

w i [n]2+wi-l[M+n]2 =1 forn=O, ... ,N-M-1 

w i [n]2=1 forn=N-M, ... ,M-1 

We can immediately write down one simple window that easily satisfies the 
overlap-and-add perfect reconstruction conditions: 

sin[1!. n + t ] 
2N-M 

for n = 0, ... , N - M -I 

w[n] = 1 for n = N -M, ... ,M-I 

sin 1!. 2 [ N-n-l] 
2 N-M 

for n = M, ... , N -\ 

Notice that this window relies on the property of sine and cosine that sin(x)2 
+ COS(X)2 = 1 to achieve the perfect reconstruction condition in the overlap 
region. 

The sine-based overlap-and-add window may not provide the resolution 
versus leakage trade-off needed for a particular application. Are there other 
windows that satisfy the overlap-and-add perfect reconstruction 
requirement? In fact, we can apply a normalization procedure by which any 
window function can be modified to satisfy the overlap-and-add conditions. 
Namely, we can take any initial window kernel w'[n] of length N - M + I, 
where Nand M are even numbers, and create a length N overlap-and-add 
window w[n] as follows: 

n 

L w'[p] 

1\ Nf w'[p] 

p=o 
for n = 0, ... , N - M -I 

p=o 

w[n]= 1 for n = N -M, ... ,M-l 
N-M 

L w'[p] 
p=n-M+I 

1\ Nfw'[p] 

for n = M •...• N-\ 

p=o 
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Notice how this window satisfies the condition that w[n]2 + w[M+n]2 = 1 
through the normalization procedure. If we start with an initial window 
kernal w'[n] that has parameters controlling its shape, we end up with a 
corresponding normalized window for each parameter setting. We can then 
use the parameters to tune the normalized window so that it has appropriate 
frequency resolution and leakage properties. 

The window normalization procedure described above can be carried out 
using a Kaiser-Bessel window as the kernel window with 50% overlap 
between adjacent blocks to create the so-called "Kaiser-Bessel derived" or 
KBD window used in the Dolby AC family of coders [Fielder et al. 96] and 
in MPEG AAC [Bosi et al. 97]. For example, Figure 8 shows the window 
shape of the a = 4 KBD window as compared with both the a = 4 KB 
window and the sine window. Notice how the KBD window is shaped much 
more like the sine window than the corresponding KB window, however, the 
KBD window has a much broader top followed by faster drop-off than the 
sine window. Figure 9 shows the frequency response corresponding to these 
three windows. Again we see that the a = 4 KBD window is much more 
similar to the sine window than to the a = 4 KB window. Notice also that 
the smooth edges of the KBD window leads to faster side lobe drop-off in 
the frequency response than the sine window but the narrower average width 
of the window leads to slightly worse frequency localization. 

1 

0.8 

0.6 

0.4 

0.2 

0 
·16 0 16 32 48 64 80 96 112 128 144 

tITs 

I-Kalser-Bessel Deriwd --Sine Window .... ·.· Kalser-Bessell 

Figure 8. Time domain comparison of the a=4 KBD window with the sine window and the 
a=4 KB window 
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3.1 Window Considerations in Perceptual Audio Coding 

Some of the major factors that come into play in the design of filter banks 
for audio coding is the ability to maximize the frequency separation of the 
filter bank and the ability to minimize the effects of audible blocking 
artifacts. As we saw in the previous sections, two window parameters are 
directly linked to these properties, namely the selected window length and 
shape. Given a certain block size for the input data to the filter bank, the 
selection of the window shape determines the degree of spectral separation 
of the filter bank. For example, the sine window ensures a better close
selectivity than the ex = 4 KBD window (see Figure 9), i.e. the sine window 
main lobe is narrower than the ex = 4 KBD window main lobe. On the other 
hand, the ultimate rejection, i.e. the amount of attenuation in the side lobes 
energy, of the sine window is worse than ultimate rejection of the ex = 4 
KBD window (see Figure 9). 
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Figure 10_ Comparison of the minimum masking template with a = 4 KBD and sine windows 
for Fs = 48 kHz (Solid line - KBD window; Dotted line - Sine Window; Dashed line -

Minimum masking template) from [Bosi et aL 97] 

Depending on the characteristics of the input audio signal either the sine 
or the ex = 4 KBD window may provide better frequency resolution for the 
signal representation_ If we consider a highly tonal signal with closely 
spaced picket-fence spectral structure (such as a harpsichord excerpt for 
example) then close selectivity plays a more important role than ultimate 
rejection in the frequency representation of the signal, given the 
superimposition of masking effects (see next chapter for a detailed 
discussion on masking effects) due to different parts of the signal spectrum. 
If instead the signal exhibits wide separation among its frequency 
components (such as a glockenspiel excerpt for example) higher ultimate 
rejection allows for better exploitation of the signal components masking. 

In Figure 10 a comparison of the frequency response of an N = 2048-
point sine window, an ex = 4 KBD window with a 50% overlapping region, 
and a particularly demanding masking template (see next chapter for details 
on masking curves) is shown. The sampling frequency utilized is 48 kHz. If 
windowing spreads a masker's energy to other frequencies above the 
masking curve, it will be impossible to see if the signal in that frequency 
region is being masked. Notice how the close selectivity of the sine window 
is better than the ex = 4 KBD window, however the ultimate rejection of the 
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sine window falls short of the requirements for the minimum masking 
threshold. The KBD window satisfies much better this requirement. 

In summary, no single-shape window is optimal for all signals. Based on 
the signal characteristics one should dynamically select the window shape 
while satisfying the perfect reconstruction conditions on the window. 

3.2 Window-Shape Switching 

In general the trick is to recognize that the overlap-and-add perfect 
reconstruction condition is actual a requirement that involves the 
overlapping region, i.e. the right side of each window in conjunction with the 
left side of the subsequent one. When we use a single window type, this 
becomes a condition on the right and left sides of that window but nothing 
says that a single window type is necessary or that the windows utilized need 
to be symmetric. This allows us to change from a series of KBD windows to 
a series of sine windows or from a series of long windows into a series of 
shorter windows provided that we appropriately handle the overlap-and-add 
conditions for each overlap region. 

We accomplish this by designing a pair of "transition windows" for 
which one side of each overlaps correctly with the previous window series' 
shape and length while the other side of each overlaps correctly with the 
following window series' shape and length. These asymmetrical windows 
are constructed for example by concatenating the left half KBD window with 
the right half sine window and vice versa. An example of a window shape 
sequence where the KBD window is alternated with the sine window is 
shown in Figure 11. In this figure, the amount of overlapping between 
adjacent blocks is 50% (i.e. M = NI2). Notice how, in order to satisfy the 
perfect reconstruction requirement, during the transition from the KBD 
window to the sine window and vice versa, asymmetrical hybrid transition 
windows are employed. 
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Figure 11. Window shape sequence from [Bosi et al. 97) 

3.3 Block Switching 

In order to adjust the frequency selectivity of the filter bank, we can also 
change window lengths during the coding of a signal without losing the 
perfect reconstruction property. Such ability can be useful when transient 
behavior is detected in the input signal. Although long smooth windows 
reduce leakage and provide high frequency resolution, they tend to blur time 
resolution leading to artifacts where quantization noise is spread to times 
prior to sharp attacks. These artifacts are known in the literature as pre-echo 
effects (see next chapter for a description of these temporal effects). To 
better handle transient conditions it is helpful to use very short analysis 
windows. During more steady state conditions we would like to keep the 
high frequency resolution found in long windows. To satisfy both 
conditions, the coder can use long windows until a transient is detected. 
When a transient is approaching, the coder can use a "start" window to shift 
into short window operation until the transient is past. Once the transient is 
past, the coder can use a "stop" window to return to normal long window 
operation. For a long to short length transition during the course of a 
transient signal component, the start window will have a left side that 
overlaps with a long window and a right side that overlaps with a short 
window, while the stop window will be the reverse (see Figure /2). 
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Figure 12. Window switching to better model transient conditions 

One of the important window properties discussed early on in this 
chapter is the ability to reduce blocking artifacts. In order to reduce 
blocking effects from windowing, we want the transition down to zero at the 
edges or our windows to be as gradual as possible. This means that blocking 
effects are most reduced when we are set up for large overlap regions. If, for 
example, we set M = N-M = NI2, what is the implication for the system data 
rate? In general, each block of N samples that we encode starts M samples 
after the prior block. This means that we have to code and transmit/store N 
samples of transformed data for every M samples of new time samples fed to 
the coder. In other words, we are increasing our data rate in this approach by 
a factor of N/M prior to any coding gain from redundancy and irrelevancy 
removal. In the case of 50% overlap (M = NI2), we are doubling our data 
rate prior to any coding gain. This puts a high hurdle on any coding scheme! 
How much easier it would be if we could find some way of doing these types 
of transforms on blocks of data without sacrificing data rate! In fact, such a 
method has been found and is the subject of the next section. 
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4. THE MODIFIED DISCRETE COSINE 
TRANSFORM, MDCT 

We saw in the previous sections that we can develop a good frequency 
representation of audio signals by taking finite length blocks of time
sampled data and transforming the data into a finite length of discrete 
frequency domain samples. We can then quantize those samples based on 
psychoacoustics principles, transmit/store the data, and recover a 
dequantized version of the frequency-domain samples. As discussed in the 
previous section, we can restore a good approximation of the original time
domain samples from the dequantized frequency samples through an 
overlap-and-add procedure. The main problem with implementing such a 
coding scheme is that the overlap-and-add procedure increases the data rate 
of the frequency-domain signal prior to any coding gains. 

In coding applications, it is desirable that the analysis/synthesis system 
be designed so that the overall rate at the output of the analysis stage is equal 
to rate of the input signal. Systems that satisfy this condition are described 
as being critically sampled. When we transform the signal via the DFf, even 
a small amount of overlapping between adjacent blocks increases the data 
rate of the spectral representation of the signal, yet, in order to reduce 
blocking artifacts, we would like to apply maximum overlapping. With 50% 
overlap between adjoining blocks we end up doubling our data rate prior to 
quantization. The modified discrete cosine transform or MDCT is an 
alternative transform to the DFf utilized in state-of-the-art audio coders. 
One of the main advantages of the MDCT is that it allows for a 50% overlap 
between blocks without increasing the data rate. 

The MDCT is an example of a class of transforms called Time Domain 
Aliasing Cancellation (TDAC) [Princen and Bradley 86, Princen, Johnson 
and Bradley 87J. Specifically, the MDCT is sometimes referred to as an 
oddly-stacked TDAC, OTDAC [Princen, Johnson and Bradley 87], as 
opposed to the evenly-stacked TDAC, ETDAC, which consists of alternate 
series of MDCT and modified discrete sine transforms, MOST [Princen and 
Bradley 86]. These transforms do not invert like the DFf to recover the 
original signal but rather invert to recover a signal that has some of the prior 
and following blocks' signal mixed into it. This mixing of subsequent 
blocks' data is called "time-domain aliasing" and it is analogous to the 
frequency-domain aliasing that occurs when under-sampling mixes data 
from frequencies outside of the block of frequencies from -Fsl2 to Fsl2 into 
that frequency block. The TDAC transforms, however, are designed so that 
the overlap-and-add procedure exactly cancels out the time-domain aliasing 
that occurs. Therefore, although they are not invertible as a stand-alone 
transforms, they still allow perfect reconstruction of an input signal. 
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Moreover, for a real-valued signal, only half of the N frequency-domain 
samples from an N-point TOAC are independent implying that the transform 
for audio signals only requires N/2 frequency samples from each data block 
for full signal recovery. This means that we can design a coder with 50% 
overlap (best for eliminating blocking effects) that does not increase the data 
rate, i.e. is critically-sampled - a solution to the problems with the Off 
coder. 

4.1 Matrix Derivation of Time Domain Aliasing 
Cancellation and Perfect Reconstruction Conditions 

Let's see how transforms based on time domain aliasing cancellation can 
lead to perfect reconstruction filter banks without increasing the data rate. 
The matrix structure of a transform that converts N input samples into N/2 
frequency domain samples and then back into N output time domain samples 
is shown in Figure 13 (see also [Vetterli and Kovacevic 95]). In this figure, 
the input samples on the right-hand-side are indexed in groups of N/2. The 
current and prior input groups (indices i and i-I) considered as a single block 
are windowed with a length N analysis window, Wi AR and Wi \ where the 
indices Rand L indicate the right and left part of the analysis window for the 
current block i. They are then transformed into only N12 frequency samples 
with the matrix kernels Al and A2 and inverse transformed back into N time 
samples with the matrix kernels BI and B2. Finally, they are windowed with 
a length N synthesis window, Wi SR and Wi \ where the indices Rand L 
indicate the right and left part of the synthesis window for the current block 
i. The result of this matrix multiplication is then added to the result from 
prior analysis (block i-I) and the transform process then continues for 
another pass with the index i incremented by 1. If we multiply out the 
matrices and add the result to that of all the other input blocks we find that 
the net result is that the input data is multiplied by the band diagonal matrix 
shown in Figure 14. 
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Synthesis Window Inverse Transform Forward Transform Analysis Window 

Figure 13. Matrix structure of the ith pass through the TDAC transform (gray areas show 
location of non-zero entries) 

In order to recover the input signal after the transform process shown in 
Figure 13 (after overlap-and-add) we must require that the matrix shown in 
Figure 14 be equal to the identity matrix. We need therefore to impose the 
following matrix conditions: 

where 1 is the NI2 by N/2 identity matrix and 0 is the NI2 by NI2 zero 
matrix. These conditions constrain both our choice of window function and 
our choice of transform. The MDCT provides a particular solution to these 
equations. 
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Figure 14. Matrix structure of the TDAC transforms after overlap-and-add 

To better understand how such a solution can come about, consider a set 
of transform matrices that satisfy the following properties (see Figure 16 
below): 

B(A2 = B2A( = 0 

B)A)=l+J 

B2A2 =l-J 

where J is the N/2 by N/2 antidiagonal matrix (all ones on the other 
diagonal). The first property is an anti-aliasing condition that eliminates the 
blocks above and below the diagonal (top-right and lower-left gray blocks in 
Figure 14) and makes sure that the time aliasing cancellation condition is 
met for any window function. Applying the second property, i.e. the 
properties on the matrix product A)B( and A2B2, allows us to. satisfy the 
perfect reconstruction condition by requiring the following two window 
conditions: 

W jS L wt L + Wj~)R Wj~(R = 1 

W jS LJWt L = Wj:)RJWj~(R 
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The first of the perfect reconstruction window conditions is the same 
perfect reconstruction condition we had for the Off case. The second 
window condition is a new condition and adds further constraints to the 
window functions. This condition is linked to the cancellation of the time 
domain aliasing terms. Recognizing that JOJ time-reverses any diagonal 
matrix 0 and that JJ=l, the second window condition can be met by 
requiring that the analysis and synthesis windows be time-reversed copies of 
each other: 

wt L =JWj~\RJ 

WjS L = JWj~\RJ 

We can rewrite these conditions in a more familiar form (i.e. without matrix 
notation) as: 

w~[n] * w~[n] + w~-\[N /2 + n] * w~-\[N /2 + n] = 1 

w~[n] = w~-\[N -1- n] 

w~[n]=w~-\[N-l-n] 

for n=O, ... ,NI2-1 

It is worth noting that the new time-reversal conditions linking the analysis 
and synthesis windows are similar to conditions we have earlier seen being 
required of sub-band coders (e.g., CQF) for perfect reconstruction. 

Having seen how to select windows to achieve perfect reconstruction, 
let's look in detail at how the MOCT transform kernel satisfies its perfect 
reconstruction conditions. The MOCT forward transform takes a block of N 
time samples xj[n] and transforms them into N12 frequency samples Xj[k] 
according to: 

N-\ 

Xj[k]= Lw~[n]xj[n]cose~(n+no)(k+t)) fork=O, ... ,NI2-1 
n~O 

where 

no =(1+ 1)/2 

is a phase term that ensures alias cancellation. The MOCT inverse transform 
then takes the N/2 frequency samples and transforms them back into N time 
samples x\[n] according to: 
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N/2-1 

X'j [n] = w~[n]~ IXj[k]coser: (n + no)(k +t» for n = 0, ... , N-l 
k~() 

In terms of the prior matrix notation, we therefore have that: 

Alkn = cos(2r: (n + N / 2 + no )(k + t») 

A2kn =cos(~(n+n()(k+t») 

BI =~A/ 

B2 =~A/ 

It is a straightforward exercise to show that these matrices satisfy the 
necessary conditions that: 

BIA2 = B2AI = 0 
BIAI=l+J 

B2A2 =l-J 

when no has the correct anti-aliasing value. This result is most easily derived 
by using the fact that: 

N 12-1 ~ 

Icos(~ (k + t)n)cos(~ (k + t)m)=f I (-I)P (On.m+pN + 0n.-m+pN) 
k~O p~-

To better understand the behavior of the MDCT, we can look in detail at 
the rows of the matrices AI and A2. For example, Figure 15 shows the rows 
of the matrices AI and A2 for N= 16 (in which case they are 8 by 8 matrices). 
Notice how the rows of AI are symmetric around the center while the rows 
of A2 are anti symmetric - the results for BIAI and B2A2 are a direct result of 
these symmetries. Multiplying the data by AI will destroy the anti symmetric 
part of the data so that the closest to perfect reconstruction we could possibly 
recover from B(AI is 1+J. Likewise, multiplying by A2 will eliminate the 
symmetric part of the data so we can't get any closer to 1 from B2A2 than 1-
J. 



130 Introduction to Digital Audio Coding and Standards 

Rows of A1 Matrix 
(MDCT"16) 

1.25 ,..---'--...,-----,-------.,.---, 

0.75 
0.5 

0.25 

0f4~cT,~~~~~~~~~ir1 
-0.25 
-0.5 

-0.75 

-1.25 .l..-___ -'-___ --'-___ ---'-_---l 

n 

Rows of A2 Matrix 
(MDCT"16) 

1.25 ,..----...,....---...,....---...,....---, 
1 

0.75 
0.5 .. 

0.25 

-0.25 
-0.5 

-0.75 

-1.25 .l..-___ --'-___ --'-___ --'-_---l 

n 

-0 

-1 

2 

-3 

-4 

-5 

-6 

-7 

-0 

-1 

2 

-3 

-4 

-5 

-6 

-7 

Figure 15. Rows of the MDCT transform matrices AI and A2 for N=16 

To summarize this section, the MDCT transform allows us to have 50% 
overlap between successive data blocks without increasing the overall data 
rate. Given a set of analysis and synthesis windows that satisfy the perfect 
reconstruction conditions we can transform N inputs from the ith and (i_1)th 
sets of N/2 inputs into NI2 frequency domain outputs according to: 

N-\ 

X[k] = Lx[n]wa[n]cose~(n +no)(k +t» for k= 0, ... , NI2 - 1 
0=0 

and then return them into N time domain samples ready to be overlapped
and-added using: 

N/2-\ 

x'[n] = w s[n]t LX[k]cos(~ (n + no)(k + t» for n = 0, ... , N-I 
k=O 
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The portions of the analysis and synthesis windows that overlap between 
adjacent blocks should be time-reversals of each other. In addition, the 
windows should satisfy the following perfect reconstruction condition: 

w~[nJ * w~[nJ + w~-I[N / 2 + nJ * w~-I[N /2+ nJ = 1 for n=O, ... ,N/2-1 

Since this latter condition is the same one we faced for the overlap-and-add 
Off, we can use the windows discussed there (e.g., sine window, KBD 
window) for the MDCT as well. We can also make use of the same tricks 
we saw earlier to change window shape in differing blocks if we keep the 
same window length and continue to overlap by 50%. However, the 
requirements for time domain aliasing across blocks require us to be very 
careful in designing windows to change time resolution (i.e. block size) or 
overlap region. In the next section we take a look at what is required to 
change block size after a transient is detected in an MDCT-based coder. 

4.2 Changing Block Size with the TDAC Transforms 

We saw in the previous section that the cosine functions in the OTDAC 
transforms have phases specifically chosen so that a single pass through the 
MDCT followed by an inverse MDCT, 1M OCT, leads to the matrix structure 
shown in Figure 16. Similar results apply to the ETDAC transforms 
[Princen and Bradley 86]. The window conditions are such that overlap and 
add with the prior and subsequent windows leads to the matrix structure 
becoming just the identity matrix. Making the analysis and synthesis 
windows of overlapping blocks time reverses of each other is enough to 
cancel out the antidiagonal parts of the single pass matrix (the J parts) and 
the perfect reconstruction condition then makes sure the resulting diagonal 
matrix is equal to the identity matrix. The challenge in developing window 
functions that support changing block size is to ensure that it remains 
possible to cancel out the antidiagonal parts of the single pass matrix. A 
number of approaches have been proposed in the literature, see for example 
[Edler 89], [Sugiyama, Hazu and Iwadare 90], [Bosi and Davidson 92], and 
[Princen and Johnston 95]. In this section, we explore in detail two different 
methods [Edler 89, Bosi and Davidson 92] that have been used to create 
transition windows that allow a change of block size while still maintaining 
time-domain aliasing cancellation so perfect reconstruction is still achieved. 
These methods or variants of these methods are currently in use state-of-the
art coders such as MPEG Layer III, MPEG AAC and Dolby AC-3. 
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Synthesis Window MDCTIIMDCT Analysis Window 

Figure /6. Matrix structure of the MDCTIIMDCT transform before overlap-and-add 

Let's consider what's needed in changing from a series of long blocks to 
a series of shorter blocks. Figure 17 shows the matrix structure on either 
side of the transition block. Overlap and add for the prior series of long 
blocks leads to the identity matrix along the diagonal other than the last 
Nlongl2 by N1ongf2 section which is equal to Wi} R (1 +J) Wi_I A R while overlap 
and add for the following series of short blocks leads to the identity matrix 
along the diagonal other than the first Nshortl2 by Nshort/2 section which is 
equal to Wi+ ISL (I-J) W i+I\. Any transition block needs to be designed to 
match both sides of this matrix and cancel out time-domain aliasing. 

Figure /7. Matrix structure on either side of a transition from a series of long blocks into a 
series of shorter ones (shown for the case where long blocks are twice as long as short blocks) 

One of the first solutions to the transition block was developed by Edler 
[Edler 89]. This solution was based on the observation that zero values in 
the analysis and synthesis windows can project out part of the unwanted 
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matrix structure. In particular, although doing a long block MDCT for a 
transition window can easily cancel out aliasing in the prior long block by 
setting the left side windows to the normal long block left side windows, the 
anti diagonal part is too long to easily cancel out the anti diagonal part in the 
subsequent short block. In terms of Figure 17, the gray antidiagonal bar in 
the bottom right of the transition is too long for the gray antidiagonal bar at 
the top left of the transition. However, making part of the window in the 
long block equal to zero can shorten the anti diagonal content of the matrix 
and therefore make the problem easier. 

Edler's solution is that you can create a transition block out of a long 
block MDCT by setting the window values to zero in the right side of the 
analysis and synthesis windows for the last N'ongf4 - Nshort/4 entries. Doing 
so will reduce the anti diagonal part that needs to cancel out the antidiagonal 
part of the short window from N'ongf2 non-zero entries down to only NshOli2 
non-zero entries. Now that the antidiagonal part is the right length, it can be 
cancelled out by aligning the subsequent short block with the center of the 
right side of the transition block. The perfect reconstruction conditions then 
become that the Nshort/2 entries at the center of the right side of the transition 
block should be the same as the right side of a short block while the first 
N'ongf4 - Nshortl4 entries (which don't overlap with the short block should be 
equal to one (see Figure 18). Similarly, the transition block back from short 
blocks to long blocks has windows that are just the time-reverse of those for 
the transition from long to short. Figure 19 shows an example sequence of 
windows from long blocks to short blocks and back again to long blocks 
using the Edler solution. 

Left side of Long Window Right side of Short Window 

Figure 18. Structure of the Edler transition window from long blocks to short blocks 
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Figure 19. Transition between long and short blocks using Edler transition windows from 
[Bosi et al. 97] 

One last thing to note about the Edler transition block structure is its 
effect on data rate. In going from long blocks to short blocks the Edler 
transition block takes a length N(ong MDCT which requires passing N(ong/2 
frequency samples corresponding to the N(ong/2 new time samples needed for 
this block. However, each of the short blocks that overlaps the right side of 
the window (including the zero entries) also passes Nsho,/2 frequency 
samples corresponding to the same set of time samples resulting in an excess 
of N(ongl4 extra frequency samples. This implies that going through an Edler 
transition from long blocks to short blocks actually increases the data rate 
and the critical sampling property is lost in that region. However, in going 
through an Edler transition from short blocks to long blocks reduces the data 
rate exactly enough to cancel out any net increase in going from long blocks 
to short blocks and then back again to long blocks. The data rate reduction 
in going from short to long blocks results from that fact that 3N(ongf4 new 
time samples are needed to perform the length N(ong transition block MDCT 
while only N(ongl2 new frequency samples are passed by the block - a 
reduction of N(ongf4 frequency samples as required. The net result is that 
using Edler transition blocks to switch to short blocks only for the duration 
of transient behavior in the input signal (for which shorter blocks give better 
time resolution) and then going back to long blocks (with their better 
frequency resolution) keeps the coder critically sampled overall. 
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Applications of the Edler method are found in the MPEG Layer III and AAC 
coders. 

A second solution to the transition block problem was provided by the 
Dolby AC-2A team [Bosi and Davidson 92]. In the AC-2A solution, 
originally developed for ETDAC transforms, the transition windows from 
long to short are left sides of long windows on the left and right sides of 
short windows on the right (see Figure 20). The transition windows from 
short to long are the time-reverses of the windows from long to short. So 
how does time-domain aliasing cancellation come about? It comes about by 
changing the kernel of the MDCT transform. Namely, the MDCT is now 
carried out with length Y:z (N1ong + Nshort) with a phase term no = b/2 + Y:z 
where b is the length of the right side of the window, i.e. b = Nshort/2 for a 
transition from long to short and b = N1ongl2 for a transition from short to 
long. For this choice of phase, the MDCT followed by the IMDCT gives 
exactly the matrix structure needed to tie together the two parts of Figure 17 
(without any space between). As in the normal MDCT case, this fact can 
easily be verified by writing out the MDCT followed by the IMDCT as a 
matrix multiplication and then using the cosine orthogonality condition 

N/2-\ ~ 

L cos(~ (k +t)n)cos(2~ (k +t)m)=.if L (-I)P (On,m+pN + 0n,-m+PN) 
k=O p=~ 

Figure 12 earlier in this chapter showed an example sequence of windows 
from long blocks to short blocks and back again to long blocks using the 
AC-2A solution. 

One last thing to note about the AC-2A solution is that, like in the Edler 
solution, the data rate increases going from long blocks to short blocks but 
there is no net increase in overall data rate in following a subsequent return 
to long block operation. In going from long blocks to short blocks the AC-
2A transition block sends 1,4 (Nong + Nshort) frequency samples although it 
only uses Nshortl2 new time samples. The AC-2A transition block from short 
blocks to long blocks only sends 1,4 (N1ong + Nshort) frequency samples while it 
actually needed N1ongl2 new time samples for its MDCT. The net result is 
that using the AC-2A transition blocks to switch to short blocks only for the 
duration of transient behavior in the input signal also keeps the coder 
critically sampled overall. A variant of this method is utilized in AC-3 (see 
also Figure 4 in Chapter 14). In AC-3 the transition and short blocks equal 
half of the long block. and the overlap region for these blocks alternates 
between 0 and half of the long block length, so that b in the MDCT phase 
term no equals either 0 or N1ongl2. 
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Left side of Long Window Right side of Short Window 

Figure 20. Structure of the AC-2A transition window from long blocks to short blocks 

4.3 MDCT and PQMF Filter Banks 

While historically the PQMF and the MDCT filter banks were developed 
independently, [Malvar 92] showed how these approaches can be unified. In 
fact, Malvar showed that the MDCT is a special case of the PQMF filterbank 
with filter length N = 2K where K is the number of frequency channels. 
(Note that this relationship does not apply to the ETDAC). In this section 
we first rewrite the N=2K PQMF filterbank in terms of an overlap-and-add 
block transform. We then compare it with the MDCT to better understand 
what it means when we say that the MDCT is a PQMF filterbank. 

Recall that the PQMF filterbank was defined as a set of K paired analysis 
and synthesis filters hk[n] and gk[n], respectively, equal to 

hdn]=h[n]Cos({k+1)(n-(N;I))+(h] _ 
K for k-O, ... ,K-l 

gdn] = hlJN -1- n] 

for a particular phase term <h selected to ensure alias cancellation between 
adjacent frequency bands. The PQMF filterbank is then carried out by 
passing the input signal in parallel through each of the analysis filters hk[n]; 
down-sampling the result by a factor of K to keep the total data rate 
constant; quantizing, transmitting/storing, and dequantizing the output Yk[n]; 
up-sampling the recovered Yk[n] values by a factor of K; passing that through 
each corresponding synthesis filter gk[n]; and, finally, adding the outputs of 
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each of the K channels (see Figure J in the prior chapter). Let's explore in 
detail what this process looks like for the specific case of N=2K. 

If our input signal is x[n] then the action of filter hk[n] is the convolution 
of the input sequence and the filter impulse response. Down-sampling this 
result by a factor of K then just gives us the outputs of this process taken at 
points n that are multiples of K (i.e. n = iK for integer i). Therefore, we find 
that ydi] is equal to: 

N-l 

ydi ]= Lx[iK-m]hdm] 
m=O 

N-l 

= Lx[(i-2)K+I+n]hdN - 1- n] 
0=0 

where in the second line we made the change of variables to n = N-I-m and 
recognized that N = 2K. 

Suppose we choose to group our input signal x[n] into blocks of length N 
where each successive block is the input signal slid forward by K = NI2 
samples. We number our input samples so that the first non-zero value is 
defined as x[l] and we number the blocks such that the block with i=l 
contains the first K non-zero samples. In other words, we define the ilh block 
of the input signal xi[n] as the following: 

xj[n]=x[(i-2)K+I+n] forn=O, ... ,N-l 

Notice how block i=O ends with the last zero value x[O] while block i=1 goes 
up the Kth non-zero value x[K]. 

With this block definition we can rewrite the outputs of the analysis stage 
Yk[i] as the following: 

N-l 

ydi ]= LXi[n]hdN - 1- n] 
0=0 

Substituting the specific form of hk[n] for the PQMF filterbank into this 
expression gives that: 

ydi]= rh[N -1-n]x;[n]cos(2r:(k+tXn - (N;l))_(h) for k= ° , ... ,K-l 
n;() 

This expression shows us that the analysis stage of the N = 2K PQMF can be 
written as a block transform on blocks of input samples where each 
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successive block contains the next K = N/2 samples. After writing out an 
expression for the synthesis stage of the N = 2K PQMF, we return to this 
expression and compare it to the forward transform of the MDCT. 

In the synthesis stage of the PQMF, we up-sample each of the analysis 
channels Yk[i] by a factor of K, filter them with the corresponding synthesis 
filter gk[n], and sum the results. Up-sampling intersperses K-l zeros 
between each i value of Yk[i] in channel k. The synthesis filters in each k 
channel are only N = 2K samples long and so each new set of outputs from 
the filters will only feel the last two Yk[i] values from the analysis stage and 
their interspersed zeros. For example, when Yk[i] is the newest element fed 
to the kth synthesis filter (preceeded by the prior interspersed K-I zeros, Yk[i
I], and followed by K-I more zeros), the filter output will be Yk[i]gk[O]+ Yk[i
l]gk[K]. The next filter input will be the first zero interspersed after Yk[i] 
and the filter output will be Yk[i]gk[l]+ Yk[i-l]gk[K+l], etc. In other words, 
each new input value Yk[i] from the analysis stage will lead after up
sampling and filtering to K new outputs from each channel where the nth 
output is equal to Yk[i]gk[n]+ Yk[i-l]gk[K+n]. 

Adding up the channel outputs sums this over k and we find the 
following result for the ith block of K new outputs from the synthesis stage 
xj[n] : 

K-I 

xj[n] = ~,>k[i]gdn] + ydi -1]gk[K + n] for n = O, ... ,K-I 
k=O 

Notice that the first term in this sum applies the first K elements of the 
synthesis filters to the current Yk[i] synthesis stage inputs while the second 
turn applies the second half of the synthesis filters to the last set of synthesis 
stage inputs Yk[i-l]. 

We can get the same result by instead extending the length of xj[n]to N 
elements and filling it using only the current synthesis inputs Yk[i] if we then 
overlap and add the results of successive Xj [n] blocks. In specific, we 
instead define the extended Xj [n] as 

K-I 

xj[n] = ~>di]gdn] for n = O, ... ,N-I 
k=O 

and for each block of K synthesis inputs Yk[i] we output the first half of the 
extendedxj[n] added to the second half of the prior extended xj_l[n]. 
Rewriting this expression with the specific form of the PQMF synthesis 
filters leads to the following result: 
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xJnJ = h[N -\- nJI YdiJcos(2: (k +tXn - (N;I))_ <Pk) for n = O, ... ,N-I 
k=O 
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for the result of the synthesis stage prior to overlapping and adding. Notice 
again that this is a block transform from the block of K synthesis stage 
inputs Yk[i] onto a block of N outputs Xi [n] . 

Having rewritten an arbitrary N = 2K PQMF filterbank in terms of a pair 
of block transforms, we can compare the specific form of the MDCT 
transform to this and see how they are related. In particular, we would like 
to compare the pair of MDCT transform equations 

N-I 

Xj[k] = ~>j[n]w~[n]cos(~ (n + no)(k +1» for k = O, ... ,K-I 
n~O 

K-I 

xJn] = ~ w~[n]I Xj[k]cos(~ (n + no)(k + 1» for n = 0, ... ,N-l 
k~O 

to the pair of N = 2K PQMF transform equations 

ydiJ = I:h[N -\- nJxi[nJcos(~ (k +tXn - (N;l) )-<h) for n = 0, ... ,K-\ 
n=O 

Xi[nJ = h[N -\- nJIYdiJcos(~ (k +tXn - (N;I) )-<Pk) for k = O, ... ,N-l 
k~O 

We first note that the arguments of the cosines are identical if 

The MDCT required us to set no = N/4+ 112 in order to ensure time aliasing -
this implies that the MDCT has the same cosine as the N = 2K PQMF with a 
phase term <l>k equal to 

(h = - 3; (k + 1) 

For the MDCT to be a PQMF filterbank we need to have the phase term <l>k 
satisfy 
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<Pk - <h-I = 1- (2r + I) 

for integer r to ensure that aliasing terms are cancelled between adjacent 
frequency bands - clearly a condition met by the MDCT phase term. In fact, 
it turns out that the MDCT phase term cancels frequency aliasing between 
all pairs of frequency bands, not merely adjacent ones. We can therefore 
conclude that the MDCT does take the form of an N = 2K PQMF filterbank. 

Next we can relate the MDCT window functions to the prototype filter 
hen] for a PQMF filterbank. We should note that the outputs of the analysis 
stages are defined with slightly different normalizations and are related by 

Noting this change of normalization allows us to see that the MDCT has the 
same form as a PQMF filterbank when the MDCT windows are related to 
the PQMF prototype filter hen] through 

i ,fN 
w a [nl=-2- h[N-I- nl 

i ,fN 
W s [nl = -2-h[N -1- nl 

Notice that these relationships require that the MDCT analysis and synthesis 
windows be equal to each other. Now, for a time-invariant filterbank, i.e. for 
a single window type, perfect reconstruction requires that the MDCT 
analysis and synthesis windows be time reverses of each other. The MDCT 
with a time-invariant filterbank can only satisfy both of the window 
conditions with symmetric window functions. 

Finally, the MDCT requires the window condition to satisfy the perfect 
reconstruction condition that 

w~ [nl* w ~[nl+ w~-I [N / 2+ nl* w~-I[N / 2+ nl = 1 for n = O, ... ,N/2-1 

while a PQMF prototype filter is designed to satisfy the power 
complementarity condition: 

IH(OI2 + IH( -FsI2K+OI2 = 21F/ for 0 :-::; f :-::; F,/4K 

and required to be effectively zero beyond Ifl = FJ2K. We need to ask 
ourselves how, if at all, these conditions are related. 
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In the case where the MDCT windows are symmetric, they correspond to 
a symmetric PQMF prototype filter hen] that satisfies the following perfect 
reconstruction condition 

h[n]2 + h[n + N 12]2 = 41 N for n=O, ... ,NI2-1 

It can be shown that this perfect reconstruction condition implies the 
following power complementarity condition in the frequency domain: 

N-J 

t LIH(f+kFs /N)12 =2/F/ 
k=O 

Now if an MDCT window is well enough localized in the frequency domain 
that it has negligible power beyond If I = F/2K then we find that this 
condition is equivalent to the PQMF power complementarity condition other 
than a trivial difference in gain of lIN between the two cases. However, any 
window that satisfies the MDCT perfect reconstruction condition leads to 
perfect reconstruction even if it is not localized enough to satisfy the PQMF 
condition. For example, the sine window satisfies the MDCT conditions and 
leads to perfect reconstruction but is not localized enough to be a PQMF 
prototype filter. What we see is that the MDCT transform is a version of the 
N = 2K PQMF filterbank that produces exact perfect reconstruction while 
allowing a wider set of prototype filters than generally allowed in PQMF 
filter banks. 

In this section, we have tied together the two storylines of this and the 
previous chapter. We first met the MDCT as a transform that solves a 
number of problems in transform coding by allowing for 50% overlap 
without increasing the data rate. We have now seen that the MDCT is also a 
sub-band coding filterbank that allows for perfect reconstruction with lower 
cost filters than the PQMF due to its lesser requirements on stopband 
attenuation. The ease of window design (e.g., just use a sine or KBD 
window) and the ability to adapt the filterbank resolution by simply altering 
a single parameter (the window length N) have made the MDCT the 
transform of choice for most of the newer coders. 

4.4 Implementation of the MDCT via the FFT 

We have seen how the MDCT solves the data rate problem inherent in 
DFT coders, however, to be truly useful for implementation it needs to have 
a fast transform method so that the runtime doesn't grow like N2 for large 
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block sizes. In fact, the FFT can be leveraged to create a fast version of the 
MDCT through a rewriting of the transform as follows: 

N-l 

X[k] = L x[n]w[n]cose~ (n + no)(k + t)) 
n=O 

n=O 

This rewriting tells us that we can implement the forward MDCT by 
carrying out the following steps: 

1. "Pre-twiddle" the input samples by (complex) mUltiplying with the factor 

2. Perform an N-point FFT on the pre-twiddled data 
3. "Post-twiddle" the transformed data for k values from 0 to N/2-1 by taking 

the real part of the transformed data times the factor 

Notice that rather than growing like N2, the fast implementation runtime only 
grows like N*log2(N) (from the FFT, the pre- and post-twiddle operations 
only grow like N). 

Analogously, we can rewrite the inverse transformation to make use of 
the FFT as follows: 

N/2-1 

x'[n] = w[n]~ L X[k]cos(~ (n + no)(k + t)) 
k=O 

N-l 

= wLn]i1 LX[k]cos(~ (n + no)(k +t)) 
k=O 

N-\ .2. I 

= w[n] Re{i1 L X[k]eJN(n+no)(k+,)} 

k=O 

= 2w[n] Re{eiM(n+no) ~ I[X[k]ei-li'kno ~i-li'kn } 
k=O 
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This rewriting tells us that we can implement the inverse MDCT by 
carrying out the following steps: 

1. Pre-twiddle the frequency samples (note that we now go from k=O, ... ,N-I -
use X[N-I-k] = -X[k]for k ~ N/2) by (complex) multiplying with the factor 

2. Perform an N-point inverse FFf on the pre-twiddled data 
3. Post-twiddle the inverse transformed data by taking the real part of the 

inverse transformed data times the factor 

j*(n+no) 
e 

and then multiply by two times the synthesis window. 
Again we can notice that use of the FFf algorithm allows us to reduce the 
number of operations to only being of order N*log2(N). 

Please be aware that what we've seen in this section is the simplest 
example of converting the MDCT implementation from order N2 to order 
N*log2(N) but not necessarily the fastest. A bit of work can get the 
implementation even faster. The interested reader can refer to [Malvar 92], 
[Duhamel, Mahieux and Petit 91], and [Bosi 99]. 

5. SUMMARY 

In summary for this and the prior chapter, we have reviewed two 
approaches for parsing input signals into frequency components to be 
encoded: the sub-band filter bank approach where a PQMF is used to 
segment frequency components, and the transform approach where a 
modulated transform is used to segment frequency components. We have 
seen that the PQMF methods of creating large numbers of frequency 
channels rely on modulating a prototype low-pass filter into the appropriate 
frequency band location. The PQMF is utilized in the time to frequency 
mapping of MPEG-I and 2 Layers I and II (see Chapters II and 12). We 
have also seen that blocking effects require transform methods to window 
the input signals with smooth windows and to overlap-and-add the output 
data to reconstruct the signal. Finally, we have learned about the MDCT 
which can easily be seen as either a PQMF sub-band method or a type of 
windowed transform showing that these two approaches are just different 
faces of a single underlying multi-channel approach to signal processing. 
Moreover, the MDCT achieves perfect reconstruction without adding to 
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overall system data rate, and has a fast implementation allowing easy scaling 
up to large numbers of channels. The MDCT is utilized in the time to 
frequency mapping of MPEG-2 and 4 AAC (see Chapters 13 and 15) and 
AC-3 (see Chapter 14). A hybrid filter bank, which cascades the PQMF 
stage with an MDCT stage, is utilized in MPEG Layer III (see Chapter 9). 

In general, in the design of time to frequency mapping for audio coding, 
the main goal is to maximize the ability to separate the frequency 
components of the signal while minimizing the audibility of blocking 
artifacts. Critical sampling, although not a strict requirement, is highly 
desirable. Perfect reconstruction or nearly perfect reconstruction filter banks 
simplify the design of the coding systems. Time delay and computational 
complexity are also important factors in the choice of filter banks. The filter 
bank is a central step in coding systems, setting the stage for the extraction 
of redundancies and irrelevancies of the signal. Before examining in detail 
the allocation of the bit pool in order to achieve this goal, we turn our 
attention in the next chapter to models of the human ear so that we can better 
understand what signal components and quantization noise will not be 
audible in a signal. 
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7. EXERCISES 

a) MDCT: 
In this exercise you will implement a time-to-frequency mapping using the 
MDCT. You will verify that the mapping leads to perfect reconstruction and 
that the fast implementation is significantly faster than straightforward 
implementation. Your fast MDCTIIMDCT implementation will be useful 
for later exercises. 
1. Program functions to carry out the MDCT and IMDCT using the 

transform definitions. 
2. Use your MDCT/IMDCT functions to implement a 50% overlap 

analysis/synthesis system. Allow for arbitrary block sizes N and do 
your windowing using the sine window. 

3. Verify that your system leads to perfect reconstruction by testing it 
using N = 2048 length transforms and the following test signals: 
x[n] = cos(21tn/44.1) [1 kHz tone sampled at 44.1 kHz] 
x[n] = 8(n) [step function] 

4. Program new functions to carry out the MDCT and IMDCT using the 
FFT-based fast implementation. To do so, you will need a routine for 
implementing the FFTIIFFT. Source code for such routines is readily 
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available (e.g., see the Numerical Recipes book), but you will need to 
check that the conventions for sign (-j in the forward transform) and 
normalization factor (liN for inverse transform) are consistent with 
our usage. Verify that your new routines are correct by using them in 
your analysis/synthesis system with the above test signals. 

5. Compare the execution time of your analysis/synthesis system when 
using the fast implementation versus using the straightforward 
implementation. 

b) A Frequency Domain Audio Coder: 
In this exercise you will convert the audio coder you developed in Chapter 2 
into a frequency domain coder using the MDCT as a time-to-frequency 
mapping. 
1. Write an audio coder that reads in 16 bit PCM audio files, transforms 

sine-windowed blocks of N time samples into N/2 frequency 
components, quantizes those frequency components, packs and writes 
the quantized frequency components into coded files, reads your coded 
files, dequantizes and inverse transforms blocks of NI2 frequency 
components into N time samples, overlaps and adds the time samples 
with 50% overlap, and writes the decoded signal into a 16 bit PCM 
audio file you can play. Verify that your coder is bug-free by making 
sure that files coded using 16-bit midtread uniform quantization do not 
sound degraded when decoded. 

2. Test your codec on some sound samples using N=256 and N=2048 
while using 1) 4-bit midtread uniform quantization, 2) 4-bit midrise 
uniform quantization, 3) 8-bit midtread uniform quantization, and 4) 3 
scale bits, 5 mantissa bits mid tread floating point quantization. What 
compression ratios do you get? Describe the quantization noise you 
hear. How does the quantization noise differ from what you heard at 
the same quantization in the Chapter 2 coder? 



Chapter 6 

Introduction to Psychoacoustics 

1. INTRODUCTION 

In the introduction to this book, we saw that the last stage in the coding 
chain is the human ear. A good understanding of how the human ear works 
can be a powerful tool in the design of audio codecs. The general idea is that 
quantization noise can be placed in areas of the signal spectrum where it 
least affects the fidelity of the signal, so that the data rate can be reduced 
without introducing audible distortion. 

In this chapter, we examine the main aspects of psychoacoustics (the 
science that studies the statistical relationships between acoustical stimuli 
and hearing sensations) that are useful in the design of perceptual audio 
coders. The main goal of this chapter is to introduce the basic principles and 
data behind the masking models currently utilized in state-of-the-art audio 
coders. First, units for sound pressure level measurements and the range of 
human hearing are introduced. The hearing threshold and masking 
phenomena are discussed and their main empirical properties presented. We 
then examine the underlying mechanism of the hearing process and how the 
ear acts as a spectrum analyzer, analyzing sound in specific frequency units 
called critical bands. This will provide us with the foundation for 
developing psychoacoustic models, which link empirical masking data with 
the sound hearing sensation. 

M. Bosi et al., Introduction  to  Digital Audio  Coding  and Standards
© Kluwer Academic Publishers 2003
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2. SOUND PRESSURE LEVELS 

As we saw in Chapter 1, sound can be represented as a function of time. 
Sound reaches the human ear in the form of a pressure wave. It can be 
represented as the variation of the air pressure in time, pet), where the 
pressure is defined as force per unit area. The unit of pressure in the MKS 
system is the Pascal (Pa) where 1 Pa = 1 N/m2• Relevant values of sound 
pressure for audio applications vary between 10-5 Pa, which is close to the 
limits of human hearing at the most sensitive frequencies, and 102 Pa, which 
corresponds to the threshold of pain. 

To describe such a wide range of relevant sound pressures, we usually 
choose to work in logarithmic units and define the sound pressure level, 
SPL, in units of dB as 

SPL = 10 iog IO (p/Poi 

where Po = 20 1-1 Pa is roughly equal to the sound pressure at the hearing 
threshold for tone frequencies around 2 kHz [Zwicker and Fastl 90]. 

We often also describe sounds in terms of the sound intensity. The sound 
intensity, I, is the power per unit area in the sound wave and it is 
proportional to p2. The SPL (in units of dB) can also be calculated in terms 
of sound intensity as: 

SPL = 10 iog lO (1110) 

The intensity I is measured in MKS units in terms of W/m2 (lW = IN m/s) 
and the reference sound intensity 10 = 10-12 W/m2 corresponds to a wave with 
the reference pressure Po. 

3. LOUDNESS 

The hearing sensation that corresponds to sound levels is the loudness of 
the sound. The concept of loudness was first introduced by Barkhausen in 
the 1920s as a means to describe perceived sound intensities. The loudness 
level is defined as the level of a 1 kHz sound tone that is perceived as loud as 
the sound under examination for frontally incident plane fields. In general, 
the loudness of an audio signal depends on its duration and its temporal and 
spectral structure in addition to its intensity. The loudness unit is the phon, 
where the phon describes a curve of equal loudness as a function of 
frequency. It is interesting to note that the difference between values for the 
loudness measured in phones and values for the intensity measures in dB 
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decreases at high levels (see Figure I). For example a 1 kHz tone at 100 dB 
is perceived almost as loud as a 100 Hz tone at 100 dB, while 1 kHz tone at 
40 dB is perceived as about 20 dB louder than a 100 Hz tone at 40 dB 
[Fletcher and Munson 33]. It should be noted that, depending on how the 
equal loudness contours are measured, there might be differences in the data. 
Some of these differences can be accounted for by considering an 
attenuation factor necessary to produce equal loudness from frontally 
incident plane fields versus diffused sound fields [Zwicker and Fastl 90]. 

Figure 1. Loudness contours from [Fletcher and Munson 33]. 

4. HEARING RANGE 

The human ear can cover a wide range of SPLs. Figure 2 shows the 
hearing area of a typical human ear [Zwicker and Fastl 90]. The graph 
illustrates different SPL curves as function of frequency. The frequencies 
shown in the abscissa vary between 20 Hz and 20 kHz, which is generally 
considered the frequency range of audible sounds. It should be noted, 
however, that recent findings imply that particularly sensitive subjects can 
hear sounds at frequencies above 20 kHz. 
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The curve in the lower part of the graph represents the threshold in quiet, 
which is the level of audibility for pure tones in steady state conditions. The 
dotted line extending upwards from the threshold in quiet between 2 and 20 
kHz represents the hearing loss commonly seen in subjects exposed to loud 
sounds in the mid-range frequency region. The threshold of pain is the 
dashed line at the top of the diagram. The area between the threshold in 
quiet and the threshold of pain represents the human hearing range. 
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Figure 2. Hearing area from [Zwicker and Fast) 90] 
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Human speech typically falls into the frequency range comprised 
between 100 Hz and 8 kHz, and has SPLs ranging from about 30 dB up to 
around 70 dB, with typical conversation levels at values at about 50-60 dB. 
Music typically has a wider range in both frequency and SPLs than speech. 
For example, the Ao note in the piano is tuned at 27.5 Hz (Co is tuned at 
about 16 Hz) while the highest note of the piccolo is at a frequency of about 
8.4 kHz. Moreover, harmonics of musical instruments such as the violin and 
cymbals can reach frequencies above 15 kHz. The dynamic range for music 
typically varies between 20 dB and 95 dB. Around 100 dB is the onset of 
risk for hearing damage. At about 120 dB is the threshold of pain. 
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5. HEARING THRESHOLD 

The hearing threshold, or threshold in quiet, represents the lowest sound 
level that can be heard at a given frequency. Even in extremely quiet 
conditions, the human ear cannot detect sounds at SPLs below the threshold 
in quiet. This curve is extremely important for audio coding since frequency 
components in a signal that fall below this level are irrelevant to our 
perception of sound and therefore they do not need to be transmitted. In 
addition, as long as the quantization noise in frequency components that are 
transmitted falls below this level, it will not be detectable by the human 
hearing process. 

The threshold in quiet is also important in describing how loud we 
perceive sounds to be. In particular, the equal loudness contours display a 
shape that is nearly parallel to the threshold in quiet for low loudness levels 
(20 phones or below) suggesting that it is the difference between a sound and 
the threshold in quiet that determines the loudness for soft sounds. For loud 
sounds, the SPL itself plays a more important role in the determination of 
loudness. According to [Zwicker and Fast 90] the threshold in quiet 
corresponds to the equal loudness contour described by phon = 3. 

The threshold in quiet can be measured by recording the sound pressure 
level ofthe lowest sound level that elicits a listener's response that the sound 
is audible. The frequency dependence can be tracked by giving the test 
subject a switch which changes between continuously incrementing and 
continuously decrementing the sound pressure level of a test tone whose 
frequency is slowly sweeping from low to high values and vice-versa. The 
test subject is instructed to switch to decrementing the sound pressure level 
when the sound is definitely audible and to switch to incrementing the 
pressure level when the sound is definitely inaudible. Typically, the results 
produce zigzag curves such as that in Figure 3 from [Zwicker and Fast! 90] 
with a range of roughly 6 dB between the point where the sound is definitely 
audible and where it is definitely inaudible. The average of the two curves 
marking the top and bottom of the zigzags is used as the assessment of the 
threshold in quiet. According to [Zwicker and Fast! 90], the reproducibility 
of the threshold in quiet for a single subject is within ±3 dB. In addition, the 
frequency dependence of this curve has been recorded in a similar manner 
for many subjects with normal hearing. 
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Figure 3. Sample results from an experimental assessment of the threshold in quiet from 
[Zwicker and Fast! 90] 

The frequency dependence of the hearing threshold has been fairly well 
established. The threshold is relatively high at low frequencies. It is at an 
SPL of around 40 dB at 50 Hz and almost drops to 0 dB by 500 Hz. It 
remains almost constant near 0 dB between 500 and 2 kHz. It can then drop 
below zero between 2 kHz and 5 kHz for listeners with good hearing. For 
frequency above 5 kHz, there are peaks and valleys that vary from subject to 
subject but the threshold is generally rising. Typically, the threshold then 
increases quite rapidly above 16 kHz. While for frequencies below 2 kHz 
the threshold seems to be largely independent of age, above 2 kHz it is 
shifted to a value almost 30 dB higher at 10 kHz for 60-year old subjects 
than for 20 year old subjects. Figure 4 shows a comparison plot of the 
threshold in quiet for test subjects of various ages [Zwicker and Fastl 90]. 
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Figure 4. Threshold in quiet for listeners of different ages from [Zwicker and FastI 90) 
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As shown in [Terhardt 79], one can obtain a good approximation of the 
threshold in quiet by utilizing the following frequency dependent function: 

A(f) I dB = 3.64(f I kHzr{)·8 - 6.5e -06(flkHz-3.3)' + 10-3 (f I kHz) 4 

where the threshold in quiet is modeled by taking into consideration the 
transfer function of the outer and middle ear and the effect of the neural 
suppression of internal noise in the inner ear (see also Section 9 later in this 
chapter). A graph of the frequency dependence of this function can be seen 
in Figure 5. Notice how it reasonably mimics the behavior of the 
experimentally derived curves shown in the prior figures. 

One should be aware that, in order to be able to compare a signal with the 
threshold in quiet, it is important to know the exact playback level of the 
audio signal. In general, the playback level is not known a priori in the 
design of a perceptual audio coder. A common assumption is to consider the 
playback level as such that the smaIl est possible signal represented in the 
audio coding system under design will be presented close to 0 dB. This is 
equivalent to aligning the fairly flat bottom of the threshold in quiet, 
corresponding to frequencies of roughly 500 Hz to 2 kHz, with the energy 
level represented by the least significant bit of the spectral signal amplitude 
in the system under design. 
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6. THE MASKING PHENOMENON 

Masking of soft sounds by louder ones is part of our everyday 
experience. For example, if we are engaged in a conversation while walking 
on the street, we typically cease conversation while a loud truck passes since 
we are not be able to hear speech over the truck noise. This can be seen as 
an example of masking: when the louder masking sound (the truck) occurs at 
the same time as the maskee sound (the conversation), it is no longer 
possible to hear the normally audible maskee. This phenomenon is called 
simultaneous or frequency masking. Another example of frequency masking 
occurs when in a performance one loud instrument (masker) masks a softer 
one (maskee) that is producing sounds close in frequency. In general 
simultaneous masking phenomena can be explained by the fact that a masker 
creates an excitation in the cochlea's basilar membrane (see also next 
sections) that prevents the detection of a weaker sound exciting the basilar 
membrane in the same area. 

Masking can also take place when the masker and the maskee sounds are 
not presented simultaneously. It this case we refer to this phenomenon as 
temporal masking. For example, in speech a loud vowel preceding a plosive 
consonant tends to mask the consonant. Temporal masking is the dominant 
effect for sounds that present transients, while frequency masking is 
dominant in steady state conditions. For example, in coding sharp 
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instrument attacks like those of castanets, glockenspiel, temporal masking 
plays a more important role than frequency masking. 

6.1 Frequency Masking 

Figure 6 illustrates frequency masking. In this figure, we see a loud 
signal masking two other signals at nearby frequencies. In addition to the 
curve showing the threshold in quiet, the figure shows a curve marked 
"masking threshold"2 that represents the audibility threshold for signals in 
the presence of the masking signal. Other signals or frequency components 
that are below this curve will not be heard when the masker is present. In 
the example shown in Figure 6, the two other signals fall below the masking 
threshold, so they are not heard even though they are both well above the 
threshold in quiet. Just like with the threshold in quiet, we can exploit the 
masking thresholds in coding to identify signal components that do not need 
to be transmitted and to determine how much inaudible quantization noise is 
allowed for signal components that are transmitted. 

Masker 
dB 

Masked Signals 

Figure 6. Example of frequency masking 

6.2 Temporal Masking 

In addition to simultaneous masking, masking phenomena can extend in 
time outside the period when the masker is present. Masking can occur prior 
to and after the presence of the masker. Accordingly, two types of temporal 

2 We shall refer to "masking thresholds" or "masking curves" to indicate the elevation of the 
hearing threshold due to the presence of one or more masker sounds. We define the 
"masked threshold" or "masked curve" as the combination of the hearing threshold and the 
masking threshold. 
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masking are generally encountered: pre-masking and post-masking. Pre
masking takes place before the onset of the masker; post-masking takes 
place after the masker is removed. Pre-masking is somewhat an unexpected 
phenomenon since it takes place before the masker is switched on. In 
general, temporal masking can be explained if we consider the fact that the 
auditory system requires a certain integration time to build the perception of 
sound and by the fact that louder sounds require longer integration intervals 
than softer ones. 

dB Masker On 
0( • 

Pre-Masking Post-Masking 
Simultaneous / Masking 

~( . ( 
-20ms Time 

-200ms -150ms 

Figure 7. Example of temporal masking 

In Figure 7, an example of temporal masking is shown [Zwicker and 
Fastl 90]. A 200 ms masker masks a short tone burst with very small 
duration relative to the masker. In the figure pre-masking lasts about 20 ms, 
but it is most effective only in the few milliseconds preceding the onset of 
the masker. There is no conclusive experimental data that link the duration 
of pre-masking effects with the duration of the masker. Although pre
masking is a less dramatic effect than post or simultaneous masking, it is 
nevertheless an important issue in the design of perceptual audio codecs 
since it is related to the audibility of "pre-noise" or "pre-echo" effects caused 
by encoding blocks of input samples. Pre-noise or pre-echo distortion 
occurs when the energy of the coded signal is spread in time prior to the 
onset of the attack. This effect is taken into consideration in the design of 
several perceptual audio coding systems both in terms of psychoacoustics 
models and analysis/synthesis signal adaptive filter design. 

Figure 8 from [Bosi and Davidson 92] shows an example of a castanet 
signal (Figure 8 (a)) in which encoding with a fixed block length led to a 
spread of energy in the 5 ms prior the onset of the transient (Figure 8 (b)). 
This effect is perceived as a distortion sometimes described as a "double 
attack" and it is known in literature as pre-echo. Although some pre
masking effects can last on the order of tens of milliseconds, pre-masking is 
most effective only a few milliseconds. It should also be noted that pre
masking is less effective with trained subjects. In order to correct for pre-
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echo distortion, adaptive filter banks (see Chapter 5) are often adopted in 
perceptual audio coding. Figure 8 (c) shows the reduction in pre-echo 
distortion that resulted from using an adaptive filter bank to adjust the block 
length in the presence of the transient signal. 

Post-masking is a better understood phenomenon. It reflects the gradual 
decrease of the masking level after the masker is switched off. Post
masking is a stronger effect than pre-masking and has a much longer 
duration. In Figure 7 post-masking lasts about 150 ms. Post-masking 
depends on the masker level, duration, and relative frequency of masker and 
probe. 

0.004 0.008 0.012 0.016 0.020 
.... neIs 

a Original castaneI signal 

o 0.004 0.016 0.020 
second. 

b castanel COded 81128 kblslch 
wHh 512 point fixed block coder 

0.004 0.016 0.020 

c castanet COded 81128 kblslch 
wnh adaptive blOCk COder 

Figure 8. Example of pre-echo effects in a transient signal coded with a fixed (b) versus 
adaptive (c) resolution filter bank; the original signal is shown in (a). In (b) the amount of 

energy spread in time prior to the onset of the signal is perceived as pre-echo distortion and it 
is not temporally masked by the signal from [Bosi and Davidson 92] 

An important question in the design of perceptual audio coders is how to 
account for masking effects. Masking curves are typically measured only 
for very simple maskers and maskees (either pure tones or narrow-band 
noise). In perceptual audio coding the assumption is that masking effects 
derived from simple maskers can be extended to a complex signal. Masking 
thresholds are computed by: a) identifying masking signals in the frequency 
domain representation of the data, b) developing frequency and temporal 
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masking curves based on the characteristics of each identified masker, and c) 
combining the individual masking curves with each other and with the 
threshold in quiet to create an overall threshold representing audibility for 
the signal. This overall audibility threshold or masked threshold is then used 
to identify inaudible signal components and to determine the number of bits 
needed to quantize audible signal components. 

7. MEASURING MASKING CURVES 

Masking curve data are collected by performing experiments on subjects 
that record what are the limits of audibility for a test signal (or probe) in the 
presence of a masking signal. The masking threshold varies dramatically 
depending on the nature and the characteristics of the masker and of the 
probe. Typically, for frequency masking measurements, the probe and the 
masker can be a sinusoidal tone or narrow band noise of extended duration. 
For temporal masking measurements, a short burst or sound impulse is used 
as a probe and the masker is of limited duration. 

One way to measure a masking curve is to use a variant of the tracking 
method described for measuring the threshold in quiet. In this case, 
however, a masking signal will be played as the subject tries to identify the 
audibility limits for test signals. Figure 9 shows an example of the masking 
curve that results from such an experiment. In this example, the masking 
signal is a pure tone a 1 kHz with an SPL of 60 dB. The lower zigzag line is 
the threshold in quiet for this test subject measured in the absence of the 
masking signal. The upper zigzag line is the audibility threshold when the 
masking signal is playing. Notice how masking in this case is strongest at 
frequencies near the masker's frequency and how it drops off quickly as the 
test signal moves away from the masker frequency in either direction - these 
features tend to be quite general results. Notice also that the highest 
masking level is roughly 15 dB below the masker level and that the drop-off 
rate is much quicker moving to low frequencies than moving to higher ones 
- these features tend to be very dependent on the specifics of both the 
masking signal and the test signal. In the following sub-sections, we 
summarize some of the main features of frequency masking curves as 
determined by similar experiments on test subjects. 
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Figure 9. Sample results from experimental determination of a masking curve from [Zwicker 
and Fast! 90] 

7.1 Narrow-Band Noise Masking Tones 

In the case of narrow-band noise masking tones, the masker is noise with 
a bandwidth equal to or smaller than a critical band (see the definition of 
critical bandwidth in the next sections). Figure 10 shows measured masking 
thresholds for tones masked by narrow-band noise centered at 250 Hz, 1 
kHz, and 4 kHz [Zwicker and Fastl 90]. The noise bandwidths are 100 Hz, 
160 Hz, and 700 Hz respectively. The slopes of the noise above and below 
the center frequency are very steep, dropping more than 200 dB per octave. 
The level of the masker is 60 dB, computed based on the noise intensity 
density and bandwidth. The horizontal dashed line shows the noise level in 
the figure. The solid lines in the figure show the levels of the pure tone 
probe in order to be just audible. The dashed curve at the bottom represents 
the threshold in quiet. 

The masking threshold curves present different characteristics depending 
on the frequency of the masker. While the frequency dependence of the 
threshold masked by the I kHz and the 4 kHz narrow-band noise are similar, 
the 250 Hz threshold appear to be much broader. In general, masking 
thresholds are broader for low frequency maskers (when graphed, as is 
customary, using a logarithmic frequency scale). The masking thresholds 
reach a maximum near the masker center frequency. Their slopes can be 
very steep ascending from low frequencies (over 100 dB per octave), and 
present a somewhat gentler decrease after reaching the maximum. This steep 
rise creates the need for very good frequency resolution in the analysis of the 
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audio signals, otherwise errors will be made in the evaluation of masking 
effects. 
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Figure 10. Masking thresholds for 60 dB narrow-band noise masking tones from [Zwicker 
and Fastl 90] 

The difference in level between a signal component and the masking 
threshold at a certain frequency is sometimes referred to as the signal to 
mask ratio, SMR. Higher SMR levels indicate less masking. The minimum 
SMR between an masker and the masking curve it generates is a very 
important parameter in the design of audio coders. The minimum SMR 
values for a given masker tend to increase as the masker frequency increases. 
For example, in Figure 10 we have a minimum SMR value of 2 dB for a 
noise masker with 250 Hz center frequency, 3 dB for the 1 kHz masker, and 
5 dB for the 4 kHz masker. 

In Figure 11, the masking threshold for narrow-band noise centered at 1 
kHz is shown for different masker SPLs. The minimum SMR stays constant 
at around 3 dB for all levels. At frequencies lower than the masker, each of 
the measured masking curves has a very steep slope that seems to be 
independent of the masker SPL. In contrast, the slope in the masking curve 
towards higher frequencies shows noticeable sensitivity to the level of the 
masking signal. Notice that the slope appears to get shallower as the 
masking level is increased. In general, the frequency dependence of the 
masking curves is level sensitive, i.e. non-linear. The dips in Figure 11 are 
caused by non-linear effects in the hearing system driven by the high level of 
the noise masker and the probe. 
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Figure 11. Masking thresholds for a 1 kHz narrow-band noise masker at different levels 
masking tones from [Zwicker and Fast! 90) 

7.2 Tones Masking Tones 

Although much of the early work on masking phenomena was based on 
measurements of pure tones masking pure tones, such masking experiments 
present greater difficulties than noise masking experiments due to the 
phenomenon of beating. In such experiments, the subjects also sometimes 
perceive additional tones besides the masker and probe. The most dominant 
effect, the beating effect, is localized in the neighborhood of the masker 
frequency and it depends on the masker level. Figure 12 shows the results 
for a 1 kHz masker at different levels. In this particular experiment 
[Zwicker and Fast! 90] the probe was set 90 degrees out of phase with the 
masker when it reached the frequency of 1 kHz (equal to the masker 
frequency) to avoid beating in that area. It is interesting to notice that at low 
masking levels, there is a greater spreading of the masking curves towards 
lower frequencies than higher frequencies. The situation is reversed at high 
masking levels, where there is a greater spreading towards high frequencies 
than lower frequencies. 

In general, the minimum masker SMRs are larger in experiments on 
tones masking tones than in experiments of noise masking tones. For 
example, we can see that the 90 dB masking curve in Figure 12 peaks at 
roughly 75 dB implying a minimum SMR of roughly 15 dB. These types of 
results have been reproduced many times and the implication seems to be 
that noise is a better masker than tones. This phenomenon is referred to in 
the literature as the "asymmetry of masking" [Hellmann 72 and Hall 97]. 
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Figure 12. Masking thresholds for a 1 kHz tone masker at different levels masking tones from 
[Zwicker and Fast! 90] 

7.3 Narrow-Band Noise or Tones Masking Narrow-Band 
Noise 

Masking models exploited in perceptual audio coding rely upon the 
assumption that quantization noise can be masked by the signal. Often the 
codecs' quantization noise is spectrally complex rather than tonal. In this 
context, therefore, a suitable masking model might be better derived from 
experimental data collected in the case of narrow-band noise probes masked 
by narrow-band noise or tonal maskers. Unfortunately, there is very little 
data in the literature that address this issue. In the case of narrow-band noise 
probes masked by narrow-band noise maskers, phase relationships between 
the masker and the probe largely affect the results. According to [Hall 98] 
and based on [Miller 47], measurements for wide-band noise lead to 
minimum SMRs of about 26 dB. 

In the case of tones masking narrow-band noise, early work by Zwicker 
and later others [Schroeder, Atal and Hall 79 and Fielder 87], suggest that 
the minimum SMR levels are between 20 and 30 dB. In general, it appears 
that when the masker is tonal, the minimum SMR levels are higher than 
when the masker is noise-like. 

8. CRITICAL BANDWIDTHS 

In measuring frequency masking curves, it was discovered that there is a 
narrow frequency range around the masker frequency where the masking 
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threshold is flat rather than dropping off. For example, Figure 13 shows the 
masking threshold for narrow-band noise at 2 kHz centered between two 
tonal maskers at 50 dB SPL as a function of the frequency separation of the 
two maskers. Notice how the masking threshold is flat at about 33 dB until 
the maskers are about 150 Hz away from the test tone (i.e. about 300 Hz 
away from each other) at which point it drops-off rapidly. 
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Figure 13. Threshold of a narrow-band noise centered between two sinusoidal maskers at a 
level of 50 dB as a function of the frequency separation between the two sinusoids from 

[Zwicker and Fastl 90] 

Figure 14 shows analogous results for the case where the maskers are 
narrow-band noise and the test signal is tonal. Notice how the masking 
threshold is again flat until the maskers are about 150 Hz away from the 
maskee. Notice also that the level of masking at low frequency separations 
from these noise maskers is at roughly 46 dB (versus only roughly 33 dB 
when tonal maskers are employed), consistently with our earlier findings that 
noise-like maskers provide greater masking than tonal maskers. The main 
point, however, is that there is a so-called "critical bandwidth" around a 
masker that exhibits a constant level of masking regardless of the type of 
masker. The concept of critical bandwidth was first introduced by Harvey 
Fletcher in 1940 [Fletcher 40]. Fletcher's measurements and assumption led 
him to model the auditory system as an array of band-pass filters with 
continuously overlapping pass-bands of bandwidths equal to critical 
bandwidths. Experiments have shown that the critical bandwidth depends on 
the frequency of the masker. However, the exact form of the relationship 
between critical bandwidth and masker frequency is somewhat subject to 
controversy since differing results have been obtained using different types 
of measurements. 
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Figure 14. Threshold of a sinusoid centered between two narrow-band noise maskers at a 
level of 50 dB as a function of the frequency separation between the cut-off frequencies of the 

noise maskers from [Zwicker and Fastl 90] 

Since the early work by Fletcher, different methods for measuring critical 
bandwidths have been developed and the resulting empirical data seem to 
differ substantially for frequencies below 500 Hz. In the pioneering work of 
Fletcher and later work by Zwicker [Zwicker 61], the critical bandwidth was 
estimated to be constant at about 100 Hz up to masker frequencies of 500 
Hz, and to be roughly equal to 1/5 of the frequency of the masker for higher 
frequencies. An analytical expression that smoothly describes the variation 
of critical bandwidth llf as a function of the masker center frequency fc is 
given by [Zwicker and Fastl 90]: 

This formula for critical bandwidths is widely accepted as the standard 
description of them. 

8.1 Equivalent Rectangular Bandwidth 

A number of articles including Greenwood [Greenwood 61], Scharf 
[Scharf 70], Patterson [Patterson 76], Moore and Glasberg [Moore and 
Glasberg 83] disagree in their estimation of the critical bandwidths with that 
of the standard formula, especially below 500 Hz. In particular, Moore and 
Glasberg measure a quantity they define called the "equivalent rectangular 
bandwidth", ERB, which should be equivalent to the critical bandwidth. 
Their experiments were designed to provide an estimate of the auditory filter 
shapes by detecting the threshold of a sinusoidal signal masked by notched 
noise as a function of the width of the notch. The ERB as defined by Moore 
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and Glasberg is about 11 % greater than the -3 dB bandwidth of the auditory 
filter under consideration. The ERB, as a function of the center frequency fe 
of the noise masker, is well fit by the function [Moore 96]: 

ERB/Hz = 24.7 (4.37 fe/kHz + 1) 

The ERB function seems to provide values closer to the critical 
bandwidth measurements of Greenwood [Greenwood 61] than of Flecther or 
Zwicker at low frequencies. Figure 15 compares the standard critical 
bandwidth formula with Moore's ERB formula and with other experimental 
measurements of critical bandwidth. Notice that the critical bandwidths 
predicted by the ERB formula are much narrower at frequencies below 500 
Hz than implied by the standard critical bandwidth formula. Since the 
critical bandwidth represents the width of high-level masking from a signal, 
narrower critical bandwidth estimates put stronger requirements on a coder's 
frequency resolution. 
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Figure 15. Critical bandwidth function and the ERB function plotted versus different 
experimental data for critical bandwidth from [Moore 96) 

In summary, we have found that we can measure frequency masking 
curves for various masking and test signals. In all cases, we find that the 
masking curve levels are highest at frequencies near the masker frequency 
and drop off rapidly as the test signal frequency moves more than a critical 
bandwidth away from the masker frequency. We have seen that the shape of 
the masking curves depend on the frequency of the masker and its level. We 
have also seen that the masking curves depend strongly on whether or not 
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the masker is tonal or noise-like, where we have seen that much greater 
masking is created by noise-like maskers. We now turn to describe how 
hearing works to help us interpret the empirical data we have just seen and 
create models that link them together. 

9. HOW HEARING WORKS 

A schematic diagram of the human ear is shown in Figure 16. The outer, 
middle, and inner ear regions are shown. The main role of the outer ear is to 
collect sound and funnel it down the ear canal to the middle ear via the 
eardrum. The middle ear translates the pressure wave impinging on the 
eardrum into fluid motions in the inner ear's cochlea. The cochlea then 
translates its fluid motions into electrical signals entering the auditory nerve. 

We can distinguish two distinct regions in the auditory system where 
audio stimuli are processed: 
1. The peripheral region where the stimuli are pre-processed but retain their 

original character 
2. The sensory cells which create the auditory sensation by using neural 

processing. 
The peripheral region consists of the proximity zone of the listener where 
reflections and shadowing take place through the outer ear and ear canal to 
the middle ear. The sensory processing takes place in the inner ear. 

Outer Ear 

Converts air movement 
in ear canal to fluid 

movement in cochlea. 

Collects sound and funnels it 
down to ear drum. Physical size 
tuned to sounds around 4 kHz. 

Inner Ear 
Cochlea separates sounds by 
ti·equency. Hair cells convert 

fluid motion into electrical 
impulses in auditory nerve. 

Figure 16. Outer, middle, and inner ear diagram. 
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9.1 Outer Ear 

A sound field is normally approximated by a plane wave as it approaches 
the listener. The presence of the head and shoulders then distorts this sound 
field prior to entering the ear. They cause shadowing and reflections in the 
wave at frequencies above roughly 1500 Hz. This frequency corresponds to 
a wavelength of about 22 cm, which is considered a typical head diameter. 
The outer ear and ear canal also influence the sound pressure level at the 
eardrum. The outer ear's main function is to collect and channel the sound 
down to the eardrum but some filtering effects take place that can serve as an 
aid for sound localization. The ear canal acts like an open pipe of length 
roughly equal to 2 cm, which has a primary resonant mode at 4 kHz (see 
Figure 17). One can argue that the ear canal is "tuned" to frequency near its 
resonant mode. This observation is confirmed by the measurements of the 
threshold in quiet, which shows a minimum, i.e. maximum sensitivity, in 
that frequency region. 

--=:~ --
Figure 17. Outer ear model as an open pipe of length of about 2 em 

9.2 Middle Ear 

The middle ear converts air movement in the ear canal into fluid 
movement in the cochlea. The hammer, anvil, and stirrup combination acts 
as lever and fulcrum to convert large, low-force displacements of air 
particles against the eardrum into small, high-force fluid motions in the 
cochlea. To avoid loss of energy transmission due to impedance mismatch 
between air and fluid, the middle ear mechanically matches impedances 
through the relative areas of the eardrum and stirrup footplate, and with the 
leverage ratio between the hammer and anvil arm. This mechanical 
transformer provides its best match in the impedances of air and cochlear 
fluid at frequencies of about 1 kHz. The stirrup footplate and a ring-shaped 
membrane at the base of the stirrup called the oval window provide the 
means by which the sound waves are transmitted into the inner ear. The 
frequency response of the filtering caused by the outer and middle ear can be 
described by the following function [Thiede et al. 00]: 
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A'(f) I dB = 0.6 * 3.64([ IkHz)-{)·8 - 6.5e-{)·6(flkHz-33)2 + 10-\[ I kHz) 

9.3 Inner Ear 

The main organ in the inner ear is the cochlea. The cochlea is a long, 
thin tube wrapped around itself two and a half times into a spiral shape. 
Inside the cochlea there are three fluid-filled channels called "scalae" (see 
Figure 18 for a cross sectional view): the scala vestibuli, the scala media, 
and the scala tympani. The scala vestibuli is in direct contact with the 
middle ear through the oval window. The scala media is separated from the 
scala vestibuli by a very thin membrane called the Reissner membrane. The 
scala tympani is separated from the scala media by the basilar membrane. 
From the functional point of view, we can view the scala media and the scala 
vestibuli as a single hydro-mechanical medium. The important functional 
effects involve the fluid motions across the basilar membrane. The basilar 
membrane is about 32 mm long and is relatively wide near the oval window 
while it becomes only one third as wide at the apex of the cochlea where the 
scala tympani is in direct fluid contact with the scala vestibuli through the 
helicotrema. The basilar membrane supports the organ of Corti (see Figure 
18), which contains the sensory cells that transform fluid motions into 
electrical impulses for the auditory nerve. 

Scala Vestibuli --t#--_ 
Scala Media ---,bT---_ 

Spiral Ganglion 

Scala Tympani _....l;;~~-- Organ of Corti 

Basilar Membrane 

Figure 18. Cross section of the cochlea showing the scalae and organ of Corti. (Courtesy of 
Professor Alec N. Salt of Washington Unversity. Used with Permission.) 

Figure 19 shows a functional diagram of the (unwrapped) cochlea [Pierce 
83]. Fluid is displaced in the scala media/scala vestibuli by movements in 
the oval window driven by the middle ear. This fluid displacement is 
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equalized by movement of the basilar membrane or, for low frequencies, by 
fluid flow into the scala tympani through the helicotrema. Finally, the scala 
tympani fluid flow is equalized by offsetting movements of the round 
window, which is localized at the base of the scala tympani. The delay 
between the presentation of the signal at the oval window and the response 
of the basilar membrane increases with distance from the oval window. 
Such delay varies between less than 1 ms for high frequencies to above 5 ms 
for low frequencies. 

(h.1 \\'inJow Basilar membrane 

Pushed in ----;. 

Pushed our - 1====~=-'-:~7;'-=~-==:::~7 
Round windo\\' 

Fluid 

Basal end of cochlea 

Figure 19. Functional diagram of the cochlea from [Pierce 83] 
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Georg von Bekesy [von Bekesy 60] experimentally studied fluid motions 
in the inner ear and proved a truly remarkable result previously proposed by 
von Helmholtz: the cochlea acts as a spectral analyzer. Sounds of a 
particular frequency lead to basilar membrane displacements with a small 
amplitude displacement at the oval window, increasing to peak 
displacements at a frequency-dependent point on the basilar membrane, and 
then dying out quickly in the direction of the helicotrema. Figure 20 shows 
the displacement envelope that results from the motion of the basilar 
membrane in response to a 200 Hz frequency tone. 
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---- Apex 

Distance olong cochlea 

Figure 20. Traveling wave amplitude of the basilar membrane displacement relative to a 200 
Hz frequency tone; the solid lines indicate the pattern at different instants in time; the dotted 

line indicates the displacement envelope from [von Bekesy 60] 

The experiments by von Bekesy showed that low frequency signals 
induce oscillations that reach maximum displacement at the apex of the 
basilar membrane near the helicotrema while high frequency signals induce 
oscillations that reach maximum displacement at the base of the basilar 
membrane near the oval window. Figure 21 shows the relative displacement 
envelopes of the basilar membrane for several different frequencies (50, 200, 
800, 1600 Hz tones). Figure 22 shows the locations of the displacement 
envelope peaks for differing frequencies along the basilar membrane from 
[Fletcher 40]. In this sense, it is often said that the cochlea performs a 
transformation that maps sound wave frequencies onto specific basilar 
membrane locations or a "frequency-space" transformation. The spectral 
mapping behavior of the cochlea is the basis for our understanding of the 
frequency dependence of critical bandwidths, which are believed to 
represent equal distances along the basilar membrane. 
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Figure 21. Plots of the relative amplitude of the basilar membrane response as a function of 
the basilar membrane location for different frequency tones; the left side of the plot is in 
proximity of the oval window, the right side of the plot is in proximity of the helicotrema 

from [Pierce 83] 

2000 

3000 

Figure 22. Frequency sensitivity along the basilar membrane from [Betcher 40]. Copyright 
1940 by the American Physical Society 

On the basilar membrane, the organ of Corti transforms the mechanical 
oscillations of the basilar membrane into electrical signals that can be 
processed by the nervous system. The organ of Corti contains specialized 
cells called "hair cells" that translate fluid motions into firing of nerve cells 
in the auditory nerve. In the organ of Corti two types of sensory cells are 
contained: the inner and outer hair cells. Each hair cell contains a hair-like 
bundle of cilia that move when the basilar membrane oscillates. When the 
cilia move, ions are released into the hair cell. This release leads to 
neurotransmitters being sent to the attached auditory nerve cells. These 
nerve cells then send electrical impulses to the brain, which lead to the 
hearing sensation. The inner ear is connected to the brain by more than 
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30,000 auditory nerve fibers. The characteristic frequency of a fiber is 
determined by the part of the basilar membrane where it innervates a hair 
cell. Since the nerve fibers tend to maintain their spatial relation with one 
another, this results in a systematic arrangement of frequency responses 
according to location in the basilar membrane in all centers of the brain. 

At high intensity levels, the basilar movement is sufficient to stimulate 
multiple nerve fibers while much fewer nerve fibers are stimulated at lower 
intensity levels. It appears that our hearing process is able to handle a wide 
dynamic range via non-linear effects (i.e., dynamic compression) in the inner 
ear. Structural differences between the inner and the outer hair cells indicate 
different functions for the two types of sensory cells. The inner hair cells 
play the dominant role for high-level sounds (the outer hair cells being 
mostly saturated for these levels). The outer hair cells play the dominant 
role at low levels, heavily interacting with the inner hair cells. In this case, 
the outer hair cells act as a non-linear amplifier to the inner hair cells with an 
active feedback loop and symmetrical saturation curves, allowing for the 
perception of very soft sounds. 

It should be noted that in the inner ear a certain level of neural 
suppression of internal noise takes place. The effects of this noise 
suppression can be modeled by the following filtering of the signal [Thiede 
et al. 00]: 

Internal Noise / dB = 0.4 * 3.64(f / kHz) -0.8 

Summing this expression with that of the transfer function for the outer 
and middle ear, A'(f), one can derive the analytical expression A(f) that fits 
the experimental data for the threshold in quiet. 

Finally, it is worth mentioning that at low frequencies, the nerve fibers 
respond according to the instantaneous phase of the motion of the basilar 
membrane while at frequencies above 3500 Hz there is no phase 
synchronization. Comparing intensity, phase, and latency in each ear, we are 
provided physical clues as to a sound source's location. 

10. SUMMARY 

In this chapter we have learned that the human ear can only hear sound 
louder than a frequency dependent threshold. We have seen that we can hear 
very little below 20 Hz and above 20 kHz. We extensively discussed the 
phenomenon of masking. Masking is one of the most important 
psychoacoustics effects used in the design of perceptual audio coders since it 
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identifies signal components that are irrelevant to human perception. 
Masking depends on the spectral composition of both the masker and 
maskee, on their temporal characteristics and intensity, and it can occur 
before and after the masking signal is present (temporal masking) and 
simultaneously with the masker. The experiments we have reviewed show 
that frequency masking is most pronounced at the frequency of the masker 
with rapid drop off as the frequency departs from there and that the ear has a 
frequency dependent limit to its frequency resolution in that masking is flat 
within a "critical band" of a masker. We discussed how the auditory system 
can be described as a set of overlapping band-pass filters with bandwidths 
equal to critical bandwidths. Examining how the hearing process works, we 
found that air oscillations at the eardrum are converted into oscillations of 
the basilar membrane, where different parts of the basilar membrane are 
excited depending on the frequency content of the signal, and then into 
auditory sensation sent to the brain. In the next chapter, we will show how 
to put these observations to use in audio coding. 
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12. EXERCISES 

Masking Curves Framework: 
In this exercise you will develop the framework for computing the masking 
curve for a test signal. We will return to this test signal in the next chapters 
to complete the masking curve calculation and utilize these results to guide 
the bit allocation for this signal. 
1. Use an FFT to map a I kHz sine wave with amplitude equal to 1.0 into 

the frequency domain. Use a sample rate of 48 kHz and a block length 
of N = 2048. Do your windowing using a sine window. How wide is 
the peak? What is the sum of the spectral density IX[k]12 over the peak? 
Try dividing this sum by N2/8, how does the result relate to the 
amplitude of the input sine wave? (Check that you're right by changing 
the amplitude to Y2 and summing over the peak again.) If we define this 
signal as having an SPL of 96 dB, how can you estimate the SPL of 
other peaks you see in a test signal analyzed with the same FFT? 

2. Use the same FFT to analyze the following signal: 

x[n] == Au cos(2n:440n / Fs) + Al cos(21t554n / Fs) 

+ A 2 cos(2n:660n / Fs) + A 3 cos(21t880n / Fs) 

+ A 4 cos(21t4400n / Fs) + As cos(21t8800n / Fs ) 

where Au = 0.6, Al = 0.55, A2 = 0.55, A3 = 0.15, A4 = 0.1, As = 0.05, 
and Fs is the sample rate of 48 kHz. Using the FFT results, identify the 
peaks in the signal and estimate their SPLs and frequencies. How do 
these results compare with what you know the answer to be based on the 
signal definition? 

3. Apply the threshold in quiet to this spectrum. Create a graph comparing 
the test signal's frequency spectrum (measured in dB) with the threshold 
in quiet. 



Chapter 7 

Psychoacoustic Models for Audio Coding 

1. INTRODUCTION 

In the prior chapter we learned about the limits to human hearing. We 
learned about the threshold in quiet or hearing threshold below which sounds 
are inaudible. The hearing threshold is very important to coder design 
because it represents frequency-dependent levels below which quantization 
noise levels will be inaudible. The implication in the coded representation of 
the signal is that certain frequency components can be quantized with a 
relatively small number of bits without introducing audible distortion. 

We learned about the phenomenon of masking where loud sounds can 
cause other normally audible sounds to become inaudible. Frequency 
masking effects temporarily raise the hearing threshold in certain areas of the 
spectrum near the masker, allowing for larger levels of quantization noise 
localized in these portions of the spectrum to be inaudible. 

Finally, we learned that the ear acts as a spectrum analyzer mapping 
frequencies into critical bandwidths, which correspond to physical locations 
along the basilar membrane. This suggests that some frequency dependant 
aspects of human hearing may be more naturally represented in terms of 
physical distance along the basilar membrane rather than in terms of 
frequency. 

In this chapter we present a heuristic model of simultaneous masking 
based on our limited ability to distinguish small changes in the basilar 
membrane excitation. Such a model is characterized by the "shape" of a 
sound excitation pattern, defined as the activity or excitation produced by 
that sound in the basilar membrane, and by the minimum amount of 
detectable change in this excitation pattern. These parameters correspond to 

M. Bosi et al., Introduction  to  Digital Audio  Coding  and Standards
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the shape of the masking curves relative to a sound masker and the minimum 
SMR we discussed in Chapter 6. Moreover, this model suggests that 
masking curves are represented more naturally in terms of distances along 
the basilar membrane rather than in terms of frequency. We define a 
critical-band rate known as the Bark scale to map frequency values onto 
values in the Bark scale and then represent masking curves on that scale. 
We then introduce the main masking curves shapes or "spreading functions" 
commonly used in audio coding and discuss how they are used to create an 
overall masking threshold to guide bit allocation in an audio coder. 

2. EXCITATION PATTERNS AND MASKING 
MODELS 

In this section we consider a heuristic model to explain frequency 
masking. Consider a signal that creates a certain excitation pattern in the 
basilar membrane. Since our sound intensity detection mostly operates on a 
logarithmic scale of sensation, we will assume that: 

1) We "feel" the excitation pattern in dB units and 
2) We cannot detect changes in the pattern that are smaller than a 

certain threshold value, ilLmin, measured in dB. 
We define the mapping z(f) from frequency to space to identify the 

location z along the basilar membrane that has the largest excitation from a 
signal of frequency f. The change in dB of the excitation pattern at basilar 
membrane location z resulting from the addition of a second, un correlated 
test signal will be equal to: 

( 2 2) 2 (A(Z)2+ B(Z)2) t.L(z) = 10 log 10 A(z) + B(z) -10 log 10 A(z) = 10 log 10 2 
A(z) 

10 B(z)2 

'" 10(10) A(z)2 

where A(z), B(z) are excitation amplitudes at location z of the original signal 
and the test signal, respectively. 

A test tone will become unmasked when the peak of its excitation pattern 
causes ilL to exceed the threshold value ilLmin• We would expect the peak of 
a signal's excitation pattern to be proportional to the signal intensity, so that 
at the z corresponding to the peak excitation of the test signal we should 
have that 
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B(Z(f»)2 

A(Z(f»)2 
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where lA, IB are the intensities of the original signal A and the test signal B, 
respectively, F(z) is a function describing the shape of the original signal's 
excitation pattern along the basilar membrane, and z(f) represents the 
location along the basilar membrane of the peak excitation from a signal at 
frequency f. The function F(z) is normalized to have a peak value equal to 1 
at the z corresponding to the peak of the original signal's excitation pattern. 

At the point where the test signal just becomes unmasked we have that 

~L = 10 IB 
min In(10) I A F(z(f») 

or equivalently that 

(In(lO) ) IB = IA IO~Lmin F(z(f)) 

In units of SPL this can be written as 

( In(lO) ) ( ) SPL B =SPL A + 10 log 10 IO~Lmin +101og lO F(z(f)) 

where the fact the F(z) is normalized to peak at one implies that the last term 
will have a peak value of zero. Test signals at levels below SPLB will be 
masked by the masker A. In other words, the above equation shows that the 
masking curve relative to the masker A can be derived at each frequency 
location from the SPL of the masker A by: 

a) Down-shifting it by a constant that depends on ~Lnun evaluated for 
the masker A and 

b) Adding a frequency dependent function that describes the spreading 
of the masker's excitation energy along the basilar membrane. 

The down-shift described by the second term of the equation represents the 
minimum SMR of the masker. We saw in the last chapter that it depends 
both on the characteristics of the masker, namely whether it is noise-like or 
tone-like, and its frequency. The last term in the equation is usually referred 
to as the masker "spreading function" and it is determined based on 
experimental masking curves. 

We now turn to characterizing the mapping from frequency f onto basilar 
membrane distance z and see how the representation of masking curves is 
greatly simplified when shown in terms of this scale rather than frequency. 
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Then we present models commonly used to describe the spreading function 
and minimum SMR in creating a masking curve from a single masking 
component. Finally we address the issue of how to combine the masking 
curves from multiple maskers. 

3. THE BARK SCALE 

The critical bandwidth formula introduced in the last chapter gives us a 
method for mapping frequency onto a linear distance measure along the 
basilar membrane. Assuming that each critical bandwidth corresponds to a 
fixed distance along the basilar membrane, we can define the unit of length 
in our basilar distance measure z(t) to be one critical bandwidth. This unit is 
known as the "Bark" in honor of Barkhausen, an early researcher in the field. 

The critical bandwidth formula represents the quantity df/dz at each 
frequency point f, which just tells us that it represents the change in 
frequency per unit length along the basilar membrane. We can invert and 
integrate this formula as a function of f to create a distance mapping z(t). 
We call this mapping function z(t) the "critical band rate". We can 
approximate the critical band rate z(f) using the following expression 
[Zwicker and Fastl 90]: 

z I Bark = 13 arctan(O.76 f II kHz) + 3.5 arctan(f 17.5 kHz)2 ) 

Table I shows the frequency ranges corresponding to each unit of basilar 
distance up to an upper frequency of 15,500 Hz, which is near the upper 
limit of human hearing. The frequency range corresponding to each unit of 
basilar distance is called a "critical band" and the Bark scale measure z 
represents the critical band number as a function of critical band lower 
frequency fl. If we assume that the basilar membrane is about 25 critical 
bands long, then clinical measurements showing that the membrane is 
actually about 32 mm long imply that each critical band represents roughly 
1.3 mm in basilar membrane distance. 

Table 1. Critical bands and corresponding lower frequency fJ, upper frequency fu, center 
frequency fc and critical bandwidth, M from [Zwicker and Fast! 90] 
z f, fu fc M z f, fu fc M 
(Bark) (Hz) (Hz) (Hz) (Hz) (Bark) (Hz) (Hz) (Hz) (Hz) 

0 0 100 50 100 13 2000 2320 2150 320 
100 200 150 100 14 2320 2700 2500 380 

2 200 300 250 100 15 2700 3150 2900 450 
3 300 400 350 100 16 3150 3700 3400 550 
4 400 510 450 110 17 3700 4400 4000 700 



Chapter 7: Psychoacoustic Models for Audio Coding 183 

z f, fu fc M z f, fu fc M 
(Bark) (Hz) (Hz) (Hz) (Hz) (Bark) (Hz) (Hz) (Hz) (Hz) 

5 510 630 570 120 18 4400 5300 4800 900 
6 630 770 700 140 19 5300 6400 5800 llOO 
7 770 920 840 150 20 6400 7700 7000 1300 
8 920 1080 1000 160 21 7700 9500 8500 1800 
9 1080 1270 II 70 190 22 9500 12000 10500 2500 
10 1270 1480 1370 210 23 12000 15500 13500 3500 
11 1480 1720 1600 240 24 15500 
12 1720 2000 1850 280 

4. MODELS FOR THE SPREADING OF MASKING 

Given the transformation between frequency and the Bark scale, we can 
see how masking looks when transformed to frequency units that are linearly 
related to basilar membrane distances. Not surprisingly, the masking curve 
shapes are much simpler to describe when shown in the Bark scale. For 
example, Figure 1 shows the excitation patterns that arise from narrow-band 
noise maskers at various frequencies. Excitation patterns are derived from 
experimental masking curves by shifting them up to the SPL of the masker 
and then graphing them on the Bark scale. The slopes towards low 
frequencies are fairly independent of the masker center frequency at roughly 
27 dB per bark. The upper slopes are steeper for frequencies below 200 Hz, 
but remain constant above that frequency. Compare the similarity of shape 
across all these curves with how different the curves looked in Figure 10 of 
Chapter 6 using normal frequency units. The transformation to the Bark 
scale suggests that much of the shape change in masking curves with masker 
frequency is an artifact of our measurement units - if we define the 
frequency dependence of our masking curve in the Bark scale then the shape 
is fairly independent of masker frequency. 



184 Introduction to Digital Audio Coding and Standards 

160 0.07 0.25 OS 8 

5dB I 
'§ 40 \ 
.~ \ 
'" 

o 2 4 6 8 10 12 14 16 18 20Bork 24 
critical-bond rate 

Figure 1. Excitation patterns for narrow-band noise signals centered at different frequencies 
and at a level of 60 dB from [Zwicker and Fastl 90] 

Although we can reasonably assume that the excitation pattern is 
independent of frequency when described in terms of the Bark scale, we 
cannot necessarily make a similar assumption for the level dependence. For 
example, Figure 2 shows the excitation patterns from 1 kHz narrow-band 
noise at various masker levels. Notice how the shape changes from 
symmetric patterns at low levels to very asymmetric ones at higher levels. 
For levels below 40 dB the slopes are symmetrical dropping at about 27 dB 
per bark while at higher levels the slope towards higher frequencies ranges 
from about -5 dB per bark for a noise masker at 100 dB to -27 dB per bark 
for a noise masker at less than 40 dB. 
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Figure 2. Excitation patterns for narrow-band noise signals centered at I kHz and at different 
levels from [Zwicker and Fastl 90] 
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As a first approximation, a representation of the spreading function that 
can be utilized to create excitation patterns is given by a triangular function. 
We can write this spreading function in terms of the Bark scale difference 
between the maskee and masker frequency dz = z(fmaskee) - z(fmasker) as 
follows: 

where LM is the masker's SPL and 9(dz) is the step function equal to zero for 
negative values of dz and equal to one for positive values of dz. Notice that 
dz assumes positive values when the masker is located at a lower frequency 
than the maskee and negative values when the masker is located at a higher 
frequency than the maskee. In Figure 3, this spreading function is shown for 
different levels of the masker LM. 
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Figure 3. Spreading function described by the two slopes derived from narrow-band noise 
masking data for different levels of the masker 

There are a number of other spreading functions found in the literature. 
For example Schroeder [Schroeder, Atal and Hall 79], suggested the use of 
the following analytical function for the spreading function: 

10 logIOF(dz) = 15.81 + 7.5 (dz + 0.474) - 17.5 0+ (dz + 0.474)2)1f1 

This spreading function was used in some of the earliest works on perceptual 
coding applied to speech signals. A similar spreading function was later 
adopted in ISO/lEe MPEG Psychoacoustic Model 2. Figure 4 shows a plot 
of the Schroeder spreading function. It should be noted that this spreading 
function is independent of the masker level. Ignoring the dependence of the 
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spreading function on the masker level allows for the computation of the 
overall masking curve as a simple convolution operation between F(z) and 
the signal intensity spectrum rather than a multiplication of (potentially) 
different spreading functions with the different masking components of the 
signal expressed in dB units and then an addition of the different 
components spread intensities. The advantage of the Schroeder approach is 
that the result of the convolution incorporates an intensity summation of all 
maskers' contributions, so that there is no need to perform an additional sum 
to obtain the final excitation pattern (see also next sections). 

Schroeder Spreading Function 
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Figure 4. Schroeder spreading function 

A modification of the Schroeder spreading function was later introduced 
that takes the masker level into consideration as follows: 

1 

- (17.5 - I(LM , f)(1 + (dz + 0.474)2)., 

where the level adjustment function I(LM,f) is defined as 

I(LM,f) = min {5 1O(Lm-96)/lO df/dz, 2}. 

which also has a slight frequency dependence due to the variation of critical 
bandwidth df/dz with frequency. As shown in Figure 5, the effect of the 
modification is to include a dependence of the spreading function on the 
masker level. In this case, and consistently with the experimental data, 
increasing the level of the masker translates in a decrease of the slopes of the 
spreading function, i.e. increased masking. 
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Modified SchroederSpreading Function 
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Figure 5. Modified Schroeder spreading function (solid lines) compared with the original 
level-independent Schroeder spreading function (dashed lines) 

The ISO/lEe MPEG Psychoacoustic Model 2 spreading function (see 
Figure 6), which is derived from the Schroeder spreading function, is given 
by 

10 log 10 (F(dz»)= 15.8111389 + 7.5 * (1.05 *dz + 0.474) -17.5 * 

JI.0+(1.05*dz+0.474)2 +8* MIN(O, (1.05 *dz-0.5)2 -

2 * (1.05 * dz - 0.5» 

Model 2 Spreading Function 
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Figure 6. Basic MPEG Psychoacoustic Model 2 spreading function compared with the 
Schroeder spreading function for a masker with an SPL of 80 dB 
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Another example of a spreading function is given by the function adopted 
in ISO/IEC MPEG Psychoacoustic Model 1: 

{
-17dZ+0.15LM (dz-I)9(dz-l) fordz<':O 

10log (F(dz,L »)= 
10 M _ (6 + 0.4 L M) I dz 1-(11 + 0.4 LM)(I dz I-I) 9<1 dz I-I) for dz < 0 

Figure 7 shows the ISO/IEC MPEG Psychoacoustic Model 1 spreading 
function. Notice how this spreading function starts symmetric at low levels 
while has a great deal more masking at higher frequencies than lower 
frequencies when the masker level is high. The two-piece linear spreading 
function for upper and lower frequencies in Model 1 is meant to mimic the 
masking data for tones masking tones (see also Figure 12 in Chapter 6). 
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Figure 7. Two-piece linear spreading function for upper and lower frequencies adopted in 
ISO/IEe MPEG Psychoacoustic Modell 

In Figure 8 a comparison of the three approaches described above for the 
spreading function relative to an 80 dB masker is shown. Model 1 spreading 
function allows for a larger amount of upward spreading of masking than the 
triangular function or the Schroeder function. From Figure 8, it is clear that, 
of the three spreading functions introduced, the triangular offers the most 
conservative approach to determine irrelevancies in the signal. 
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Figure 8. Comparison of three different approaches for the spreading function relative to an 
80 dB masker 

The spreading functions shown in Figure 8 do not depend upon the 
masker center frequency. While this is correct as a first approximation, there 
appears to be some frequency dependence according to some experimental 
data. For example, the masking slope towards higher frequencies is less 
shallow for masker frequencies below 200 Hz than for frequencies above 
that value. A frequency dependence that reflects this behavior is built in the 
following triangular approximation to the spreading function introduced by 
[Terhardt 79]: 

In Figure 9 the Terhardt spreading function for different masker center 
frequencies is shown. Notice that the spreading functions are superimposed 
in the bark scale to facilitate the comparison. The Terhardt spreading 
functions is adopted in objective perceptual measurement models see for 
example [Thiede et al. 00] (see also Chapter 10). 
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Figure 9. Terhardt spreading function for different masker center frequencies superimposed at 
8 Bark 

5. MASKING CURVES 

We have seen empirically that the peak of the masking curve is shifted 
down from the masker SPL by an amount that depends on the type of 
masker. Our understanding in terms of excitation patterns relates this 
downward shift to the minimum changes in excitation pattern ~Lmin that we 
can detect. By looking at experimental values for the difference between the 
masker level and the maximum threshold value, one can get a feel for how 
~Lmin varies with different types of signals. For example, Zwicker suggested 
a value of I dB for ~in. Adopting this value implies that the peak of the 
masking curve should be about 6 dB below the SPL level of the masker. 
This value reflects experimental data for narrow-band noise masking tones. 
Moore suggested a value of ~in equal to 0.1 dB as more appropriate, 
corresponding to a difference of about 16 dB between the masker and the 
maskee levels. This value is close to experimental data for tone maskers. 

A number of factors should be considered in modeling the offset between 
the peak of the masking curve and the masker SPL. First, from experimental 
data, our ability to detect changes in excitation level is reduced at low 
frequencies, i.e. the difference in peak level between masker and masking 
curve increases with increasing frequency. Second, given the asymmetry of 
masking, depending on whether the masker is noise-like or tone-like this 
difference is bigger or smaller, noise being a "better masker". Finally, when 
the masker is a complex sound, information can be combined from several 
parts of the excitation pattern to improve the detection of the maskee. 
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In Figure 10 a simple masking curve derived from the triangular 
spreading function is shown. First the masker level LM is evaluated. The 
masker level LM is then convolved with the triangular spreading function to 
reflect the spreading of excitation energy along the basilar membrane. 
Finally a down-shift by A is applied to predict the masking threshold relative 
to the masker under examination. 

dB Masker of level Lm 

Bark 

Figure 10. Example of a predicted masking threshold for the masker of level Lm 

For example, in [Jayant, Johnston and Safranek 93] the difference A in the 
case of a tone-like signal masking a noise-like signal and in the case of a 
noise-like signal masking a tone-like signal are given respectively by: 

~tone masking noise = 14.5 + z dB 

~ noise masking tone = C dB 

where C varies between 3 and 6 dB depending upon the experimental data. 
Notice, however, that according to the data presented in Figure 10 of 
Chapter 6 there appears to be some degree of frequency dependence of the A 
even in the case of noise masking tones. In general, depending on the 
nature of the masker, A assumes different values. It is a good exercise to test 
the design of the coder varying A to optimize the coder output. 

Typically, audio sounds may contain several tone-like and noise-like 
components. Once the different components are identified at a certain time 
interval, the individual masking patterns are derived and the relative masking 
thresholds are computed by shifting masking patterns down by the 



192 Introduction to Digital Audio Coding and Standards 

appropriate amount Ll. We discuss next how these thresholds are combined 
to create a global masked threshold. 

6. "ADDITION" OF MASKING 

In general, when a complex sound is presented to the ear, we bear the 
concurrent effects of more than one single masker. As a first approximation, 
we can identify the individual masking components of the signal on a critical 
band scale and create their respective masking curves as if they acted 
independently from each other. The issue then becomes how should we 
combine these masking curves together at particular frequency locations. 

A natural way to expect these masking curves to combine is to assume 
that their intensities simply sum up. In this case, two masking curves of 
equal intensity would combine to give a combined effect 3 dB higher than 
either curve. Another plausible addition rule is to assume that the highest 
masking curve dominates at each frequency location. In this case, two equal 
masking curves would just lead to a combined effect equal to the maximum 
value of the two curves at each frequency location. Either of these cases can 
be described according to the summation formula 

1 

(
N-l Ja 

IN = ~ I~ 

where IN represents the intensity of the masking curve that results from the 
combination of N individual masking curves with intensities In for n = 0, ... , 
N-I, and a is a parameter that defines the way the curves add. In this 
equation, setting a = 1 corresponds to intensity addition while taking the 
limit as a ~ 00 corresponds to using the highest masking curve. Setting a to 
values between 1 and 00 gives results intermediate to these two cases. One 
could also choose to set a lower than 1, in which case the combined effect of 
two equal maskers is greater than the sum of their intensities, however one 
would need to be careful because this sum rule becomes ill-defined as a 
approaches zero. How should we set a in a coder? Of course, the way to 
decide is to turn to the experimental literature for the effects of maskers 
addition. 

Some studies in the literature, see for example [Lufti 83], suggest that 
"addition" of masking for maskers of comparable intensities is best 
described using values of a "" 0.33, implying that two equal masking curves 
have a combined effect equal to a single masking curve with an intensity 8 
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times either curve. Such a result follows rules closer to the addition of 
specific loudnesses rather than the addition of intensities and it is quite 
surprising. Further review of the literature, shows numerous experimental 
results where an increased amount of masking with respect to intensity 
summation of the single maskers was detected, see for example [Green 67]. 
In these experiments, the combined effect produced 6 to 14 dB more 
masking than simple intensity addition of the two equal-level maskers would 
predict. This empirical result was observed for both narrow-band noise and 
sinusoidal maskers, independently of the maskers absolute level, and for 
cases of up to four maskers [Lufti 83]. It should be noted that there is not 
complete agreement in the literature on this subject but the fact that maskers 
over-add in at least some cases does seem to be a real empirical effect. 

Figure 11 shows the implication of using Lufti' s value of 0: "" 0.33 for 
adding two masking curves of various intensities. The curve shows how 
many dB higher the combined masking curve is above the greater of the two 
masking added curves for various relative intensities. Notice that two equal 
curves combine equivalently to a single curve about 9 dB higher (rather than 
3 dB higher as expected from intensity addition). In fact, adding a second 
masker about 20 dB below a masker is roughly equivalent to doubling the 
intensity of the first masker. It should be noted however, that most of the 
experiments directly test the area around 0 dB difference in masking curves. 
The rest of the curve is based on extrapolating these results using 0: = 0.33 
for adding maskers with higher-level differences. 
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Figure 11. Lufti's model for the addition of two masking curves 



194 Introduction to Digital Audio Coding and Standards 

Another issue to be aware of is the implication of adopting the 
summation formula for the addition of multiple (i.e., more than two) 
masking curves. Lufti [Lufti 83] cites experiments using 4 maskers that are 
better fit using the summation with a value of ex = 0.33 than by intensity 
addition. Figure 12 shows how the results extend to arbitrary numbers of 
maskers. In Figure 12 the summation formula for ex "" 0.33 is compared with 
intensity addition for combining the effects of various numbers of equal 
intensity masking curves. Notice that 10 maskers combine to be equivalent 
to a masking curve 30 dB higher than each individual curve. Simpleminded 
use of this addition formula would suggest the nonsensical result that a large 
number of maskers could combine to mask themselves - an effect in which 
if you make enough noise and you can't hear it any more. The answer to this 
apparent paradox has to do with the integrative effects of critical bands 
(discussed below) wherein we learn that nearby frequencies are integrated in 
their impacts on masking by the ear. In other words, although you can 
subject the ear to an arbitrary number of tone sources, the ear will not deal 
with all of the tones as independent maskers when their separation in 
frequency is less than a critical bandwidth. 
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Figure 12. Implications of Lufti's model for the addition of large numbers of maskers 

A number of psychoacoustics models in the literature, for example 
ISOIIEC MPEG Psychoacoustic Models 1 and 2, sum the intensities of the 
different masking components, i.e., a value for ex equal to one is adopted. In 
some other cases, for example Dolby AC-2 and AC-2A (see also Chapter 
14), the maximum value of the different masking components is retained, i.e. 
a value of ex ~ 00 is adopted. In [Baumgarte 95] the non-linear summation 
model is applied to ISO/IEC MPEG Psychoacoustics Model 2 with ex = 0.33. 
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A non-linear model for the addition of masking is also applied for sound 
quality measurement systems, see for example [Beerends and Stemerdink 
92] and [Thiede et al. 00]. In [Thiede et al. 00] the value for ex is set to 0.4. 

It should be noted that the non-linear addition of masking models 
described above doesn't take into consideration cases where the maskers 
happen to be very close in frequency. In these instances, other phenomena 
like beating may cause masking to behave in a very different fashion and, in 
particular, to unmask some of the regions that are considered below their 
separate masking curves. In the latter case, current models may be 
erroneous in the description of the perceived signal. 

Typically, audio sounds may contain several tone-like and noise like 
components. Once the thresholds are combined to create a global masked 
threshold, the threshold of hearing is also taken in consideration to derive the 
masked threshold for the signal during that time interval. Often in 
perceptual audio coding, the maximum value between the global masked 
threshold and the threshold of hearing is retained (see for example ISO/IEC 
MPEG Psychoacoustic Model 2 and AC-3, Chapters 11 and 14) as the 
masked threshold for the signal at that time interval. Portions of the signal 
below the masked threshold are considered irrelevant to the signal 
representation. 

7. MODELING THE EFFECTS OF NON· 
SIMULTANEOUS (TEMPORAL) MASKING 

In addition to simultaneous masking, perceptual models exploit also the 
effects of non-simultaneous or temporal masking. Modeling of frequency 
masking effects was described in detail in the previous sections. Modeling 
of temporal masking takes into consideration a time-sliding window. 
According to the experimental data described in Chapter 6, Section 5.2, a 
weighting function of time, which assigns a larger weight to events that 
occur near the center of the window as opposed to events that occur near its 
edges, is employed. It is in general assumed that this temporal smoothing 
occurs after the auditory filtering, i.e., it is applied to the signal spectrum, 
resulting in a smoothed version in time of the output signal. Examples of 
temporal windows can be found in [Plack and Moore 90, Moore 96]. 
Depending on the time resolution of the analysis filters used in the frequency 
representation of the signal, it may be possible to apply both backward and 
forward masking or forward masking only, where the time resolution needed 
to apply backward masking is very high, typically of the order of 
milliseconds. For example, in [Thiede et al. 00] a raised cosine FIR and a 
first order IIR low-pass filters are utilized to model backward and forward 
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masking respectively. The time constant for the FIR filter was set at eight 
ms to mimic a backward masking of about two ms. The time constant 't for 
the IIR was set as follows: 

where fc is the center frequency of the auditory filter corresponding to the 
masker, 'tmin = 4 ms and 'tlOO = 50 ms. 

In addition to temporal smoothing, in perceptual audio coding, a measure 
of the temporal characteristics of the input signal is evaluated and utilized to 
adapt the analysis/synthesis properties of the overall system as described in 
Chapter 6, Section 5.2. 

8. PERCEPTUAL ENTROPY 

Once the masked threshold is computed, the masked level values can be 
used to appropriately allocate quantization noise. It is assumed that the 
coding noise within a critical band will not be audible as long as the SNR 
resulting from an R-bit quantization of the signal in that critical band is 
higher than the SMR. Johnston [Johnston 88] introduced the concept of 
perceptual entropy to define the average minimum number of bits per 
frequency sample needed to code a signal without introducing any 
perceptual difference with respect to the original signal. Given a signal 
intensity, I, and the relative intensity of the masked threshold, IT, at each 
frequency line fi , the perceptual entropy (PE) for the signal at a determined 
time interval can be expressed as: 

PE=- I max O,log2 __ i_ "'- Ilog2 1+ 1 N-I 1 [I(f »)1 1 N-I [ 

N i=O IT (f i ) N i=O 

where N is the number of the frequency lines in the signal representation. 
As shown in the above expression, the PE represents the logarithm of a 
geometric mean of the threshold-weighted energy across the frequency 
block. The perceptual entropy measure gives the lower bound estimate for 
the perceptual coding of audio signals based on the signal time-frequency 
analysis and the computed masked threshold. 
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9. MASKED THRESHOLD AND ALLOCATION OF 
THE BIT POOL 

In Figure 13, a simple example for different quantization SNR for a 
signal partially masked by a stronger one to its right is shown. The goal of 
bit allocation is to make sure that bits are allocated so that the SNR is greater 
than the SMR across the spectrum. The difference between the SMR and the 
SNR is referred to as the noise to mask ratio, NMR, and gives an indication 
of the rate of distortion with respect to the computed masked threshold (see 
Figure 13). Given a certain bit budget, when there are extra bits, they are 
allocated across the spectrum to create a coding margin. When there are not 
enough bits, bits are allocated to minimize the overall (positive) deviation 
between SMR and SNR or NMR. 
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Figure 13. Example of different SNR values allocated to a signal component versus masked 
threshold 

In Figure 14 an example of a masked threshold and the associated bit 
allocation that introduces only "inaudible" quantization noise is shown for a 
mono signal with sinusoidal components at 440, 554, 660, 880, 4400, 8800 
Hz sampled at 48 kHz. The signal analysis is performed by applying an FFf 
with a 2048-point sine window. The SPL curve shows the strength of the 
original signal. The spreading function adopted for the computation of the 
masking threshold (indicated by the line "mask" in Figure 14) is the two
slope function shown in Figure 3. The value selected for A is 15 dB. The 
masked threshold is computed as the maximum of the individual 
components masking thresholds and the threshold of hearing, corresponding 
to applying the summation rule with (J;:=.oo. The curve labeled "bits" shows 
the minimum number of bits allocated to the signal in order to keep the 
quantization noise below the masked threshold. In the next chapter, we 
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describe how to optimally allocate bits given instead a fixed data rate 
constraint for generic audio signals. 
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Figure 14. Example of masked threshold and bit allocation for a signal with sinusoidal 
components at 440, 554, 660, 880, 4400, 8800 Hz 

10. SUMMARY 

In this chapter we have presented the main aspects of masking models 
used in the design of audio coders. While there is not complete agreement in 
literature on all aspects of auditory modeling, psychoacoustics tools 
represent a powerful aid in the coding of audio signals. By improving the 
masking models used by a coder, one can improve the quality of the codec at 
a given data rate. In this chapter we have seen that masking models are 
much simpler when defined using the Bark scale of frequency rather than in 
terms of frequency itself. We have discussed how to add up the effects of 
multiple maskers in a signal (although there is not complete agreement on 
this in the literature) to combine with the hearing threshold to get an overall 
masked threshold that can be used to guide quantization and bit allocation in 
an audio coder. In the next chapter we discuss how to use the masked 
thresholds developed here to optimally distribute the bit pool available. 
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12. EXERCISES 

Masking Curves: 
In this exercise you will develop masking curve for a test signal. We return 
to the test signal utilized in the exercise of Chapter 6: 

x[n] = Ao cos(21t440n / Fs) + Al cos(21t554n / Fs) 

+ A 2 cos(21t660n / F,) + A 3 cos(27t880n / Fs) 

+ A 4 cos(21t4400n / Fs) + AS cos(27t8800n / Fs) 

where Ao = 0.6, Al = 0.55, A2 = 0.55, A3 = 0.15, A4 = 0.1, As = 0.05, and 
Fs is the sample rate of 48 kHz. 
1. Using the FFT results and the identified peaks in the signal and their 

SPLs and frequencies, define a masking model and specify its 
parameters (spreading function and down-shift). Recall that masking 
models are simpler to define in the Bark scale. 

2. Use the masking model to define masking curves for the different 
components of the test signal. 

3. Create a masked threshold that combines the effects of all masking 
components and threshold in quiet and create a graph comparing the test 
signal's frequency spectrum (measured in dB) with the masked curve. 

4. Are any of your signal peaks going to be masked? How about the rest of 
the frequency spectrum? What is the signal to mask ratio (SMR) of any 
of the unmasked signal peaks? Assuming 6 dB per bit, how many bits of 
resolution are needed for each unmasked signal peak for the resulting 
quantization noise to be inaudible, i.e., below the masked curve? 



Chapter 8 

Bit Allocation Strategies 

1. INTRODUCTION 

The most common approach in perceptual coding of audio signals is to 
subdivide the input signal into frequency components and to encode each 
component separately. In Chapters 4 and 5 we discussed different time to 
frequency mappin,g techniques and how these techniques can represent the 
input signal in the frequency domain and allow for redundancy removal. 
Time domain based coding algorithms such as ADPCM can achieve similar 
results in terms of redundancy removal (see also Chapter 3). In this 
framework, typically the audio signal is treated as a single, wide-band signal 
and prediction and inverse filtering are adopted to describe it. In this 
context, the main difference between time-domain and frequency domain 
coding algorithms is the degree of redundancy removal and signal 
decorrelation. 

One of the main advantages of frequency domain coding systems over 
time domain coding systems, however, is their ability to code each 
component separately with appropriate accuracy depending on its spectral 
strength. Bits can be allocated adaptively through the spectrum, where the 
bands that contain high-energy components are encoded with a large number 
of bits and bands that contain no components or components with very small 
energy may not be encoded at all. In this approach, quantization noise can 
be separately controlled in each band and the overall reconstruction noise 
spectrum is shaped in frequency. In addition, based on the power spectrum 
density of the signal, excitation patterns can be computed as described in 
Chapter 7 for each component from empirical masking data. By 
appropriately allocating bits through the spectrum and taking into 
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consideration the masking patterns generated by each component, 
quantization noise can be shaped to be inaudible. We saw in the previous 
chapter how we can allocate bits based on the SMR of the signal under 
exam. The aim is to obtain a coded signal that is perceptually identical to 
the original signal. In this case, the quality of the coded signal is kept 
constant while distributing the bit pool through the signal spectrum. 
Maintaining a constant quality implies that the overall data rate of the system 
may vary. There are applications where a fixed data rate may be required. 
In this case, one would like to maximize the quality at the system specific 
data rate. The issue of maximizing the quality or equivalently minimizing 
the block distortion at a given rate and the resulting bit allocation strategies 
are the main topics we discuss in this chapter. 

First, we introduce transmission data rates and an algorithm for optimal 
bit allocation that satisfies the data rate constraint. We compare the results 
of optimal bit allocation with uniform allocation. We define a measure of 
the potential gain introduced by the optimal bit allocation, the spectral 
flatness measure, which depends on the characteristics of the signal and is 
linked to the resolution of the signal representation, (see also [Jay ant and 
Noll 84]). Finally, we apply psychoacoustics principles to the optimal bit 
allocation approach to spectrally confine the quantization noise in regions 
where it can't be detected. A new perceptual measure of the potential gain is 
introduced, the perceptual flatness measure, (see also [Bosi 99]). This 
approach based on perceptual models discussed in Chapter 57 allows for not 
only the removal of redundancies, but also the extraction of irrelevancies 
from the signal representation at a given data rate. 

2. CODING DATA RATES 

In the introduction to this book, we described how the main goal in 
coding audio signals is to maximize the perceived quality of the encoded 
sound while minimizing the data rate necessary to reproduce it. The coder 
data rate is probably one of the most important parameters in the design of 
the overall system. It is related to the overall system bandwidth and/or 
storage capacity. The operational data rate of a coder, I, depends on the rate 
Fs at which the time domain input is sampled the average number of bits per 
sample R, and the number of audio channels n. It is typically measured in 
bits per seconds and equals 

1= n Fs R 
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For example, the CD format has a sampling rate of 44.1 kHz and uses 16 bits 
per sample for stereo sound. The CD data rate, therefore, is equal to I = 
2*44,100* 16 = 1.411 Mb/s. Based on these numbers, we can easily see how 
one hour of music encoded in the CD format requires 635 MB of storage. 

In perceptual audio coders, the signal is typically represented in the 
frequency domain. Let's assume that we have K frequency sub-bands and 
that each frequency sub-band k is encoded with Rk bits where k = 0, ... ,K-1. 
The overall system data rate is given by the sum over all sub-bands of the 
rates needed to encode each individual sub-band. Assuming each sub-band 
output is sampled at a rate Fsk, we have 

K-J 

l=nLFskR k 
k=O 

If we are critically sampled, for example by down-sampling by a factor of K 
when we divide the signal into the K sub-bands, then each sub-band has a 
sampling rate equal to 

Fsk = F/K 

The resulting system data rate I is then equal to 

where <Rk> represents the average number of bits used to encode a 
frequency sample: 

Typical data rates for high quality, state-of-the-art perceptual audio 
coders vary between 64 kb/s per channel up to 128 kb/s per channel. Let's 
consider, for example, a monophonic signal sampled with a sampling rate of 
48 kHz, and mapped to the frequency domain using an MDCT with window 
length of N = 1024 and a system bit rate of 128 kb/s per channel. In this 
case, the average number of bits per frequency sample is given by 

<Rk> = 128/48 = 2.666667 bits 

Given the data rate constraint of 128 kb/s per channel, the number of bits 
available for each new block of data is 



204 Introduction to Digital Audio Coding and Standards 

N/2-1 

IRk = (Rk) * 512 = 1365 bits/block per channel 
k=O 

Given the constraint of the data rate, the aim is to allocate the available 
bit pool based on the spectral strength of the audio signal and its masking 
properties. In a perceptual audio coder one can maximize the quality versus 
the data rate by appropriately assigning the bit pool available through the 
signal spectrum. In the next sections of this chapter, we discuss methods for 
bit allocation to achieve these goals. 

3. A SIMPLE ALLOCATION OF THE BIT POOL 

Once we know the number of bits available for each block of frequency 
samples, we need to decide how to allocate them. We start with a very 
simple scheme and then discuss ways to improve it. We first consider bit 
allocation to be binary (either a frequency component gets bits or it doesn't) 
and then move on to the more complicated case of variable number of bits 
per frequency sample. 

In Chapter 3 we saw how by switching to the frequency domain 
representation of audio signals one can reduce redundancy for tonal signals; 
let's think through how we can carry out this redundancy reduction in a 
simple coder by appropriately allocating the bit pool available. Our time
frequency transformation is handing the bit allocation routine blocks of input 
data parsed into frequency sub-bands. If the signal is highly tonal we would 
expect most of the signal content to be located in only a few of the frequency 
sub-bands. We would like to exploit this fact to reduce the number of bits 
needed to quantize and pass along the signal. 

We can reduce redundancy in our coder by only allocating bits to the 
sub-bands that contain useful data and not bothering to pass any bits for 
other sub-bands. Suppose we had 32 sub-bands and this block of data only 
had signal in five of the sub-bands - we would only need to pass five of the 
32 sub-band samples on to the decoder. However, we would also need to 
tell the decoder which five sub-bands were the ones for which we are 
passing data or it wouldn't know what to do with the five samples! In other 
words, we need to also pass data telling the decoder how we allocated the 
bits. One way to do this is to allocate a single bit to each sub-band to tell the 
decoder whether or not a sample is being passed for that sub-band. 

The next issue we face is how to decide which sub-bands contain useful 
data. For instance, we can set up a threshold and only pass data for sub
bands whose signal amplitude exceeds this threshold. We could throwaway 
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sub-band samples whose amplitude level is below the quantization noise 
level determined by the number of bits we are using for each coded sample. 
An issue with a fixed threshold, however, is that the number of sub-band 
samples that exceed the threshold and hence the bitrate of the coder differs 
from block to block. Although a variable data rate might be acceptable for 
some operations, it can be a problem for transmission or decode-on-playback 
applications. In general, given a predetermined bitrate, we could set the 
threshold to match the bitrate. For example, the sub-band amplitudes can be 
sorted from highest to lowest values and bits be distributed to the highest 
amplitude sub-bands until the bit pool for the block is exhausted. Note that 
in any such calculation, the bits needed to tell the decoder which sub-bands 
have data need to be taken out of the available bit pool first. 

Removing redundancy in this manner decreases the system data rate only 
if the reduction in the data sample representation is higher than the bits 
allocated for the side information. For example, if our 32 sub-band coder 
utilizes 16 bits per sample then it would require 32 bits of side information 
per block to define the bit allocation and we would need to be able to expect 
to throwaway more than 2 sub-bands of data per block on average to be 
better off encoding in this manner. This is a common theme in bit allocation 
routines - the more control there is on the encoder side of the bit allocation 
the more it costs in side information to be sent to the decoder. 

4. OPTIMAL BIT ALLOCATION 

Having described a simple binary bit-allocation scheme, let's discuss 
whether or not we can make it even better off by allocating variable numbers 
of bits to the sub-band samples for which we pass data. The question that we 
should ask ourselves is: "Can we increase coding gain by redistributing bits 
throughout the spectrum of the signal?" In general, there is a potential 
increase in coding gain if the signal spectrum is colored, i.e., certain spectral 
components are stronger than others. In this case, an increase in coding gain 
can be achieved by appropriately redistributing the bit pool throughout the 
spectrum. Given that the statistics of audio signals describe them as quasi
stationary, the assumption that audio signal spectra are colored is in general 
justified. 

To better understand this issue, we should remind ourselves how much 
quantization error we can expect to have from a given number of bits. For 
the time being we ignore psychoacoustic masking effects and use the total 
block quantization error as our measure of signal distortion. Varying the 
number of bits can achieve coding gain relative to keeping the bits fixed if 
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we can find a set of Rb i.e. an appropriate bit allocation that reduces the 
average block squared error 

relative to a fixed allocation of R bits to each sample, where 10k is the 
quantization error for spectral sample k and <Ck2> is the expected power of 
this quantization error. 

Let's first look at the case of uniform quantization. From Chapter 2, we 
recall that the expected error power for a sample that is uniformly quantized 
with R bits is roughly equal to 

I <£2 >= __ _ 
3*2 2R 

where our amplitude units have been chosen so that the maximum non
overload input Xmax equals one. Unfortunately, the fact that 2-2R is convex 
means that we cannot increase the system gain by shifting some bits from 
one sample to another since: 

I I 1 
---+--->2--
2 2(R+O) 2 2(R-O) - 22R 

for any shift () in bits between samples. The net result for uniform 
quantization is that we reduce distortion by using the same number of bits 
for each spectral sample that we pass through the coder. Basically, we 
minimize the block error by keeping a constant error level across all samples 
for which we pass any data at all. 

We can now look at the case of floating point quantization. In floating 
point quantization, the effect of the scale factor is to scale the quantizer 
maximum non-overload factor Xmax to the order of the signal so that the 
expected error power in terms of the number of mantissa bits Rk is now 
roughly equal to: 

The average block squared error now becomes: 
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where each term is now weighted by the signal power of the sub-band. 
Again, we can increase the coding gain with dynamic bit allocation if we 

can find a set of Rk that decreases the average block squared error. In order 
to simplify this computation, one should remember that: 

so we can rewrite the average block squared error as: 

We saw in the uniform quantization case that this is minimized when the 
exponent in the denominator is equal for all terms. This implies that we 
should allocate our mantissa bits Rk so that: 

or equivalently: 

for some constant C. The constant C is set based on the number of bits 
available to allocate to the mantissas in the block. 

The above equation implies that we need to allocate more bits where the 
signal has higher amplitude. The reason for this is that the quantizer's Xmax is 
large for such samples and so we need more mantissa bits to get down to the 
same error power as that from lower amplitude samples. 

If we knew how many spectral samples were being passed and we didn't 
have to worry about capping the number of bits passed to any sample, we 
could relate C to the size of the bit pool and the signal spectrum. Suppose 
Kp of the K spectral samples are being passed to the decoder, the others 
being allocated zero mantissa bits. Suppose also that the bit pool for 
mantissas, i.e. total bit pool for the data block minus the bits needed for scale 
factors and for bit allocation information, is equal to P. If we averaged our 
allocation equation over all passed samples, we would find that 



208 Introduction to Digital Audio Coding and Standards 

C=2[: l-~" ~)Og2(X~)=2[~l-IOg2[ I1X~ 11K"] 
P passed k K p passed k 

Substituting this into our allocation equation and solving for Rk then gives us 
the following optimal bit allocation result: 

for all k bands with non-zero bit allocations. 
The bit allocation equation tells us that each non-zero sample is allocated 

a number of bits that differs from the average number of mantissa bits 
available for non-zero samples, P/Kp, by an amount that depends on the ratio 
of the sample squared amplitude to the geometric mean of the non-zero 
sample squared amplitudes. The geometric mean of the power spectral 
densities reflects the contribution of the total block, not just the spectral 
sample under consideration, to the bit allocation for a particular sample. 

4.1 A Mathematical Approach 

A different method adopted to derive similar results for the optimal bit 
allocation is based on the solution of a set of equations that minimize the 
average block error power with the data rate constraint by means of 
Lagrange multipliers (see for example [Jayant and Noll 84]). While this 
method is mathematically rigorous, it gives less intuitive insights on 
practical implementation issues. We describe now this method for 
completeness. This optimization problem can be framed as follows: 

{
I K-l( 2 )} 1 K-l - L X~Rk such that - LRk =R 
K bO 3·2 K k=O 
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This problem is a problem of constrained minimization and can be solved 
applying the following steps3: 
1. Solve using a Lagrange multiplier A to enforce the average data rate 

constraint. 
2. Take the derivatives with respect to each Rk and with respect to A. 
3. Solve the resulting equation for Rk and then enforce the average data rate 

constraint. 
We defi ne the Lagrangian L( {Rk }, A) 

11 K-l( 2 ) A (K-I )} L[{Rd,A] = -I x~Rk +- IRk - KR 
K k=O 3· 2 K k=O 

By taking the derivatives of the Lagrangian with respect to each Rk and with 
respect to A and setting these derivatives to zero we obtain the following 
equations: 

a 11 K-l( x~ J A (K-l )} - -I -- +- IRk-KR =0 
aRm K k=O 3·22Rk K k=O 

m = O,I, ... ,K-I 

a 11 K-l( x ~ ) A (K-l )} - - L --2R- +- LRk -KR =0 
aA. K k=O 3·2 k K k=O 

The above equations solve our minimization problem by finding the 
appropriate set of {Rd that satisfies these conditions. By taking the 
derivatives of the Lagrangian with respect to each Rm we have: 

from which we derive: 

where 

3 We are assuming all Rk >= 0, so we don't need to apply Kuhn-Tucker multipliers, and 
ignoring the requirement that all Rk are integer so we can take derivatives. In applying the 
results we have to round the "optimal" Rk to the nearest integer and force any negative Rk 
up to zero (recovering the bits from other Rk, possibly by re-optimizing) 
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The number of bits per frequency sample depends on the squared amplitude 
of that sample plus a constant throughout the block under exam. By taking 
the derivatives of the Lagrangian with respect to A we have: 

and by substituting into it the expression for Rk we obtain: 

K-I 
L(C+logz xn= KR 
k=O 

Using this result, we can solve for C to find: 

I 

C = R --!ogz IT XI 
1 (K-I ZJK 
2 1=0 

As shown above, C depends on the average bits per sample, R, minus the 
logz of the block geometric power spectral density. Finally substituting the 
expression for C into the expression for Rk we again obtain the optimal bit 
allocation: 

4.2 Coding Gain and Spectral Flatness Measure 

It is apparent that, for each block of samples, a bit allocation that varies 
based on the spectral energy distribution of the signal introduces an 
improvement with respect to uniform bit allocation when the geometric 
mean of the signal power spectral density is much smaller than the average 
of the signal power spectral density. If the signal presents a flat spectrum 
then the geometric mean of the signal power spectral density is equal to the 
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average of the signal power spectral density. In this case, the optimal bit 
allocation Rk coincides with the uniform bit allocation R. 

It is instructive to estimate the coding gains from using optimal bit 
allocation with that of uniform quantization. The quantization error from 
optimal bit allocation can be obtained by substituting the optimum Rk back 
into the expression of the average block squared error and we find that 

I 

IT x 2 (
K-I JK 

(q2)OP! = k=O k 
block 3. 22R 

In contrast, the error from using uniform quantization is equal to 

1 K-I 

-:L X2 

(q 2) unifonn = K k=O k 

block 3.2 2R 

Optimal bit allocation performs better than uniform quantization when the 
ratio of these errors is less than one. In other words, the squared error for 
optimal bit allocation is decreased when the geometric mean of the signal 
power spectral density is less than its average through the block. 

The ratio of the geometric mean of the signal power spectral density to 
the average of the signal power spectral density is a measure of the spectral 
flatness of the signal, sfm [Jayant and Noll 84]: 

I 

(fi X~JK 
sfm = -,-k=O-=~_ 

1 K-l 

~2>~ 
K k=O 

Notice that the sfm varies between 0 and I, where the sfm assumes the value 
1 when the spectrum is flat. It is worth noticing also that sfm depends not 
only on the spectral energy distribution of the signal but also on the 
resolution of the filter bank in terms of the total number of frequency 
channels K. If K is much bigger than 2, then, for a given signal, the sfm 
decreases by increasing the number of frequency channels K. Values for the 
sfm much smaller than 1, typical for audio signals, imply high coding gains 
from optimal bit allocation. Values of the sfm near 1, very flat spectra, 
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imply low coding gains so the informational cost makes optimal bit 
allocation worse than uniform quantization. 

4.3 Block Floating-Point Quantization 

The bit optimal allocation equation above assumes that we are allocating 
bits independently to each spectral sample. This is typically the case for a 
small number of frequency bands, i.e. for typical sub-band coders. For large 
number of frequency bands, such as in transform coders, we normally group 
spectral samples into sub-bands containing multiple spectral samples and 
block floating point quantize the sub-band. We need to keep in mind that the 
Xk2 terms in the bit allocation equation is inversely proportional to the 
quantizer spacing for that sample. The corresponding term for a block 
floating point quantized spectral sample is the peak value of Xk2 for that sub
band. In the case of B sub-bands indexed by b with Nb spectral samples in 
sub-band b and with maximum value of Xk2 for that sub-band denoted as 
xma/ b, the bit allocation equation for the spectral lines in sub-band b 
becomes: 

Notice that this version of the equation also applies to sub-band coding 
where Nb usually equals I for each sub-band. 

As an important note on optimal bit allocation, we do have to worry 
about how we pass bit allocation information to the decoder and about 
making sure that our bit allocation is feasible, i.e., non-negative. As opposed 
to the binary allocation described earlier, optimal bit allocation needs to pass 
information not only on whether bands are passed, but also how many bits 
are passed per band. If we allow for a large number of different bit 
allocations for a particular sub-band, more bits are needed to describe which 
allocation was chosen. In order to keep the bit allocation information to be 
transmitted to the decoder to a minimum, some predefined values can be 
incorporated in the decoder routines. For example, in MPEG Layer II (see 
also Chapter 11), depending on the sampling rate and data rate of the system 
and the known distribution of audio signals, a set of tables pre-defines the 
maximum number of bits that can be allocated to certain bands. In this 
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fashion, the bit allocation information to be transmitted to the decoder is kept 
to a minimum. 

We should also note that there is no difference between passing zero or 
one mantissa bits for a midtread quantizer (you need at least two mantissa 
bits to get a non-zero step) so you should not allow a midtread quantizer to 
ever be assigned only one bit. 

A given number of bits used to describe the alIocation limits the number 
of bits that can be assigned to any sub-band. When we apply our bit 
allocation equation, we likely find outcomes where some sub-bands are 
assigned more bits than we allow and while others have fewer than 2 bits 
assigned. In fact, depending on the data rate constraints, even negative 
numbers of bits can come out of the formula if a signal is particularly 
demanding or its spectrum is nearly flat. A natural way to fix this problem is 
to simultaneously raise a lower threshold while lowering an upper threshold, 
the maximum bit allocation being assigned for sub-band b when Y2 
log2(xmax \) is above the upper threshold and no bits being assigned to sub
band b when Y210g2(xmax2b) is below the lower one. The thresholds are set so 
that the residual mantissa bit pool can be allocated using the optimal bit 
allocation formula to all sub-bands whose Y2 log2(xma/b) falls between the 
thresholds without leading to any alIocations over the maximum bit 
allocation or below two bits. When doing so, it is important to keep in mind 
that an allocation of Rb bits per sample for a sub-band actually reduces the 
bit pool by Nb Rb bits since there are Nb spectral samples in the sub-band. 

Another way to fix the bit alIocation problem is to do a "water-filling" 
allocation. The water-filling algorithm is an iterative approach wherein we 
allocate bits based on each sub-band's Y2 log2(xmax\) relative to a threshold 
level. We start out by sorting the sub-bands based on Y2 log2(xma/b), giving 
each sub-band a starting allocation of zero bits, and setting the threshold to 
the highest value of V2 log2(xmax 2 b). At every iteration we lower the threshold 
by one and then we alIocate one more bit to each sub-band for which V2 
log2(Xmax 2 b) is at or above the current threshold (but we stop giving additional 
bits to any sub-band that has hit the maximum bit allocation value). We stop 
the process when we run out of bits. In the water-filIing case, when we run 
out of bits we may still have some sub-bands with just one bit each - we 
need to take lone bits away and either pair them up with other lone bits or 
throw them onto samples with more bits. Again, we need to keep in mind 
that an allocation of Rb bits per sample for a sub-band actually reduces the 
bit pool by Nb * Rb bits. The choice between these and other methods is 
going to depend on the trade-offs you face on optimality versus complexity. 
The water-filling method is quite often used and seems to be a good 
compromise between accuracy and speed. 
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5. TIME-DOMAIN DISTORTION 

In the previous section, we showed that the block distortion (measured by 
the average block quantization error) of the frequency domain coefficients 
can be reduced by optimally allocating bits if the spectrum is not flat. Since 
ultimately the encoded signal will be presented to the listener in the time
domain, a natural question to ask is: "How does the block distortion in the 
frequency domain relate to the block distortion in the time domain?". 
Remarkably, for commonly used time-to-frequency mapping techniques, the 
time-domain distortion is equal to the frequency-domain distortion [Jayant 
and Noll 84] as we now show. 

Suppose we start with a set of time domain samples x[n] for n = 0, ... ,N-
1. We consider transforms of these samples to and from the frequency 
domain with a linear transform of the form: 

N-l 

y[k] = I A ko x[n] 
0=0 

N-l 

x[n] = I B ok y[k] 
k=O 

where the inverse transform is such that Bok = AkO* (and where * represents 
the complex conjugate). We call such a transform a "unitary transform" 
since matrices that satisfy this condition (i.e., that their inverse is the 
complex conjugate of their transpose) are called "unitary matrices" and it 
turns out the DFf is such a transform. We can see this by writing the DFT 
in its symmetric form (in which we include a factor of 1/.JN in the 
definition of the forward transform) for which A ko = e-j2rrkolNl.JN and Bok = 
eizrrkolN I .IN . 

We now see how quantization error in the frequency domain samples 
translates back into quantization error in the time domain samples when we 
inverse transform. Suppose that quantization/dequantization changes the 
frequency domain samples from y[k] to y'[k] due to (possibly complex) 
quantization error Ck. When we inverse transform back to the time domain 
the quantization error in y,[k] lead to output samples x'[n] containing 
quantization error Co where: 
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En =x'[n]-x[n]= ~:Snky'[k] -x[n] (
N-I ) 

k=() 

=(%BnkY[k]+ %BnkEk )-x[n] 

N-I 

= LBnkEk 
k=O 
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Noting that IOn is real-valued for real-valued input signals x[n] and the 
quantization error is independent from sample to sample (so that we can 
assume <CkCk'*> is zero ifk -:;:. k'), we can write the average block distortion in 
the time domain as: 

( 
2)timedOmain _~IN-I 2 _~IN-I * 

q - <En > - <En£n > 
block N N 

n=O n=O 

= ~ ~ <[~BnkEkl[~Bn/E/l> 
n=O k=O k =() 

N-I N-I N-I 

= ~ I I IBnkAk'n <Ekc/ > 
n=O k=O k'=O 

N-I N-1 

= ~ I IBnkA kn <IEk 12> 
n=O k=O 

1 N-I 2 [N-I 1 =N ~ <I Ek 1 > t;AknBnk 

N-I 

=~I<I£kI2> 
N k=O 

= ( 2) freq domain 

q block 

where the transition to the second-to-last line is due to the fact that Akn and 
Bnk are inverses of each other so that the quantity in parentheses is equal to 
one. Note that, for complex transforms, we need to worry about the 
quantization error in both the real and imaginary parts. However, since the 
quantization errors in the real and imaginary parts are independent of each 
other, the quantity <ICkI2> is just the sum of the expected quantization error 
power in the two parts. 

This result tells us that the total block distortion in the time domain is 
equal to the block distortion in the frequency domain. Why then do we do 
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our quantization in the frequency domain? Recall the main result from 
optimal bit allocation that the block distortion for a given number of bits is 
proportional to the spectral flatness measure. The reason we go to the 
frequency domain and do our quantization is that we expect most audio 
signals to be highly tonal. By highly tonal we mean that audio signals 
spectra have strong peaks. A very "peaky" signal has a low spectral flatness 
measure and therefore produces lower block distortion for a given number of 
bits per block. For example, consider a pure sinusoid. In the time domain 
the signal is spread out across the block while in the frequency domain its 
content is collapsed into two strong peaks (one at positive frequencies and 
one at negative frequencies). Clearly, the frequency domain representation 
is much less flat than the time domain representation. 

We conclude that we go to the frequency domain because we expect the 
signal representation to be less flat than the time domain representation. Our 
calculations for optimal bit allocation tell us that we can reduce distortion in 
the time domain output signal by doing our quantization in a representation 
that is less flat than the time domain representation. This conclusion is the 
technical manner in which we "reduce redundancy" by changing signal 
representation. 

As a final note, we mention the fact that the MDCT of a single block of 
samples is not a unitary transform due to time-domain aliasing effects. 
However, when we include the overlap-and-add to view the MDCT as a 
matrix transform on the overall input signal (see Chapter 5), it is a unitary 
transform. Therefore the conclusions above also apply to the MDCT with 
the caveat that, although the overall time domain distortion equals the 
frequency domain distortion when compared over the whole signal, there is 
not an exact balance on a block by block basis. Again, the fact that the 
MDCT is a frequency domain spectral representation implies that it is also 
peaky for highly tonal signals and as such it can be used to remove 
redundancy in the signal. 

6. OPTIMAL BIT ALLOCATION AND 
PERCEPTUAL MODELS 

In perceptual audio coding, the goal is not just to remove redundancy 
from the source, but it is also to identify the irrelevant parts of the signal 
spectrum and extract them. This translates into not just trying to minimize 
the average error power per block, but also trying to confine the resulting 
quantization noise below the masking curves generated by the signal under 
examination. We no longer care just how large the error is but rather how 
large it is compared with the masking level at that frequency. We can keep 
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the quantization noise imperceptible if we can keep all of the quantization 
noise localized below the masking curves. If, because of the data rate 
constraint, we don't have enough bits for imperceptible quantization, we 
want to keep the perceived noise at a minimum. 

We can keep the perceived noise at a minimum by allocating bits to 
minimize the following measure of perceptible distortion: 

1 K-J 2 
(q2)perCePI =-L ~ 

block K k=O M ~ 

where Mk is the amplitude equivalent to the masking level evaluated at 
frequency index k. Notice that this measure of distortion gives a lot of 
weight to quantization noise that is large compared to the masking level 
while very little weight to noise below the masking level. 

Allocating bits to minimize this measure of distortion is almost identical 
to the problem we just studied other than the fact that now, when we 
substitute in our formula for the quantization noise from floating point 
quantization, the spectral sample amplitude Xk is always divided by the 
corresponding masking amplitude Mk• This means that we can make use of 
all of our prior results for optimal bit allocation if we make this substitution. 
The resulting perceptual bit allocation result is: 

for all b with non-zero bit allocations (i.e., passed samples) where Mb is the 
amplitude corresponding to the masking level assumed to apply in sub-band 
b. Normally, our psychoacoustic model provides us with information on the 
signal-to-mask ratio for each sub-band. We can rewrite this equation in 
terms of each sub-band's SMR as 

R~PI =(: )+ 2~:~~i)(SMRb - i p LNbSMRb) 
P ~a~b 

where SMRb represents the SMR that applies to sub-band b. 
Perceptual bit allocation proceeds very much analogously to optimal bit 

allocation. The main difference is that the masking thresholds and 
corresponding SMRs for the block need to be calculated prior to deciding 



218 Introduction to Digital Audio Coding and Standards 

how to allocate the bit pool. Given the SMRs, the bits are allocated exactly 
as in the bit allocation described in the previous section. 

The effectiveness of carrying out perceptual bit allocation is measured by 
the perceptual spectral flatness measure, psfm, which can be described by 
[Bosi 99]: 

The psfm is analogous to the sfm in that it ranges between zero and 1 with 
low numbers implying the potential for high coding gain. Notice that the 
psfm depends on the spectral energy distribution of the signal weighted by 
the masking energy distribution. 

7. SUMMARY 

In this chapter, we have brought together many of the themes discussed 
in prior chapters and shown how they fit together to reduce the bit rate of the 
system under consideration. We have seen how a transformation to the 
frequency domain can reduce bit rate for a highly tonal signal. We have then 
seen how the use of floating point quantization allows us to extract greater 
coding gain through optimal bit allocation. Finally, we have seen how 
perceptual measures of masking can be used to better allocate quantization 
noise and squeeze out more coding gain by removing irrelevant bits. 
Similarly to the procedures described in this chapter, many of the standard 
audio coding systems make use of bit allocation strategies based on the ratio 
of the signal versus its masking strength with a fixed data rate constraint (see 
for example the description of MPEG Layer I and II and Dolby AC-3 in later 
chapters). It should be mentioned, however, that the MPEG Layer III 
approach differs somewhat in that a locally variable data rate approach is 
adopted in order to accommodate particularly demanding audio signals (see 
also Chapter II). Before examining the specific implementation of several 
state-of-the-art coders, we illustrate in the next chapter how all of the 
building blocks described in the previous chapters fit together into a coding 
system. 
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9. EXERCISES 

Bit Allocation: 
In this exercise, you will compare bit allocation methods for the test signal 
studied in the exercises of Chapters 6 and 7. The goal is to gain an 
appreciation of how different bit allocations perform. 
1. Define 25 sub-bands by mapping the NI2 frequency lines of a length N = 

2048 MDCT onto the 25 critical bands. (Remember that fk = Fs kiN for 
k=O ... NI2-I) 

2. Consider the data rates I = 256 kb/s per channel and I = 128 kb/s per 
channel for the coded spectral lines of a length N=2048 MDCT. 

a) How many bits per line are available for coding the spectral data? 
b) If 4 bits/sub-band are used for a sub-band scale factor, how many 

bits per line remain for coding mantissas? 
3. Write a function to allocate bits to a set of K sub-bands dividing up the 

N/2 frequency lines of a length N MDCT block so as to minimize the 
average block error. The lines in each sub-band will share a single scale 
factor represented with Rs bits and will all use the same number of 
mantissa bits. Also create a variant of this function to perform the 
allocation to minimize the average block perceptual error. 

4. For the input signal used in Chapters 6 and 7: 

x[n] = Ao cos(2n440n / Fs) + A I cos(2n554n / Fs) 

+ A 2 cos(2n660n / Fs) + A 3 cos(2n880n / Fs) 

+ A4 cos(2n4400n / Fs) + A5 cos(27t8800n / Fs) 

where An = 0.6, Al = 0.55, A2 = 0.55, A3 = 0.15, ~ = 0.1, A5 = 0.05, 
and Fs is the sample rate of 48 kHz, and for both data rates above, 
quantize and inverse quantize each frequency output of an N = 2048 
MDCT using "block" floating point, where each frequency sub-block 
has only one scale factor and the frequency sub-bands are the 25 sub
blocks defined in 1) above. Use 4 bits per scale factor and: 
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a) Uniformly distribute the remaining bits for the mantissas. 
b) Optimally distribute the remaining bits for the mantissas based on 

signal amplitude. 
c) Distribute the bits by hand to get the best sound you can. 
d) Use the signal-to-masking level for each critical band calculated in 

Chapter 7 to optimally distribute the remaining bits for the 
mantissas. 

Listen to the results of each bit allocation scheme above and comment 
on their relative performance. (Note: the maximum amplitude of this 
signal is 2.0. This implies that you should set Xmax in your quantizer 
equal to 2.0 or, if your Xmax is hard-coded to 1.0, you should divide the 
signal by 2.0 prior to quantizing it.) 



Chapter 9 

Building a Perceptual Audio Coder 

1. INTRODUCTION 

In this chapter we discuss how the coder building blocks described in the 
prior chapters can be fit together into a working perceptual audio coder. 
Particular attention is given to how to create masking curves for use in bit 
allocation. We also discuss issues in setting up standardized bitstream 
formats so that coded data can be decoded using decoders provided from a 
variety of vendors. 

2. OVERVIEW OF THE CODER BUILDING 
BLOCKS 

Figure 1 shows the basic building blocks of a perceptual audio encoder. 
Typically, the input data is an audio PCM input signal (rather than the 
original analogue input). This signal has its content mapped into the 
frequency domain using some type of filter bank, for example PQMF or 
MDCT. The frequency domain data is then quantized and packed into a 
bitstream. The quantization is carried out using a bit allocation that is 
designed to maximize the overall signal to noise ratio (SNR) minus the 
signal to mask ratio (SMR) of each block of data. The psychoacoustic 
model stage analyzes the input signal, determines the masking level at each 
frequency component, and computes the SMR values. The bit allocation 
routine allocates a limited number of mantissa bits to the frequency-domain 
data based on the signal components strength and the their relative SMR 
values. The encoded bitstream includes both the coded audio data, i.e., 

M. Bosi et al., Introduction  to  Digital Audio  Coding  and Standards
© Kluwer Academic Publishers 2003
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mantissas, scale factors, and bit allocation. In addition any control 
parameters including, for example, block length, type of windowing, etc. 
needed to tell the decoder how to decode the data is included in the coded 
bitstream. Synchronization word, sampling rate, data rate, etc. are typically 
contained in the data header and passed to the decoder at certain time 
intervals. Finally, error correction codes, time-synchronization stamps, and 
other auxiliary or ancillary data can also be mUltiplexed in the data stream. 
The result is an encoded bitstream that can be stored or directly transmitted 
to the decoder. 

Audio 
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Figure I. Basic building blocks for a perceptual audio encoder 
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The basic building blocks of a perceptual audio decoder are shown in 
Figure 2. First, the encoded bitstream is unpacked into its constituent parts, 
i.e., audio data, control parameters, and ancillary data. The bit allocation 
information is used to dequantize the audio data and recover as best as 
possible the frequency-domain representation of the original audio data. The 
reconstructed frequency-domain data contain quantization noise but, if the 
psychoacoustic model has correctly done its job, that noise is inaudible or as 
close to inaudible as possible given the data rate constraint. The frequency
domain data is returned to the time-domain using the appropriate filter bank, 
for example a synthesis bank of PQMF or an IMDCT, and finally converted 
into an audio PCM output data stream. It should be noted that the 
psychoacoustic model computation and relative bit allocation is shown only 
in the encoder side of the audio coding system. While for most state-of-the
art audio coding schemes this is the case, there are instances, like for 
example AC-3 (see also Chapter 14), in which the bit allocation routine is 
computed both in the encoder and, at least a sub-set of the routine, the 
decoder. In this approach the allocation side information to be transmitted to 
the decoder is minimized at the expense, however, of an increased layer of 
complexity for the decoder. 

We've already discussed alternatives for time-to-frequency mapping 
tools, how to allocate bits given masking curves, and how to quantize the 
data. What we still need to explore in a bit more detail is how to use the 
psychoacoustic properties of hearing to create the masking curves and how 
to design a bitstream format. We'll first turn to the issue of computing a 
masking curve. 

3. COMPUTING MASKING CURVES 

We've already discussed how masking models can be used to reduce the 
precision in the representation of frequency-domain data without introducing 
perceptual differences between the coded and the original signal. Time
domain masking is typically exploited in defining the time resolution of the 
coder, i.e., to control the system input block-size so that quantization errors 
are confined in time regions where they do not create audible artifacts (pre
echo). We also discussed measurements of the hearing threshold and 
developed models of frequency-domain masking - what is there still left to 
talk about? The main issues we still need to address revolve around bringing 
together the information contained in the computed masking curves relative 
to the input signal and the frequency representation of the signal in the 
coder's main-path time-to-frequency mapping stage. 
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We've seen that frequency-domain masking drops off very sharply in 
frequency, especially towards lower frequencies. This rapid drop off means 
that we potentially can introduce large errors in the masking levels at 
particular signal components if we don't know the frequency locations of 
both the masker and the maskee with reasonably high accuracy. In contrast, 
the time-to-frequency mapping used by the coder may not have adequate 
frequency resolution for this purpose. Moreover, the frequency-domain 
representation of the signal may have significant aliasing that, although it 
may disappear in the synthesis stage, could potentially lead to errors in 
estimating the masking curves. 

Typically, perceptual audio coders perform a high-resolution DFf (using 
the FFf algorithm) with blocks of input data solely for use in the 
psychoacoustic model. The results of this high frequency resolution DFf 
are then employed to determine the masking curve for each block of coded 
data. An immediate issue that arises in this approach is making sure that the 
DFf data is time-synchronized with the data block being quantized. If it 
isn't, the DFf may show too much (or too little) frequency content from 
outside of the time region of interest. This issue is usually addressed by 
selecting a large enough data block input to the DFf and by centering it on 
the data block being quantized. Note also that, as usual, we don't want the 
DFf to be corrupted by edge effects so we need to window the data block 
prior to performing the DFf. Any of the windows we discussed in Chapter 5 
can be used for this purpose, with the Hanning window a common choice 
(see for example the description of ISOIIEC MPEG Psychoacoustic Models 
1 and 2 in ISOIIEC 11172-3 and in Chapter 11). 

Having performed a DFf with adequate frequency resolution, we can use 
our frequency-domain masking models to determine the masking level at 
each DFf frequency line. The most straightforward approach for doing this 
is to loop over all signal frequency content represented on a bark scale, 
compute the masking curve from each signal component, and appropriately 
sum up the curves. Recall from Chapter 7 that the masking curve from a 
single component is created by convolving that component with an 
appropriate spreading function (i.e., by applying the spreading function 
shape to the component level at its frequency location) and then lowering the 
resulting curve level by a shift Ll that depends on the tonality of the masker 
component and its frequency position. The masking from different signal 
components is then added in the appropriate manner and combined with the 
hearing threshold, where usually the largest individual curve is used or the 
intensities are added. 

Applying a straightforward implementation of the masking models takes 
order N2 operations to carry out where N is the number of DFf frequency 
lines (presumably large). Two different solutions to the runtime problem are 
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typically used: I) limit the number of maskers, and 2) create the masking 
curves using convolutions rather than a loop over maskers. 

The first solution to the runtime problem, i.e., to limit the number of 
maskers by developing curves only for the main maskers, is based on the 
idea that most of the masking is performed by a few strong components, 
which, if identified, are the only components that need to have masking 
curves created. One way to carry this out is to look for local maxima in the 
frequency spectrum and, if they are tonal, i.e., the spectrum drops off fast 
enough near them, to use the largest of them as tonal maskers. The 
remaining components can then be lumped together into groups, for example 
by critical bands or, at high frequencies where critical bands are quite wide, 
by 1/3 of a critical band, to use as noise-like maskers. In this manner, the 
number of components that need to have masking curves created and 
summed is limited to a number that can be computed in reasonable runtime 
(see also ISOIIEC MPEG Psychoacoustic Model I description in Chapter 
11). 

The second solution to the runtime problem is to create the overall 
masking curve as a convolution over the entire spectrum (see also 
[Schroeder, Atal and Hall 79]) rather than summing separately over all 
frequency lines. For example, suppose that the level shift A is independent 
of the type of masker, i.e., it does not depend on whether the masker is tonal 
or noise-like or on its frequency location, and that the spreading function 
shape is independent of the masker level. In this case, the masking curve 
from each component could be created by convolving the full spectrum with 
an appropriate spreading function and then shifting the result down by a 
constant A. The benefit of this approach is that the convolution theorem can 
be used to convert this frequency-domain convolution (naively requiring 
order N2 operations) into a faster procedure in the time domain. Changing to 
and from the time domain requires order N*log2(N) operations while 
implementing the convolution as a time-domain multiplication requires order 
N operations - leading to a total operation count of order N + 2N*log2(N) = 
N*(1 + 2Log2(N» ::::: 2N* Log2(N). This can be a big reduction from order 
N2 when N is large! Of course, the problem with this approach is that, as we 
saw in Chapter 7, the masking curves are very dependent on whether or not 
the masker is tonal. One solution to this problem is to ignore the difference 
and compromise by using a single shift A regardless of the masker's tonality. 

A clever solution to this problem is adopted in ISOIIEC MPEG 
Psychoacoustic Model 2 (see for example 11172-3 or Chapter 11). For each 
block of data, Model 2 computes a tonality measure that is then convolved 
with the spreading function to create a frequency-dependent "spread" 
tonality measure. This spread tonality measure determines how tonal the 
dominant maskers are at each frequency location. Notice that also this 
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second convolution can be carried out as a time-domain multiplication for 
order 2N*log2(N) operations. The shift L1 then depends on the spread 
tonality measure at each frequency location. In this manner, portions of the 
signal spectrum that are mostly masked by tonal components have their 
relative excitation patterns shifted downward by a L1 appropriate for tonal 
masking. Vice-versa, portions of the signal spectrum mostly masked by 
noise-like components have their relative excitation patterns shifted 
downward by a L1 appropriate for noise masking (see Chapter 11 for further 
details). 

Having created the masking curves at each frequency line of the 
psychoacoustic OFT stage, we are now faced with the challenge of mapping 
them back into signal-to-mask ratios (SMRs) to use for the frequency bands 
in the coder's main path time-to-frequency mapping. In a sub-band coder, 
for example PQMF, the frequency bands are typically the pass bands of each 
of the K modulated prototype filters. In transform coders typically a single 
scale factor is used for multiple frequency lines, so that the frequency bands 
are the frequency ranges spanned by the sets of lines sharing a single scale 
factor. We typically find that the coder's frequency bands are wide 
compared to the ear's critical bands at low frequencies, where critical bands 
are narrow, and narrow compared to critical bands at high frequencies, 
where critical bands are wide. Since masking effects tend to be constant 
within a critical band, one way to do the mapping is to choose 

a) the average masking level in the critical band containing the 
coder's frequency band when the coder's band is narrow compared 
with the ear's critical bands 

b) the lowest masking level in the coder's frequency band when the 
coder's band is wide compared with the ear's critical bands, so that 
the masking level represents the most sensitive critical band in that 
coder band. 

In the second case, the coder's frequency resolution is considered to be sub
optimal since its frequency bands span more than one critical band. It this 
case, additional bits may need to be allocated to the coder's bands with 
bandwidths larger than critical bandwidths in order to compensate for the 
coder's lack of frequency resolution. 

Once the masking level is set for the coder's frequency band, we then set 
the SMR for that frequency band based on the amplitude of the largest 
spectral line in the band, or, if our scale factor is at the maximum value, so 
that the quantizer cannot adjust its spacing to any smaller value, based on the 
amplitude of a line whose amplitude corresponded to the maximum scale 
factor. 
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3.1 Absolute Sound Pressure Levels 

Another issue that needs to be addressed is how absolute sound pressure 
levels (SPLs) can be defined based on the computed signal intensity in order 
to align the hearing threshold with the signal's spectrum and for intensity
dependent masking models. Although masking depends mostly on the 
relative intensities of masker and maskee, the hearing threshold is defined in 
terms of absolute SPL. In addition, the shape of the spreading functions is 
modeled as depending on the absolute pressure level of the sound. 
Unfortunately, the absolute SPL of the signal depends on the gain settings 
used on playback - higher volume settings lead to higher SPLs reaching the 
listener's ears- which are not known a priori. 

Since we can't be assured exactly what gain settings are used on 
playback, we are forced to make an assumption about the target playback 
gain for the signal. The assumption usually made is that the input PCM data 
has been recorded and quantized so that the quantization error falls near the 
bottom of the hearing threshold at normal playback levels. In particular, we 
usually define a sinusoid with amplitude equal to Y2 the PCM quantizer 
spacing as having an SPL equal to 0 dB. Recall that the hearing threshold 
has its minimum value at about -4 dB for young listeners, so this definition 
implies that some listeners would be hearing a bit of quantization noise in 
certain regions of the input PCM signal spectrum. 

For 16-bit PCM input data the standard assumption implies that a 
sinusoid with amplitude equal to the overload level of the quantizer would 
have an SPL of about 96 dB (6 dBlbit * 16 bits). If we define our quantizer 
overload level X max to be equal to 1, this assumption implies that the SPL of a 
sinusoidal input with amplitude A is equal to: 

SPL = 96 dB + 10 logIO(A 2) 

Notice how this formula correctly has an SPL of 96 dB when the input 
amplitude reaches its maximum for A = I. 

Having made an assumption that allows us to define absolute SPLs in our 
input signals, we need to be able to translate our frequency-domain 
representation into units of SPL. Since our SPLs are defined in terms of the 
amplitudes of input sinusoids, translating the frequency-domain 
representation into SPL implies being careful with normalization in our 
time-to-frequency mappings. This care is needed in both the DFT used for 
the psychoacoustic modeling and in the coder main path's time-to-frequency 
mapping. In both cases, the choice of window affects the gain of the 
transform. Knowing the SPL of the maximum sinusoid (for example 96 dB 
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for 16 bit PCM), however, allows you to define the correct translation factor 
for any particular case. 

The basic approach to calculating the translation factor is to use 
Parseval's Theorem to relate the spectral density integrated over a frequency 
peak to the power of the input sinusoid. For example, by utilizing Parseval's 
Theorem for the DFT we have: 

N-I N-I 

<x2> =-k- Ix[n]2 =~ IIX[k]12 
n=O n=O 

For a sinusoid with amplitude A the average signal power is V2A2. However, 
a sinusoid with amplitude A that is windowed with a window w[n] has an 
average signal power approximately equal to V2A2<W2>, assuming that the 
window function varies much more slowly in time than the sinusoid itself. 
Such a signal has a DFT containing two main peaks with equal spectral 
density: one at positive frequencies kl (k l E [0, NI2-1]) and one at negative 
frequencies k2 (k2 E [NI2, N-1]). We can use Parseval's Theorem to relate 
the sum of spectral density over a single positive frequency peak to the input 
signal amplitude as: 

~A2 <w2 >= ~2 IIX[k]12 
peak 

or equivalently: 

We can use this formula to substitute for A2 in the SPL formula above to 
find: 

SPL DFf = 96 dB + 10 log 10 (--,--±-;- "I X[k] 12] 
N <w> L.. 

peak 

where IX[k]12 is the computed power spectral density of the input signal. 
For a second example, we consider how to estimate SPLs for an MDCT. 

The challenge here is the fact that the time-domain aliasing in the transform 
does not allow for an exact Parseval's Theorem. However, an approximate 
solution can be derived in which: 
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N 12-1 N 12-1 

<X2> = :2 LX[k]2+t L(x[n]x[N/2-I-n]-x[N-I-n]x[N12+n]) 
n~O n~() 

NI2-1 

"" :' LX[k]2 
n~O 

In this case, there is only a single frequency peak for a sinusoid in the 
frequency range of k E [0, N/2-I] so we find that this approximate solution 
relates the amplitude to the sum of spectral density over a peak through: 

A 2 "" -2-8-2-" I X[k] 12 
N <w > L.. 

peak 

Again, we can substitute into the SPL formula to find: 

SPL MDCT "" 96 dB + IO IOg\o(_,_8_2 "I X[k] 12) 
N <w> L.. 

peak 

where X[k] represents the output of the MDCT. 
The translation of frequency-domain representation into absolute SPLs 

depends on the choice of window utilized in the mapping onto the frequency 
domain, since the window choice affects the overall gain of the frequency 
representation. The gain factor for any specific window can be computed 
using the following definition: 

N-I 

<w2> =tL w [n]2 
n~O 

For completeness, we note here the appropriate gain adjustment for some 
of the more common windows. Since N is typically fairly large, the gain 
adjustments can be calculated as averages over the continuous time versions 
of the window. The rectangular window has <w2>=1 assuming that w[n] is 
equal to lover its entire length. The sine window has <W2>=Y2 as can be 
easily seen since sin2(x) averages to Y2 over a half-integral number of 
periods. The Hanning window has <w2>=3/8. The gain factor for the 
Kaiser-Bessel window depends on a but can be computed for any specific a 
value using the above definition. 
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4. BITSTREAM FORMAT 

The encoded bitstream is the means by which the encoder communicates 
to the decoder. This means that the encoded bitstream needs to be able to 
tell the decoder both how to decode the data and what the data is. Any 
encoded bitstream therefore includes both control data (telling the decoder 
what to do) and coded audio data (the signal to be decoded). A bitstream 
format needs to be defined in such a way that the decoder knows how to 
extract this data from the bitstream. 

Normally, a bitstream format begins with a header. The header typically 
starts with a code that establishes synchronization of the bitstream and then 
it passes the decoder some overall information about the encoded data, for 
example sampling rate, data rate, copyrights, etc. To the degree that the 
codec has coding options, for example, inpuUoutput bits per sample, number 
of audio channels, algorithm used, etc., this also needs to be passed to the 
decoder. 

After the header establishes what needs to be done, the bitstream includes 
the coded audio data. Each block of coded data needs to include 1) bit 
allocation information (when applicable) to know how many bits are used to 
encode signal mantissas, 2) scale factors defining the overall scale of the 
mantissa values, and 3) the mantissas themselves. The bitstream format 
defines the layout and the number of bits used for the bit allocation and scale 
factors. It also defines the layout of the mantissas. Entropy coding methods 
can be used to reduce the bits needed to write out this information. For 
example, masking might lead to many frequency lines using zero mantissa 
bits - knowing that zero bits is a common bit allocation implies that a short 
code should be used to denote this result. Typically, the codebook is 
predefined based on "training" the coder on a variety of input signals so that 
a decoding table doesn't need to be passed in the bitstream, but it can be 
simply stored in the decoder ROM. 

In the case of multichannel audio, for example, stereo channels, the 
bitstream also needs to define how the different audio channels are laid out 
relative to each other in each data block. Sometimes the channels are 
interleaved so you get the data for each channel at a given frequency line 
before reading the next frequency line's data. Sometimes, however, channel 
transformations are made to allow for bit reduction based on similarities 
between channels. For example, stereo is sometimes transformed from L 
(left) and R (right) channels into sum (M = L + R "Mid") and difference (S = 
L - R "Side") channels so the knowledge that S is typically small can be 
leveraged into allocating it fewer bits. Likewise, correlations between 
channels can be exploited in cases with larger numbers of channels so 
various channel matrixing transformations are defined to allow for channel 
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coding opportunities to save on bits. Note that control data need to be 
passed telling the decoder what format the channel data is in if it allows 
different options. 

The individual blocks of coded data are usually bundled in larger chunks 
often called "frames". If the signal is fairly stationary, we would expect 
subsequent blocks of data to be fairly similar. Cross-block similarity can be 
exploited by sharing scale factors across blocks and/or by only passing 
differences in data between subsequent blocks in a frame. The header and 
some control data are typically passed on a frame-by-frame basis rather than 
on a block-by-block basis, telling the decoder any dynamic changes it needs 
to make in decoding the data. If the encoder detected a transient and shifted 
to shorter data blocks the decoder needs to be told. In this case, because of 
the non-stationary nature of the signal, scale factors are transmitted on a 
block -by-block basis. 

To render the bitstream format issue more tangible, Figure 3 provides an 
example of both a PCM data file format and a file format for a simple 
perceptual coder that works on files in batch mode. The PCM data file 
begins with a 4-byte code equal to the string "PCM " to make sure that it is a 
PCM file. It then includes a 4-byte integer representing the sample rate of 
the signal measured in Hz, for example, 44.1 kHz would be equal to 44,100. 
Then it has a 2-byte integer representing the number of channels (1 for 
mono, 2 for stereo, etc.). The header finishes with a 2-byte integer 
representing the number of bits per PCM data sample (8 bits, 16 bits, etc.) 
and a 4-byte integer representing the number of samples in the file. 
Following the header, the PCM file contains the signal data samples 
interleaved by channel, each sample being represented using nSampleBits 
bits as a PCM quantization code. 

The coded data file in Figure 3 represents a simple perceptual audio 
coder. This coder takes PCM input data, loads each channel into data blocks 
2*BlockSize long (with BlockSize new data samples for each block), 
performs an MDCT for each channel to convert the data block into 
BlockSize frequency components. It uses a perceptual model that computes 
SMR for each of 25 critical band-based frequency bands, allocates mantissa 
bits for each frequency bands, block floating point quantizes each of the 
frequency bands using one scale factor per critical band and the allocated 
number of mantissa bits per sample, and finally writes each block's result 
into a coded file. The coded file format begins with the header, which 
includes a 4-byte code equal to the string "CODE". It then includes a 4-byte 
integer for the sample rate in Hz, a 2-byte integer for the number of 
channels, and a 2-byte integer for the number of PCM bits per sample when 
decoded. The control parameters passed in the bitstream include a 2-byte 
integer representing the number of scale factor bits used by each of the 25 
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scale factors, and then has a 2-byte integer representing the number of bits 
used to define the bit allocation for each of the 25 frequency bands. A 4-
byte number representing the number of frequency samples in each block of 
frequency data and a 4-byte number representing the number of data blocks 
in the file is also passed. Following the control parameters, the coded audio 
file then has the signal data grouped by data blocks. Each data block starts 
with the 25 scale factors (nScaleBits each) and the 25-frequency-band bit 
allocations (nBitAllocBits each). Finally, the BlockSize mantissa values for 
each channel are interleaved, each one using the number of bits defined for 
its frequency band in the bit allocation information. 

"PCM" "CODE" "PCM" 

Sample Rate Sample Rate Sample Rate 

nChannels nChannels nChannels 

Bits Per Sample Bits Per Sample Bits Per Sample 

nSamples nScaleBits nSamples 

I nte rleaved nBitAllocBits Interleaved 
Channel 
Samples 

BlockSize Channel 
Samples 

nBlocks 
(L 1.R1.L2.R2 •... ) 25 (L1.R1.L2.R2 •... ) 

Scale 
Factors 

25 
Bit 

Allocations 

Interleaved 
Mantissas 

(L1.R1.L2.R2 •... ) 

25 
Scale 

Factors 

25 
Bit 

Allocations 

Interleaved 
Mantissas 

(L1.R1.L2.R2 •... ) 

... 

Figure 3. Very simple peM and coded data file formats 

The coded file format in Figure 3 makes clear how simple the underlying 
coder is. For example, it doesn't allow for changing block size or to detect 
transients and it doesn't employ any cross-channel or cross-block coding 
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tricks to squeeze out extra bits. The coder doesn't even use entropy coding
based codebooks to reduce redundancy in how it writes out the scale factors, 
or mantissas - both pretty easy to implement. However, it does make use of 
a perceptual model to allocate bits based on hearing threshold and masking 
models, so it quite possibly still does a reasonable job of reducing bitrate 
without too many audible artifacts. In subsequent chapters, we study a 
number of coders out in the market. In the cases where the bitstream formats 
are publicly available, studying the format definition gives a lot of 
information about the techniques employed in the encoder to squeeze bits 
out of the signal. 

5. BUSINESS MODELS AND CODING SECRETS 

Once a coder has been developed, the goal is to get it deployed in the 
market. At this point, the coder developer needs to decide what is the best 
means to achieve market share in the target market space. A variety of 
business models have been used to gain market acceptance of perceptual 
audio coders. 

The most basic business model is to create and sell customer-friendly 
encoding and decoding tools. Depending on the application, such tools 
could be hardware-based (for example built into a chip) or software-based. 
In such cases, the details of the inner workings of the codec (including the 
coded file format) are likely to be considered business secrets and details are 
going to be kept fairly proprietary (other than what's needed for marketing 
purposes). Much effort in such a business is going to be spent in sales 
efforts for coding tools and in keeping secret or protecting the intellectual 
property behind the coder. 

A more recent business model that has arisen is a model wherein money 
is made on the encoders while the decoders are free or extremely cheap. The 
idea in this business model is to make your decoder ubiquitous in the target 
market. In this case, you'd like as many users as possible to be using your 
decoder and so you find ways to make that happen. For example, you might 
give the decoder away free over the internet or aggressively license your 
decoding technology to companies making players for the type of content 
you are encoding (for example satellite television receivers, cd/dvd/mp3 
players, video game consoles). 

Another recent business model that has developed is based on the idea 
that better technology can be made by combining the efforts of several 
companies in a related field. In this business model, several companies pool 
their efforts to develop a joint coding standard. The hope is that the 
technology that results is so much better than anything else in the market that 
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it creates enough profits for each participant to have been better off than 
doing it alone. Although far from universally accepted, this last business 
model has become an increasingly important one in the world of coders. 
One of the first very successful examples of such approach was applied to 
the MPEG-2 video standard (see for example [Mitchell, Pennebaker, Fogg 
and LeGall 97]). Many of the most popular coders in the market today (MP3 
as a notable example), are the result of setting up a standardization 
committee and defining an industry-standard codec for certain applications. 

In the standards process, participating companies offer up technology to 
become part of the standard coder. For example, one company might 
provide the structure of the psychoacoustic modellbit allocation routine, 
another might provide the transform coding kernel, and yet a third company 
might provide the entropy coding codebook for the bit allocations and scale 
factors. The specifications of the resulting decoder would then become 
publicly available and steps taken so potential users could easily license the 
standard coder technology. If a patent pool is set up, typically the resulting 
royalties would be shared by the participating companies in some allocation 
mutually agreed upon, but in general related to the share of the intellectual 
property provided. 

Usually only the bitstream format and decoding process become 
standardized - the encoder remaining proprietary so that companies can still 
compete on having the best sounding coder. An example encoder is 
described in the informative part of the standard, but companies can put 
together encoders that perform very differently while still conforming with 
the mandatory standard specifications. This is not the case with decoders 
where, to be compliant with the standard, a decoder must behave exactly as 
specified. 

Keeping a coder proprietary means that it is hard for students, academics, 
and others to learn what's really going on inside the coder. The fact that the 
encoder part of a standardized codec remains competitive often means that 
the standards documents remain very cryptic, again limiting an outsider's 
ability to understand what is going on inside. After all, if you make money 
based on having the best encoders it can be in your financial interests to only 
layout in the standard what steps need to be taken without explaining why 
they must be taken. One of the goals of this book is to help demystify some 
of the coding "secrets" that typically remain out of reach to outsiders. 
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7. EXERCISES 

Class Project: 
The class project is to build and tune an MDCT-based perceptual audio 
coder. We recommend that students form groups of 2-3 students per group 
to work together on the coder. At the end of the course, each group will 
present their coder to the rest of the class. The presentations should describe 
how each coder works, discuss some of the design choices that were made, 
and let the class listen to a variety of sound examples that have been 
encoded/decoded at various compression ratios using the group's codec. 



Chapter 10 

Quality Measurement of Perceptual Audio Codecs 

1. INTRODUCTION 

Audio coding involves balancing data rate and system complexity 
limitations against needs for high-quality audio. While audio quality is a 
fundamental concept in audio coding, it remains very difficult to describe it 
in objective terms. Traditional quality measurements such as the signal to 
noise ratio or the total block distortion provide simple, objective measures of 
audio quality but they ignore psychoacoustic effects that can lead to large 
differences in perceived quality. In contrast, perceptual objective 
measurement schemes, which rely upon specific models of hearing, are 
subject to the criticism that the predicted results do not correlate well with 
the perceived audio quality. While neither simple objective measures nor 
perceptual measures are considered fully satisfactory, audio coding has 
traditionally relied on formal listening tests to assess a system's audio 
quality when a highly accurate assessment is needed. After all, human 
listeners are the ultimate judges of quality in any application. 

The inadequacy of simple objective quality measures was made 
dramatically clear in the late eighties when J. Johnston and K. Brandenburg, 
then researchers at Bell Labs, presented the so-called "13 dB Miracle". In 
that example, two processed signals with a measured SNR of 13 dB were 
presented to the audience. In one processed signal the original signal was 
injected with white noise while in the other the noise injection was 
perceptually shaped. In the case of injected white noise, the distortion was a 
quite annoying background hiss. In contrast, the distortion in the 
perceptually shaped noise case varied between being just barely noticeable 
to being inaudible (i.e., the distortion was partially or completely masked by 
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the signal components). Although the SNR measure was the same for both 
processed signals the perceived quality was very different, the second signal 
being judged as a very good quality signal (see also [Brandenburg and 
Sporer 92]). This example made clear to the audio community that quality 
measurements that reflect perceptual effects were needed to assess modern 
audio coders. 

Throughout this chapter it is important to keep in mind that the perceived 
quality of a specific coder depends on both the type of material being coded 
and the data rate being used. Different material stresses different aspects of 
a coder. For example, highly transient signals such as percussive 
instruments will test the coder's ability to reproduce transient sounds 
effectively. In contrast, the closeness of spectral lines in a harpsichord piece 
will test the frequency resolution of a coder. Because of this dependence on 
source material, any quality assessment needs a good set of critical material 
for the assessment. Moreover, coding artifacts will become more 
pronounced as the coder's data rate is reduced. Any quality assessment 
comparing one coder against another needs to take into consideration the 
data rates used for each coder when ranking different coding systems. 

Quality measurement is not only essential in the final assessment of an 
audio coder, but it is also critical throughout the design and fine-tuning of 
the different stages of the coding system. Designing an audio coder requires 
many decisions and judgement calls along the way, and it is very common to 
test and refine coding parameters by performing listening tests. Audio 
coding engineers have spent many long hours performing this important but 
arduous task! For example, in the development of MPEG-2 Advanced 
Audio Coding, AAC (see also Chapter 13), a number of experiments were 
carried out to compare technology alternatives by conducting listening tests 
in different sites. The results of these experiments were then analyzed and 
used to determine which technology was to be incorporated in the standard. 
Familiarity with audio coding artifacts and the ability to perform listening 
tests are important tools of the trade for anyone interested in developing 
audio coding systems. 

In this chapter, we present an overview of the methods for carrying out 
listening tests. As we shall see in the next sections, formal listening tests 
require both sophistication and care to be useful. They require large 
numbers of trained subjects listening in a controlled environment to carefully 
choreographed selections of material. Although no substitute for formal 
listening tests has been found for most critical applications, the difficulty in 
doing it well has created great pent-up demand for acceptable substitutes in 
more forgiving applications. Coder design decisions are often made based 
on simple objective measurements or informal listening tests carried out with 
just a few subjects, and objective measures of perceptual quality are a hot 
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topic for many researchers. In the second part of this chapter we discuss the 
principles behind objective perceptual quality measurements. The recent 
successes of the PEAQ (perceptual evaluation of audio quality) measurement 
system provide insurance that objective measurements can be used for 
informal assessment and in conjunction with formal listening tests. 

Finally we briefly describe what we are listening for during listening tests 
and introduce the most commonly found artifacts in perceptual audio coding. 

2. AUDIO QUALITY 

The audio quality of a coding system can be linked to the perceived 
difference between the output of a system under test and a known reference 
signal. These differences are sometimes referred to as impairments. In 
evaluating the quality of a system, we need to be prepared for test signals 
that can range between perfect replicas of the reference signal (for example a 
lossless compression scheme) to test signals that bear very little resemblance 
to the reference. Depending where we are in this range, different strategies 
will be used to assess quality. 

A very useful concept in quality assessment is that of "transparency". 
When even listeners expert in identifying coding impairments cannot 
distinguish between the reference and test signals, we refer to the coding 
system under test as being transparent. One way of measuring whether or 
not the coding system is transparent is to present both the test and reference 
signals to the listener in random order and to have them pick out which is the 
test signal. If the coding system is truly transparent, listeners will get it 
wrong roughly 50% of the time. 

The questions we will want answered about coder quality will differ 
greatly depending on whether or not we are in the region of transparency. 
When we are in the region of transparency, the "coding margin" of the coder 
is an attribute that the test can assess. Coding margin refers to a measure of 
how far the coder is from the onset of audible impairments. Normally, we 
estimate coding margin using listening tests to find out how much we can 
reduce the coder's data rate before listeners can detect the test signal with 
statistically significant accuracy. To the degree that perceptual objective 
measures can assess how far below the masking curves the coding errors are 
positioned, they also can provide estimates of coding margin. For example, 
if the objective measure can report the worst-case noise-to-mask ratio in the 
signal (where the NMR represents the difference between the signal to mask 
ratio, SMR, and the SNR), we can estimate how many fewer bits would start 
making the impairments audible. 
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When we are below the region of transparency, we are interested in 
knowing how annoying the audible impairments are for different types of 
test signals. In this manner we can determine whether or not the coder is 
adequate at the tested data rate for a specific target application. In most 
cases, we are most interested in using the coder in or near the transparent 
region. In such cases we are concerned with identifying and rating 
impairments that are very small. It is exactly for such situations that the 
experts in the International Telecommunication Union, Radiocommunication 
Bureau, ITU-R, formerly know as International Radio Consultative 
Committee, CCIR, designed the five-grade impairment scale and formal 
listening test process we present in the next sections. 

3. SYSTEMS WITH SMALL IMPAIRMENTS 

In this section we review the major features of carrying out a listening 
test to evaluate an audio codec producing signals with small impairments 
with respect to the reference signal [ITU-R BS. 1116]. The goal is to gain an 
appreciation of what's involved in carrying out such a test. For readers 
interested in further exploration of this topic, reading the ITU-R reference 
material [ITU-R BS.1116 and ITU-R BS. 562-3] is highly recommended. 

3.1 Five-Grade Impairment Scale 

The grading scale used in BS. 1116 listening tests is based on the five
grade impairment scale as defined by [ITU-R BS.562-3] and shown in 
Figure 1. According to BS.562-3, any perceived difference between the 
reference and the systems under test output should be interpreted as an 
impairment and the discrete five-grade scale measures the degree of 
perceptibility of the impairment. In BS.1116, the ratings are represented on 
a continuous scale between grades of 5.0 for transparent coding down to 1.0 
for highly annoying impairments. The five-grade impairment as defined by 
BS.562-3 is related to the five-grade quality scale as shown in Table 1. 

Table 1. Relationship between guality and impairment scale [ITU-R BS.S62-3) 
Quality Impairment 
5 Excellent 5 Imperceptible 
4 Good 4 Perceptible, but not annoying 
3 Fair 3 Slightly annoying 
2 Poor 2 Annoying 

Bad Very annoying 
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5.0 Imperceptible 

4.0 Perceptible but Not Annoying 

3.0 Slightly Annoying 

2.0 Annoying 

1.0 Very Annoying 

Figure 1. ITU-R five-grade impairment scale 

Very often, to facilitate the data analysis, the difference grade between 
the listener's rating of the reference and coded signal is considered. This 
value, called the subjective difference grade, SDG, is defined as follows: 

SDG = Gradecoded signal - Gradereference signal 

The SDG has a negative value when the listener successfully distinguishes 
the reference from the coded signal and it has a positive value when the 
listener erroneously identifies the coded signal as the reference. An SDG of 
zero means we are in the transparency region and any impairments are 
imperceptible, while an SDG of -4 indicates a very annoying impairment. 
Table 2 shows the relationship between the five-grade impairment scale and 
the subjective difference grades. 

Table 2. Subjective Difference Grades (SDGs) and their relationship with the ITU-R 5-grade 
impairment scale (assuming that the reference signal is identified correctly). 
Impairment Description ITU-R Grade SDG 

Imperceptible 5.0 0.0 

Perceptible, but not annoying 

Slightly annoying 

Annoying 

Very annoying 

3.2 Test Method 

4.0 

3.0 

2.0 

1.0 

-1.0 

-2.0 

-3.0 

-4.0 

The test method most widely accepted for testing systems with small 
impairments is the so-called "double-blind, triple-stimulus with hidden 
reference" method. In this method the listener is presented with three signals 
("stimuli"): the reference signal, R, and then the test signals A and B. One 
of the two test signals will be identical to the reference signal and the other 
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will be the coded signal. The test is carried out "double blind" in that neither 
the listener nor the test administrator should know beforehand which test 
signal is which. The assignments of signals A and B should be done 
randomly by some entity different from the test administrator entity so that 
neither the test administrator nor test subject has any basis for predicting 
which test signal is the coded one. 

The listener is asked to assess the impairments of A compared to R, and 
of B compared to R according to the grading scale of Figure 1. Since one of 
the stimuli is actually the reference signal, one of them should be receiving a 
grade equal to five while the other stimulus may receive a grade that 
describes the listener's assessment of the impairment. If the system under 
test produces an output whose quality is in the transparency region, the 
listener will perceive no differences between the stimuli. In this case, one 
may decide to vary the data rate of the system to derive an estimate of the 
coding margin of the system. In addition to the basic quality assessment, the 
listener may be asked to grade spatial attributes such as stereophonic image, 
front image, and impression of surround quality separately for stereo and 
other multichannel material. 

The double-blind, triple-stimulus with hidden reference method has been 
implemented in differt ways. For example, the system under test can be a 
real-time hardware implementation or a software simulation of the system. 
The stimuli can be presented with a tape-based reproduction or with a play
back system from computer hard disk. Preferably, only one listener is 
performing the test at one time. The listener is allowed to switch at will 
between R, A or B and to loop through the test sequences. In this fashion, 
the cognitive limitation of utilizing only echoic and short-term memory for 
judging the impairments in the relatively short sequence are mitigated (see 
also the description of the selection of critical material later in this chapter). 
The inclusion of the hidden reference in each trial provides an easy mean to 
check that the listener does not consistently make mistakes and therefore 
provides a control condition on the expertise of the listener. 

The double-blind, triple-stimulus with hidden reference method has been 
employed worldwide for many formal listening tests of perceptual audio 
codecs. The consensus is that it provides a very sensitive, accurate, and 
stable way of assessing small impairments in audio systems. 

3.3 Training and Grading Sessions 

A listening test usually consists of two separate parts: a training phase 
and a formal grading phase. The training phase or "calibration" phase is 
carried out prior to the formal grading phase and it allows the listening panel 
to become familiar with the test environment, the grading process, and the 
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codec impairments. It is essential for the listening panel to be familiar with 
the artifacts under study. A small unfamiliar distortion is much more 
difficult to assess than a small familiar distortion. This phenomenon is also 
known as informational masking, where the threshold of a complex maskee 
masked by a complex masker can decrease on the order of 40 dB after 
training [Leek and Watson 84]. Although the effects of the training phase in 
the assessment of perceptual audio coding have not been quantified, it is 
believed that this phase considerably reduces the informational masking that 
might occur. 

Since the tests present the listener with the rather difficult task of 
recognizing very small impairments, it is common practice to introduce a 
"low anchor". A low anchor is an audio sequence with easily recognizable 
artifacts. The purpose of the low anchor is to help the listener in identifying 
artifacts. 

An example of a test session grading sheet is shown in Figure 2. The 
sheet shown comes from one of the listening tests carried out during the 
development of the MPEG AAC coder. This particular example was used in 
the core experiment to assess the quality of reference model three (RM3) in 
1996. The same core experiment was conducted in several test sites 
worldwide, including AT&T and Dolby Laboratories in the US, Fraunhofer 
Gesellschaft in Germany, and Sony in Japan. The particular core experiment 
described by the grading sheet of Figure 2 was carried out through ST AX 
headphones at Dolby Laboratories in San Francisco. The test material was 
presented to the subject via tape and consisted of two sessions of nine trials 
each. In Tape 1, Session 1, Trial 1, for example, the subject recognized A as 
being the hidden reference and B being the better than "perceptible but not 
annoying" system under test output. 

MPEG-2 Audio NBC RM3 Test 

Figure 2. Example of a grading sheet from a listening test 
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3.4 Expert Listeners and Critical Material 

The demanding nature of the test procedures is justified by the fact that 
the aim is to reveal any impairment in the system under test. These 
impairments may be recognized initially as very subtle, but may become 
more obvious after extensive exposure under different conditions once the 
system has been introduced to the general public. In general, a test is 
successfully designed if it can isolate the worst-case scenario for the system 
under study. In order to be able to accomplish this goal, only expert listeners 
and critical material that stresses the system under test are employed in 
formal listening tests. 

The term expert listener applies to listeners who have recent and 
extensive experience of assessing impairments of the type being studied in 
the test. Even in cases where professional listeners are available, the training 
phase is very important. The expert listener panel is typically selected by 
employing pre-screening and post-screening procedures. An example of 
pre-screening procedures is given by an audiometric test. Post-screening is 
employed after the resulting data from the test are collected. Post-screening 
is based on the ability of the listener to consistently identify the hidden 
reference versus the system under test output sequence. There has been a 
long debate on the benefits versus the drawbacks of applying pre and post
screening procedures (see also [Ryden 96]). A demanding screening 
procedure may lead to the selection of a small number of expert listeners 
limiting the relevance of the results. On the other hand, the efficiency of the 
test may increase in doing so. In general, the size of the panel depends on 
the required resolution of the test, the desired representativity, etc. 
Typically, the number of expert listeners involved in a formal test varies 
between twenty and sixty. 

The selection of critical material is an important aspect of the test 
procedure. While a database of difficult material for perceptual audio 
codecs has been collected over the past ten years with the work of MPEG 
and ITU-R (see also [Soulodre et al. 98] and [Treurniet and Soulodre 00]), it 
is impossible to create a complete list of such material. Critical material 
must be sought for each codec to be tested. Typically, an exhaustive search 
and selection by an expert group is conducted prior to the formal 
presentation of the test. If truly critical material cannot be found, the test 
fails to reveal differences among the systems and therefore is inconclusive. 
Generally, other than synthetic signals that deliberately break the system 
under test, any potential broadcast material or dedicated recordings that 
stresses the system under test is examined during the critical material 
selection stage. If more than one system is studied, then it is recommended 
to have an average of at least 1.5 audio excerpts for each codec under test 
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with a minimum of five excerpts. Each excerpt should be relatively short, 
typically lasting about 10 seconds. 

3.5 Listening Conditions 

In order to be able to reliably reproduce the test, the listening conditions 
and the equipment need to be precisely specified. In [ITU-R BS.1116] the 
listening conditions include the characteristics of the listening room (such as 
its geometric properties, its reverberation time, early reflections, background 
noise, etc.), the characteristics and the arrangement of the loudspeakers in 
the listening room, and the reference listening area. In Table 3 a summary of 
the characteristics of reference monitors and the listening room as per 
BS.l116 is shown. In Figure 3 the multichannel loudspeaker configuration 
and the reference and worst case listening positions are shown. Typically, for 
mono and stereo program material, testing with both headphones and 
loudspeakers is recommended. Experience has shown that headphones 
highlight some types of artifacts better than loudspeakers and vice versa. 

In addition, in [ITU-R BS.1l16] specific listening levels are defined. 
Some listeners strongly prefer to have direct control on the absolute listening 
level. In general, arbitrary variations in the listening levels are not 
recommended since they may introduce unpredictable offsets in the masked 
thresholds and therefore increase the variance. 

Finally, it should be noted that one of the most difficult criteria to meet in 
the ITU-R BS.l116 room specifications is the background noise. The Dolby 
listening room utilized in the MPEG-2 AAC core experiments exhibits a 
background noise defined by the NC 20 curve, while ITU-R BS.l116 
requires the background noise to be contained between NR 10 and NR 15, in 
any case not to exceed NR 15.4 

4 Noise criterion, NC [Beranek 57], and noise rating, NR [Kosten and Van as 62 and ISO 
1996-1, ISO 1996-2, ISO 1996-3] are standardized curves of maximum permissible noise 
as a function of frequency. 
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Table 3. Reference monitor and room specifications as per ITU-R 8S.1116 
Parameter 8S.1116 Specifications 
Reference loudspeaker monitors amplitude vs. 

frequency response 

Reference loudspeaker monitors directivity index 

40 to 16 kHz 

(113 octave, free-field) 

± 10° frontal axis ±3 dB re 0° 

± 30° frontal axis ±4 dB re 0° 

3.5.1.1 0 dB sdirectivity index s12 dB 

40- 10000 Hz 

Reference loudspeaker monitors 

distortion at 90 dB SPL 

non-linear < -30 dB @ 40 to <250 Hz 

< -40 dB @ 250 to 16 kHz 

Reference monitors time delay 

Height and orientation of loudspeakers 

Loudspeaker configuration 

Room dimensions and proportions 

Room reverberation time (1;.,) 

Room early reflections 

Operational room response 

Background noise 

(equipment & HVAC on) 

< 100 I1S between channels 

< 20 I1S for headphones 

1.10 m above floor 

reference axis at listener's ears 

Distance between loudspeakers 

2 t03 m 

Angle to loudspeakers 0°, ± 30°, ± 110°, 

Distance from walls> I m 

20 to 60 m2 area for mono/stereophonic 

reproduction 

30-70 m2 for multichannel reproduction 

l.l w/h s IIh s (4.5 w/h-4) 

IIh < 3 w/h < 3 

where: I is length, w is width, h is height 

Tm I, ~ 0.3(V 1100)113 for 200Hzsfrequencys4kHz 

where: V = volume of the room 

the following limits apply: 

o to 578 ms @ 63 Hz 

428 to 228 ms @ 125 Hz 

328 to 228 ms @ 200 to 4000 Hz 

178 to 378 ms @ >8000 Hz 

<-lOdB forts 15 ms 

s +3 dB, -7 dB @ 50 Hz 

s +3 dB, -5 dB @ 125 Hz 

$ +3 dB, @ 250 - 2000 Hz 

s +3 dB, -4.5 dB @ 4000 Hz 

s +3 dB, -6.0 dB @ 8000 Hz 

s +3 dB, -7.5 dB @ 16000 Hz 

<NRI5 
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Reference lislenlng posilioll w 
I I Won! case listening positions 

L°"; 

B: loudspeaker base width 
D: Listening dislance 

Figure 3. Multichanneiioudspeakers configuration from [ITU-R BS.ll16] 

3.6 Data Analysis 

247 

After the expert listeners grades are collected, the data analysis starts. It 
is important to stress that the grades do not represent a physical 
measurement, but rather the individual interpretation of the grading scale. 
For example, it appears that the distances between steps of the five-grade 
impairment scale are different for different languages [Ryden 96]. Some 
experts have argued that given the nature of the quality of the scale 
employed, only non-parametric methods should be applied. On the other 
hand, provided that the assumptions underlying the parametric methods are 
met, these methods are considered very sensitive and powerful. Assuming 
that the tests have been conducted according the strict rules specified in 
[ITU-R BS.1116], then it is likely that each step of the grading scale is 
approximately of equal size to all the others. A variance model such as the 
ANOVA (ANalysis Of VAriance) method is most commonly used. The 
appropriate basis for a detailed statistical analysis is the difference grade 
(SDG) as defined earlier in this chapter, not the absolute grade because of 
the interdependence of any pair of observations. The results of the data 
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analysis should be able to give a measure of the average performance of the 
system under test and, if more than one system is examined, the differences 
between the systems under tests. 

The resolution achieved by the listening test is reflected in the confidence 
interval. This interval contains the SDG values with a specified degree of 
confidence, 1- a, where a represents the probability that inaudible 
differences are labeled as audible. In practice a value of 0.05 is chosen for 
a, which corresponds to a 95% confidence interval. In Figure 4 an example 
of test results presentation is shown from [ISO/IEC MPEG N1420). The 
specific test result shown corresponds to formal listening tests of MPEG-2 
NBC (non backward compatible coder, later renamed MPEG-2 AAC) in the 
multichannel configuration at a data rate of 320 kb/s per five channel carried 
out at the BBC, UK in June 1996. Figure 4 shows an assessment of the 
average quality of MPEG-2 NBC for ten critical items. The data were 
derived from the grades relative to the ten critical sequences analyzed with 
ANOV A and a confidence interval of 95%. 

Finally, it should be mentioned that someone could argue that the strictly 
controlled test environment as described in this section not only is far from 
the reality of our living rooms, but also, in some cases a bit more forgiving. 
For example, consumer type of reproduction devices could reveal more 
artifacts than may be detected by professional equipment. Due to 
imperfections in the reproduction devices, such as notches in some 
frequency ranges, unmasking effects may occur. A listening area different 
from the one specified in [ITU-R BS.1116], may also enable the listener to 
distinguish distortion that was originally masked if the listener was at a 
certain distance and angle from the loudspeakers. Although these and other 
issues were debated by a number of experts, the general consensus was that 
one of the fundamental objectives in the design of listening test procedures 
was the reproducibility of the results, and this can only be obtained by a 
well-controlled procedure. 

In general formal listening tests have shown very good reliability in the 
evaluation of audio coding systems and high correlation in their results, see 
for example [lSOIIEC MPEG 94/063, ITU-R 10/51, ITU-R 1012-23, 
ISOIIEC MPEG 91/010]. In general they have proven to be a very effective 
tool in evaluating high-quality audio systems with small impairments. 
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Figure 4. Example of formal listening test results from [ISO/IEC MPEG N1420] 

3.7 The MUSHRA Method 
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1 

While ITU -R BS.1l16 is very effective in evaluating high quality audio 
systems with small impairments, other methods can be used for systems with 
intermediate quality. For example, for speech signals in telephone 
environments recommendations [ITU-T P.800, ITU-T P.810 and ITU-T 
P.830] provide guidelines for assessment. If one wishes to provide relative 
ranking between two systems in the region far from transparency, then [lTU
R BS.1284] provides appropriate guidelines. In this case the seven-grade 
comparison scale is also recommended (see also Table 4). 

Table 4. Seven-grade comparison scale 
Grade Comparison 

3 Much better 

2 Better 

Slightly better 

0 The same 

-\ Slightly worse 

-2 Worse 

-3 Much worse 

For systems where limitations are known a priori, such as, for example, 
digital transmission with reduced bandwidth, internet and mobile 
multimedia, etc., a new method, nicknamed MUSHRA, (MUltiple Stimulus 
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with Hidden Reference and Anchors) was recently recommended by the 
ITU-R [ITU-R BS. 1534]. 

MUSHRA is a double-blind multi-stimulus test method with hidden 
reference and one or more hidden anchors as opposed to BS.1116's "double
blind triple-stimulus test method with hidden reference" test method. At least 
one of the anchors is required to be a low-passed version of the reference 
signal. The presence of the anchor(s) is meant as an aid in the task of 
weighing the relative annoyance of the various artifacts. 

While there are common requirements with BS.1116 such as the 
selection of expert listeners, training phase, pre and post-screening of the 
listeners, listening conditions, in BS.1534 the subject is allowed to adjust the 
play-back level and the grading scale is modified since the grading of 
systems of intermediate quality would tend to cover mostly the lower half of 
the five-grade impairment scale. 

According to the MUSHRA guidelines the subjects are required to score 
the stimuli according to a continuous quality scale divided in five equal 
intervals labeled, from top to bottom, excellent, good, fair, poor and bad (see 
for example [ITU-R BT.71O)). The scores are then normalized in the range 
between 0 and 1 00, where 0 corresponds to the bottom of the scale (bad 
quality). 

The data analysis is performed as the average across subjects of the 
differences between the score associated to the hidden reference and the 
score associated to each other stimulus. Typically a 95% confidence interval 
is utilized. Additional analysis, such as ANOV A etc., may also be 
calculated depending on the goal of the tests. The interested reader should 
consult [ITU-R BS 1534] for further details. 

While listening tests have shown very good reliability in the evaluation 
of audio codecs, their cost can be high and sometimes the required level of 
effort might be impractical. Perceptual objective measurements have been 
studied since the late seventies and successfully applied to speech coding 
systems (see for example [ITU-T P.861] and [ITU-T P.862)). In recent years 
perceptual objective measurements for audio coding systems have reached a 
level of reliability and correlation with subjective listening tests that makes 
them an important complement in the assessment of audio coding systems. 
We turn next to the description of the underlying principles in perceptual 
objective measurements and the description of PEAQ, the ITU-R standard 
for such measurements. 
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4. OBJECTIVE PERCEPTUAL MEASUREMENTS 
OF AUDIO QUALITY 

The aim of objective perceptual measurements is to predict the basic 
audio quality by using objective measurements incorporating 
psychoacoustics principles. Objective measurements that incorporate 
perceptual models have been introduced since the late seventies [Schroeder 
79] for speech applications. More recently, psychoacoustics models have 
been exploited in the measurements of perceived quality of audio coding 
systems, see for example [Karjalainen 85], [Brandenburg and Sporer 92], 
[Beerends and Stemerdink 92], [Paillard, MabilIeu, Morissette and 
Soumagne 92], and [Colomes, Lever, Rault and Dehery 93]. The 
effectiveness of objective quality measurements can only be assessed by 
comparison with corresponding scores obtained from subjective listening 
tests. One of the first global opportunities for correlating the results of these 
different audio objective subjective evaluations with informal subjective 
listening test results arose in 1995 in the early stages of the development of 
the MPEG-2 AAC codec. The need to test different reference models in the 
development of MPEG-2 AAC led to the study of objective subjective tests 
as a supplement and as an alternative to listening tests. Unfortunately, none 
of the objective subjective techniques under examination at that time showed 
reliable correlation with the results of the listening tests [ISO/IEC MPEG 
95/201]. Similar conclusions were reached at the time within the work of 
ITU-R. 

The recent adoption by ITU-R of PEAQ in BS.1387 [ITU-R BS.1387, 
Thiede et aI.OO] came in conjunction with data that corroborated the 
correlation between PEAQ objective difference grades, ODGs, with the 
SDGs obtained averaging the results of previous formal subjective listening 
tests [Treurniet and Soulodre 00]. While PEAQ is based on a refinement of 
generally accepted psychoacoustics models, it also includes new cognitive 
components to account for higher-level processes that come to playa role in 
the judgment of audio quality. 

4.1 Different Approaches in Perceptual Objective 
Measurements 

Before describing PEAQ, it is interesting to briefly review the two basic 
approaches used in perceptual objective measurements: the masked 
threshold method [Schroeder, Atal and Hall 79, Brandenburg and Sporer 92] 
and the internal representation method [Karjalainen 85, Beerends and 



252 Introduction to Digital Audio Coding and Standards 

Stemerdink 92, Paillard, MabiIleu, Morissette and Soumagne 92, Colomes, 
Lever, Rault and Dehery 93]. 

In the masked threshold method the error signal, computed as the 
difference between the original and the processed signal, is compared to the 
masked threshold of the original signal (see Figure 5). The error at a certain 
time and frequency is labeled as inaudible if its level falls below the masked 
threshold. Key to use of this method is an accurate model of masking. 

Device Under Test Reference 

Threshold Estimation 

Comparison 

Figure 5. Block diagram of the masked threshold method 

In the internal representation method, excitation patterns of the cochlea 
are estimated by modeling the signal transformations that take place in the 
human ear. The excitation patterns of the reference and of the output of the 
device under test are then compared to see if any differences in the excitation 
pattern can be discerned by the auditory system (see Figure 6). The internal 
representation method seems to be closer to the physiology of human 
perception than the masked threshold method previously described and it has 
the capacity of modeling more complex auditory phenomena. Key to the use 
of this method is a good description of the ability of the auditory system to 
discern changes in cochlear excitation patterns. 
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Device Under Test 

Excitation Pattern 
Estimation 

Comparison 

Reference 

Excitation Pattern 
Estimation 

Figure 6. Block diagram of the internal representation method 

4.2 Perceptual Evaluation of Audio Quality, PEAQ 
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PEAQ takes advantage of both masked threshold and internal 
representation methods [Thiede et al. 00]. In PEAQ's advanced version the 
peripheral ear is modeled both through a DFT and a bank of forty pairs of 
linear-phase filters with center frequencies and bandwidths corresponding to 
the auditory filters bandwidths. The model output values (MOYs) are based 
partly on the masked threshold method and partly on the internal 
representation method. The cognitive model compares the internal 
representations and calculates variables that summarize the behavior of the 
psychoacoustic activity over time. The MOYs include partial loudness of 
linear and non-linear distortion, noise to mask ratios, alteration of temporal 
envelopes, harmonic errors, probability of error detection, and proportion of 
signal frames containing audible distortions. Selected MOYs are used to 
predict the subjective quality rating (e.g., SDG) that would be assigned to the 
systems under test through formal listening tests. The MOYs are mapped to 
an objective difference grade (ODG) via an artificial neural network. The 
ODGs represent a prediction of the SDG values. The mapping of the ODGs 
derived from the MOYs was optimized by minimizing the difference 
between the ODG distribution and the corresponding distribution of mean 
SDGs from a number of formal listening tests. 
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In Figure 7 the block diagram for the advanced version of PEAQ is 
shown. In contrast, the basic version utilizes the DFf-based peripheral ear 
model only. In general the correlation between subjective and objective 
quality evaluations are slightly higher for the advanced model than for the 
basic version. The pattern for the two versions, however, is similar 
[Treurniet and Soulodre 00]. 

PEAQ was used to generate objective quality measurements for audio 
data previously utilized in formal listening tests of state-of-the-art perceptual 
audio codecs. The performance of PEAQ was evaluated in different ways. 
The objective and mean subjective ratings were compared for each critical 
audio item used in formal tests. Then, the objective and subjective overall 
system quality measurements were compared by averaging codec quality 
measurements over critical items. The correlation between subjective and 
objective results proved very good and analysis of SDG and ODG showed 
no significant statistical differences [Treurniet and Soulodre 00]. The 
accuracy of the ODG demonstrated the capacity of PEAQ to correctly 
predict the outcome of the formal listening tests including the ranking of the 
codecs in terms of measured quality. PEAQ was also tested as a tool in 
aiding the selection of critical material for formal listening tests. On the 
basis of quality measurement, the PEAQ set of critical material included 
more than half the critical sequences used in the formal listening test under 
exam [Treurniet and Soulodre 00]. 

Device Under Test Reference Device Under Test Reference 

Figure 7. Block diagram of the advanced version of PEAQ [Thiede et al.OOI 
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5. WHAT ARE WE LISTENING FOR? 

In the previous sections, we have described how we can assess perceptual 
audio codecs. Formal listening tests and perceptual objective measurements 
are the most appropriate tools to assist us in this task. In this section we now 
address the question: "What is that we are listening for?". To inexperienced 
ears different versions of a codec may sound equally good. The more 
familiar one becomes with coding artifacts, the easier it is to recognize the 
codec impairments and to distinguish between different versions. In addition 
to general distortion due to bit starvation, there are a number of less obvious 
artifacts commonly encountered in audio coding. In this section, we briefly 
describe some of the most common coding artifacts that one may expect 
when listening to perceptual audio coding systems. For detailed sound 
examples, the reader can refer to [AES CD-ROM On Perceptual Audio 
Coders 200 1]. 

5.1 Pre-echo 

We saw in Chapter 9 that the first stage in perceptual audio coding is 
typically a time to frequency mapping stage. In this stage, one would like to 
maximize the time-frequency resolution of the signal representation. Block 
size values go up to 2048 time samples in state-of-the-art audio coders. In 
Chapter 6, we described how temporal masking effects cover a range of the 
order of few ms before the onset of the signal (backward or pre-masking) 
and few 100 ms after the onset of the masker (forward or post -masking). In 
the case of signals with sharp attacks, like for example castanets, some of the 
quantization noise may spread before the onset of the masker through the 
input block length in a time region where it is not masked (see also Figure 8 
in Chapter 6). In this case, the spreading in time of quantization noise 
results in the artifact known as pre-echo. Pre-echo effects dampen the 
sharpness and clarity of the attacks, resulting in what some call "double 
attacks". As mentioned in Chapter 5, pre-echo can be mitigated by trading
off frequency resolution for time resolution of the filter bank, that is by 
applying block switching. 

5.2 Aliasing 

If the filter bank is implemented as a set of sub-band filters (see also 
Chapter 4), like for example the PQMF utilized in the MPEG Audio coders, 
one may expect that aliasing effects due to the nature of these filters may 
introduce artifacts. It appears that, in normal conditions, this artifact is 
hardly audible [Erne 01]. Analogously, in the MDCT approach, although 
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the overall system is a perfect reconstruction system in absence of 
quantization, coarse quantization may impede full time-domain aliasing 
cancellation resulting in audible artifacts. In general, this is not a problem in 
normal conditions. 

5.3 "Birdies" 

This artifact arises when, at low data rate for spectrally demanding 
signals, the highest frequency bands bit allocation changes from block to 
block. Consequently, some spectral coefficients may temporarily appear and 
disappear. The resulting effects cause a very noticeable change in timbre at 
high frequencies, sounding almost like a chirp, therefore the name "birdies". 
A potential solution to this problem is to low-pass the signal prior to coding 
in order to prevent bit allocation in this region. The resulting signal will 
sound band-limited, but this effect is in general much less disturbing than the 
birdies artifact. Even when the signal is band-limited, however, there is still 
the possibility that this artifact may occur. Ideally, a higher data rate should 
be selected in order to maintain high quality. 

5.4 Speech Reverberation 

Typically, audio coders are not tuned to any specific sound source, like 
for example speech coders, but, on the contrary, try to address general wide
band audio signals. For general audio coders speech is a very demanding 
signal since it requires both high frequency resolution, for example for 
highly tonal segments like vowels, and high time resolution for fricatives 
and plosives. If a large block size is employed for the filter bank at low data 
rates, the speech may sound unnaturally reverberant with a "metallic" quality 
to it. This artifact sometimes referred to as "speech reverberation" can be 
mitigated by adopting a filter bank which dynamically adapts its resolution 
to the characteristics of the input signal. 

5.5 Multichannel Artifacts 

Multichannel artifacts arise from differences in the perceived sound field 
of the coded signal. Spatial attributes such as stereophonic image, front 
image, and impression of surround quality may exhibit differences in the 
coded version. Some of the most common artifacts include a loss or a shift 
in the stereo image and changes in the signal envelope at high frequencies, a 
phenomenon related to the effects of binaural masking. Joint stereo coding 
strategies such as MIS coding and intensity stereo coding are currently 
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employed for multichannel coding. Of the two approaches, MIS tends to be 
lossless or nearly lossless, while intensity stereo coding may introduce quite 
noticeable artifacts at low data rates. Intensity stereo coding reconstructs the 
output multichannel signal above a certain frequency from a single channel 
by appropriately scaling it. If the signal is not stationary for the duration of 
the input block and has different envelopes in different channels the recovery 
will introduce artifacts. A particularly revealing excerpt for these types 
artifacts is the applause sample in [AES CD-ROM On Perceptual Audio 
Coders 2001]. 

6. SUMMARY 

In this chapter, we discussed the importance of subjective listening tests 
in the assessment of perceptual audio coding. The more controlled are the 
parameters in the test, the more reliable are the test results. The double 
blind, triple stimulus with hidden reference method as per the ITU-R 
BS.1116 specifications has proven to generate reliable results. Although test 
sites for formal listening tests need to be fully compliant with BS.l116, the 
basic guidelines are also useful for carrying out informal listening tests. 
Performing listening tests plays a central role not only in the final 
assessment of an audio coder, but also during its development by providing 
invaluable feedback for the fine-tuning of different parameters. Subjective 
listening test results provide a measure of the degree of transparency of the 
perceptual codecs under tests and the reliability of differences between the 
different codecs. In recent years, perceptual objective measurements have 
also been developed such as PEAQ that show good correlation with 
subjective tests results. These also represent an important tool in the 
development of audio coders. 

This chapter concludes the first part of this book devoted to a discussion 
of the underlying principles and implementation issues in perceptual audio 
coding. In the remaining chapters we review how these basic principles are 
applied in state-of-the-art perceptual audio coders such as the MPEG and the 
Dolby families of audio coders, and how different implementation strategies 
have affected the final results. 
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8. EXERCISES 

Listening Test: 
In this exercise you will perform a listening test to compare the coders you 
built in Chapters 2 and 5 on a variety of test samples. You will rate the 
coders using the ITU-R five-grade impairment scale. 
1. Prepare a set of short test signals to be used for your listening test. Make 

sure that the set includes 1) human speech, 2) highly tonal music (e.g., 
flute), and 3) music with sharp attacks (e.g., drum solo). 

2. Encode/decode each of your test signals using I) your coder from 
Chapter 2 with 4-bit midtread uniform quantization, 2) your coder from 
Chapter 5 with three scale bits and five mantissa bit midtread floating 
point quantization, 3) your coder from Chapter 5 with N = 2048 and 4-
bit midtread uniform quantization, 4) your coder from Chapter 5 with N 
= 2048 and three scale bit and five mantissa bit floating point 
quantization, and 5) your coder from Chapter 5 with N = 256 and three 
scale bit and five mantissa bit floating point quantization. 

3. Grade each of your encoded/decoded test signals using the ITU-R five
grade impairment scale. Summarize the performance of your coders. 

4. Team with a classmate to perform a double-blind, triple-stimulus with 
hidden reference listening test using several of your friends and 
classmates as test subjects to evaluate your encoded/decoded test signals. 
For each coder, prepare a graphical summary of the results showing the 
highest/lowest/mean SDG score for each sound test signal. Summarize 
the results. Do your classmates (who are hopefully trained listeners at 
this point) give significantly different ratings than your other (untrained) 
friends? 
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MPEG-l Audio 

1. INTRODUCTION 

After the introduction of digital video technologies and the CD format in 
the mid eighties, a flurry of applications that involved digital audio/video 
and multimedia technologies started to emerge. The need for 
interoperability, high-quality picture accompanied by CD-quality audio at 
lower data rates, and for a common file format led to the institution of a new 
standardization group within the joint technical committee on information 
technology (JTC 1) sponsored by the International Organization for 
Standardization (ISO) and the International Electrotechnical Commission 
(1EC). This group, the Moving Picture Experts Group (MPEG), was 
established at the end of the eighties with the mandate to develop standards 
for coded representation of moving pictures, associated audio, and their 
combination [Chiariglione 95]. 

MPEG-l was the initial milestone achieved by this committee after over 
three years of concurrent work. MPEG-l Audio represents the first 
international standard that specifies the digital format for high quality audio, 
where the aim is to reduce the data rate while maintaining CD-like quality. 
Other compression algorithms standardized prior to MPEG-I addressed 
either speech-only applications or provided only medium-quality audio 
performance. The success of the MPEG standard enabled the adoption of 
compressed high-quality audio in a large range of applications from digital 
broadcasting to internet applications. Everyone is now familiar with the 
MP3 format (MPEG Layer III). The introduction of MPEG Audio 
technology radically changed the perspective of digital distribution of music, 
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touching diverse aspects of it, including copyright protection, business 
models, and ultimately our every-day life. 

In this chapter and Chapters 12, 13, and 15, we discuss different audio 
coding algorithms standardized by MPEG. In this chapter, after presenting a 
brief history of the MPEG standards with emphasis on the MPEG Audio 
goals and objectives, we discuss in depth the layered approach and attributes 
of MPEG-l Audio. 

2. BRIEF HISTORY OF MPEG STANDARDS 

The Moving Pictures Experts Group (MPEG) was established with the 
mandate to develop standards for coded representation of moving pictures, 
associated audio, and their combination. The original group of about 25 
people met for the first time in 1988. Later MPEG become working group 
11 of ISOIIEC JTC 1 sub-committee 29. Any official document of the 
MPEG group can be recognized by the ISO/IEC JTC lISC 29/WG 11 
header. There were originally three work items approved for MPEG: 

• The MPEG-l standard [ISOIIEC 11172] coding of synchronized 
video and audio at a total data rate of about 1.5 Mb/s was 
finalized in 1992. 

• The MPEG-2 standard [ISOIIEC 13818] coding synchronized 
video and audio at a total data rate of about 10 Mb/s was 
finalized in 1994. 

• The third work item, MPEG-3, addressing coding of 
synchronized video and audio at a total data rate of about 40 
Mb/s was dropped in July 1993, after being deemed redundant 
since its attributes were incorporated in the MPEG-2 
specifications. 

After the initial work started, a proposal for audiovisual coding at very 
low data rates with additional functionalities, such as scalability, 3-D, 
synthetic/natural hybrid coding, was first discussed in 1991 and then 
proposed in 1992 [ISOIIEC MPEG N271]. This phase of MPEG 
standardization was called MPEG-4 giving origin to the somewhat 
disconnected numbering of subsequent phases of MPEG. MPEG-4 was 
finalized in 1998 as [ISOIIEC 14496]. The MPEG-l, 2,4 standards address 
video, audio compression as well as synchronization, compliance, and 
reference software issues. Although MPEG Audio is often utilized as a 
stand-alone standard, it is one component of a multi-part standard, where 
typically "part one" describes the system elements (i.e. synchronization of 
video and audio stream, etc.) of the standard, "part two" the video coding 
elements, and "part three" the audio coding elements. After MPEG-4 the 



Chapter J J: MPEG-J Audio 267 

work of MPEG started focusing more and more towards coding-related 
technology rather than coding technology per se. MPEG-7, whose 
completion was reached in July 2001 [ISO/IEC 15938], addresses the 
description of multimedia content for multimedia database search. Currently 
in the developmental stage (only three parts of the standard have been 
approved), MPEG-21 is addressing the many elements needed to build an 
infrastructure for the usage of multimedia content, see for example [ISO/IEC 
MPEG N4318]. 

The goal of MPEG-l Audio was originally to define the coded 
representation of high quality audio for storage media and a method for 
decoding high quality audio signals. Later the algorithms specified by 
MPEG were tested within the work of ITU-R for broadcasting applications 
and recommended for use in contribution, distribution, commentary, and 
emission channels [ITU-R BS.1115]. Common to all phases of MPEG was 
the standardization of the bitstream and decoder specifications only, but not 
of the encoder. A sample encoder algorithm is described in an "informative" 
part of the standard, but following the sample algorithm is not required to be 
compliant with the standard. This approach, while allowing for 
interoperability between implementation from different manufacturers, also 
allowed encoder manufactures to retain control on the core intellectual 
property and know-how that contributed to the success of the coding system. 
The input of the MPEG-l audio encoder and the output of the decoder are 
compatible with existing PCM standards such as the CD and the digital 
audio tape, DAT, formats. MPEG-l audio aimed to support one or two main 
channels, depending on the configuration (see more details on channel 
configuration in the next sections) and sampling frequencies of 32 kHz, 44.1 
kHz, and 48 kHz. 

In MPEG-2 Audio the initial goal was to define the multichannel 
extension to MPEG-l audio (MPEG-2 BC, backwards compatible) and to 
define audio coding systems at lower sampling rates than MPEG-l, namely 
at 16 kHz, 22.5 kHz and 24 kHz. This phase of the work of the MPEG 
audio sub-group was partially motivated by the debut of multichannel de
facto standards in the cinema industry such as Dolby AC-3 (currently known 
also as Dolby Digital, see also Chapter 14) and the need for lower data rates 
for the emerging internet applications. After a call for proposals in late 
1993, the work on a new aspect of multichannel audio, the so-called MPEG-
2 non-backwards compatible, NBC (later renamed MPEG Advanced Audio 
Coding, AAC), was started in 1994. The objective was to define a higher
quality multichannel standard than achievable with MPEG-l extensions. A 
number of studies highlighted the burden in terms of quality, or equivalently 
in terms of increased data rates demands, suffered by the design of a 
multichannel audio system when the backwards compatibility requirement 
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was enforced (see for example [Bosi, Todd and Holman 93 and ISO/IEC 
MPEG N1229] and see also next chapter for a detailed discussion on this 
issue). As a result of this phase of work, MPEG-2 AAC was standardized in 
1997 [ISO/IEC 13818-7]. In a number of subjective tests MPEG-2 AAC 
shows comparable or better audio quality than MPEG-2 Layer II BC 
operating at twice the data rate, see for example [ISO/IEC MPEG N1420]. 

The MPEG-4 Audio goals were to provide a high coding efficiency, 
where the data rates introduced ranging from 200 b/s to 64 kb/s reach lower 
values than the data rates defined in MPEG-1 or 2. In addition to general 
audio coding technology MPEG-4 also accommodates: 
- speech coding technology 
- error protection 
- content-based interactivity such as flexible access and manipulation, for 

example pitch/speed modifications; 
- universal access, for example access to a subset of data or scalability 
- support for synthetic audio and speech, such as in structured audio, SA, 

and text to speech, TTS, interfaces; 
- additional effects such as post-processing (reverberation, 3D, etc.) and 

scene composition. 
From its onset, the MPEG standardization process played a very relevant 

role in promoting technology across the boundaries of a single organization 
or country. As a result, teams around the world joined forces and expertise 
to design algorithms that incorporated the most advanced technology 
available given a certain range of applications. In the first phases of the 
MPEG work, the focus was centered on coding technologies. In this chapter 
and in Chapters 12 , 13 and 15 a detailed description of the audio coding 
algorithms developed during the MPEG-1 through 4 phases are presented. 
In particular, the next sections of this chapter present the details of the 
MPEG-I Audio algorithms. 

3. MPEG-IAUDIO 

MPEG-1 is a compression standard that addresses the compression of 
synchronized video and audio at a total data rate of 1.5 Mb/s. It includes 
systems, video, and audio specifications. MPEG-1 became a standard in 
1992, and is also known as [ISO/IEC 11172]. [IS0/IEC 11172-3] specifies 
the audio portion of the MPEG-I standard. It includes the syntax of the 
audio coded bitstream and a description of the decoding process. In 
addition, reference software modules and a set of test vectors for assessing 
the compliance of the decoder are also provided by the standard 
specifications. The MPEG-I audio encoder structure is not a mandatory part 
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of the standard specifications and its description is an informative annex to 
the standard. While the mandatory nature of the syntax and decoding 
process ensures interoperability, the encoder implementation is left to the 
designers of the system, leaving a large degree of differentiation within the 
boundaries of the standard specifications. The MPEG-l standard describes a 
perceptual audio coding algorithm that is designed for general audio signals. 
There is no specific source model applied as, for example, in speech codecs. 
It is simply assumed that the statistics of the input signal are quasi
stationary. The audio signal is then represented by its spectral components 
on a frame-by-frame basis and encoded exploiting perceptual models. The 
aim of the algorithm is to provide a perceptually lossless coding scheme. 
The MPEG-l Audio standard specifications were derived from two main 
proposals: MUSICAM [Dehery, Stoll and Kerkhof 91] presented by 
CCETT, IRT and Philips, which is the basis for the low-complexity first two 
layers (see also next sections), and ASPEC (see [Brandenburg and Johnston 
90] and [Brandenburg et al. 91]) presented by AT&T, FhG, and Telefunken 
which is the basis for layer III. The quality of the audio standard was tested 
by extensive subjective listening tests during its development. The resulting 
data, see for example [ISO/IEC MPEG 91/010], showed that, under strictly 
controlled listening conditions, experts listeners were not able to distinguish 
between coded and original sequences with statistical significance at typical 
codec data rates. Typical data rates for the coded sequences were 192 kb/s 
per channel for MPEG Layer I, 128 kb/s per channel for Layer II and Layer 
III (see detailed description of the different MPEG-l Audio Layers later in 
this chapter and also the MPEG public documents at [MPEG]). 

3.1 Main Features of MPEG-l Audio 

The sampling rates supported by MPEG-1 are 32, 44.1, and 48 kHz. The 
channel configurations encompass one or two channels. In addition to a 
monophonic mode for a single audio channel configuration, a dual 
monophonic mode for two independent channels is included. A stereo mode 
for stereophonic channels, which shares the available bit pool amongst the 
two channels but does not exploit any other spatial perceptual model, is also 
covered. Moreover, joint stereo modes that take advantage of correlation 
and irrelevancies between the stereo channels are described in the standard. 
The data rates vary between 32 and 224 kb/s per channel allowing for 
compression ratios ranging from 2.7 to 24: 1 depending on the sampling rate. 
In addition to the pre-defined data rates, a free format mode can support 
supplementary, fixed data rates. 

MPEG-l Audio specifies three layers. The different layers offer 
increasingly higher audio quality at slightly increased complexity. While 
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Layers I and II share the basic structure of the encoding process having their 
roots in an earlier algorithm also known as MUSICAM [Dehery, Stoll and 
Kerkhof 91], Layer III is substantially different. The Layer III algorithm 
was derived from the merge of ASPEC [Brandenburg et al. 91] with the 
Layer I and II filter bank, the idea being that a Layer III decoder should be 
able to decode Layer I and II bitstreams. Layer I is the simplest layer and it 
operates at data rates between 32 and 224 kb/s per channel. The preferred 
range of operation is above 128 kb/s. Layer I finds an application, for 
example, in the digital compact cassette, DCC, at 192 kb/s per channel. 
Layer II is of medium complexity and it employs data rates between 32 and 
192 kb/s per channel. At 128 kb/s per channel it provides very good audio 
quality. A number of applications take advantage of Layer II including 
digital audio broadcasting, DAB, [ETS 300 401 v2] and digital video 
broadcasting, DVB [ETS 300421, ETS 300429, ETS 300744]. Layer III 
exhibits the highest quality of the three layers at an increased complexity. 
The data rates for Layer III are lower than the rates for Layers I and II and 
they vary between 32 and 160 kb/s per channel. Layer III displays very 
good quality at rates below 128 kb/s per channel. Applications of Layer III 
include transmission over ISDN lines and internet applications. A 
modification of the MPEG Layer III format at lower sampling frequencies 
gave origin to the ubiquitous MP3 file format. 

In spite of the differences in complexity, single-chip, real-time decoder 
implementations exist for all three layers. It should be noted that, in addition 
to the main audio data, all three layers provide a means of including 
auxiliary data within the bitstream syntax. Finally it should be mentioned 
that, MPEG-l Layers II and III were also selected by lTU-R task group, TG, 
10/2 for broadcasting applications in recommendation BS.l11S. In ITU-R 
BS.l1 15, Layer II is recommended for emission at the data rate of 128 kb/s 
per channel, and for distribution and contribution at data rates above 180 
kb/s per channel. Layer III is also recommended in BS.l I 15 for 
commentary broadcasting at data rates of about 60 kb/s per channel. 

The main building blocks of the MPEG-I audio coding scheme are 
shown in Figure 1 and Figure 2. The basic building blocks include a time to 
frequency mapping stage followed by a bit or noise allocation stage. The 
input signal also feeds a psychoacoustic model block whose output 
determines the precision of the allocation stage. The bitstream formatting 
stage interleaves the representation of the quantized data with side 
information and optional ancillary data. The decoder interprets the 
bitstream, restores the quantized spectral components of the signal and 
finally reconstructs the time domain representation of the audio signal from 
its frequency representation. 
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The general approach to the coded representation of audio signals is the 
same for all layers. Based on the time to frequency mapping of the signals 
with a source model design based on statistics of generic audio signals, they 
share the basic building blocks and group the input peM samples into 
frames of samples for analysis/synthesis. There are, however, a number of 
differences in the different layers' algorithms going from the simple 
approach of Layer I to the more sophisticated approach of Layer III at 
increased complexity. In Figure 3 and Figure 4 the block diagrams of Layers 
I, II, and III in single channel mode are shown. 
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3.2.1 Layers I and II 

For Layers I and II, the time to frequency mapping is performed by 
applying a 32-band PQMF (see also Chapter 4) to the main audio path data. 
The frequency representation of the signal is scaled and then quantized with 
a uniform midtread quantizer (see also Chapter 2) whose precision is 
determined by the output of the psychaocustic model. Typically, 
Psychoacoustic Model 1 (see also next sections) is applied, where the 
psychoacoustic analysis stage is performed with a 512-point FFT (Layer I) 
or 1024-point FFT (Layer II). In order to further reduce the data rate, Layer 
II applies group coding of consecutive quantized samples certain levels (see 
also next sections). 

Coded 
Audio 

Bitstream 0 ta 
Formatting 

Figure 3. Block diagram of Layers I and II (single channel mode) 

3.2.2 Layer III 

For Layer III the output of the PQMF is fed to an MDCT stage (see also 
Chapter 5). In addition, the Layer III filter bank is not static as in Layers I 
and II, but it is signal adaptive (see next sections). The output of this hybrid 
filter bank is scaled and then non-uniformly quantized with a midtread 
quantizer. Noiseless coding is also applied in Layer III. In an iterative loop 
that performs the synthesis of the Huffman-encoded, quantized signal and 
compares its relative error levels with the masked thresholds levels, the 
quantizer step size is calculated for each spectral region. The quantizer step 
is once again determined by the output of the psychoacoustic model, 
however, the nature of the psychoacoustic model (Model 2, see next 
sections) applied to Layer III is substantially different from the model 
applied for Layers I and II. Figure 4 highlights one of the differences, the 
analysis stage, which is performed by applying two, 1024-point FFTs. In all 
layers the audio data together with the side information such as bit allocation 
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and control parameters are multiplexed with the optional ancillary data and 
then stored or transmitted. 

Figure 4. Block diagram of Layer III (single channel mode) 
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In the next sections, we describe the common characteristics of the audio 
coding algorithms in the three layers. 

4. TIME TO FREQUENCY MAPPING 

A PQMF filter bank (see also Chapter 4) is part of the time to frequency 
mapping stage for all three MPEG layers. This filter divides the frequency 
spectrum into 32 equalIy spaced frequency sub-bands. For Layers I and II 
the output of the PQMF represents the signal spectral data to be quantized. 
The frequency resolution of the Layer I and II fiIterbank is 750 Hz at a 48 
kHz sampling rate. For Layer III, the PQMF is cascaded with an 18 
frequency-line MDCT for a total of 576 frequency channels in order to 
increase the filter bank resolution. 

4.1 Layer III Hybrid Filter Bank 

The block diagram of Layer III filter bank analysis stage is shown in 
Figure 5. After the 32-band PQMF filter, blocks of 36 sub-band samples 
(for steady state conditions) are overlapped by 50 percent, multiplied by a 
sine window and then processed by the MDCT transform (see also Chapter 
5). It should be noted that, in addition to the potential frequency aliasing 
introduced by the PQMF, the OTDAC transform introduces also time 
aliasing that cancels out between adjacent time-blocks in absence of 
quantization in the overlap-add stage of the decoder process. In order to 
lessen some of the artifacts potentially introduced by the overlapping bands 
of the PQMF, for long blocks (steady state conditions) the Layer III filter 
bank multiplies the MDCT output by coefficients that reduce the signal 
aliasing [Edler 92]. 
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Figure 5. MPEG Audio Layer III analysis filter bank structure 

In the decoder, the inverse aliasing reduction process is applied prior to 
the IMDCT in order to provide the correct sub-band samples for the PQMF 
synthesis stage for aliasing cancellation (see Figure 6). A pure sine wave 
signal processed by the hybrid PQMFIMDCT filter bank without aliasing 
reduction can present a spurious component as high as -12 dB with respect 
to the original signal. After the aliasing reduction process, the spurious 
component magnitude is reduced significantly. It should be noted, however, 
that, although the aliasing reduction process greatly improves the frequency 
representation of the signal, residual aliasing components might still be 
present. In the synthesis stage, the IMDCT is applied prior to the 
reconstruction PQMF. After the de-quantization of the spectral components 
and, when applicable, the joint stereo processing of the signal, the inverse 
aliasing reduction is applied. Next, the IMDCT is employed followed by the 
windowing process, where the windows applied are defined in the same 
manner as the analysis windows. The first half of the current windowed 
block is overlapped and added to the second half of the windowed samples 
of the previous block. For the long block the output of the overlap and add 
stage consists of 18 samples for each of the 32 synthesis PQMF sub-bands. 
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Figure 6. MPEG Audio Layer III synthesis filter bank structure 
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The total block size processed by the Layer III filter bank is given by 32 
* 36 = 1152 time-samples. This block length ensures a frequency resolution 
of about 41.66 Hz at 48 kHz sampling rate. The increased frequency 
resolution for Layer III is much better suited to accommodate allocation of 
the bit pool based on psychoacoustic models. One drawback of this 
approach is that quantization errors can now be spread over a block of 1152 
time-samples. For signals containing transients, such as castanet excerpts, 
this translates into unmasked temporal noise, specifically pre-echo. In the 
case of transient signals, the Layer III filter bank can switch to a higher time 
resolution in order to avoid pre-echo effects. Namely, during transients, 
Layer III utilizes a shorter block size of 32 * 12 = 384 time samples, 
reducing the temporal spreading of quantization noise for sharp attacks. The 
short block size represents a third of the long block length. During 
transients, a sequence of three short windows replaces the long window, 
maintaining the same total number of samples per frame. In order to ensure 
a smooth permutation between long and short blocks and vice versa, two 
transition blocks, long-to-short and short-to-long, which have the same size 
as the long block are employed. This approach was first presented by Edler 
[Edler 89] and, based on the shape of the windows and overlap regions, it 
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maintains the time domain aliasing cancellation property of the MDCT (see 
also Chapter 5). In addition, the frame size is kept constant during the 
allowed window size sequences. This characteristic ensures the subsistence 
of a simple overall structure of the algorithm and bitstream formatting 
routines. 

4.1.1.1 Window Sequence 
In Figure 7 a typical window sequence from long to short windows and 

from short to long windows is shown together with the corresponding 
amount of overlapping between adjacent windows in order to maintain the 
time-domain aliasing cancellation for the transform. The basic window, 
w[n], utilized by Layer III is a sine widow. The different windows are 
defined as follows: 

w[n] =Sin( 3~ (n+±)) 

w[n] = SinC~ (n +±)) 

Sin(3~( n+±)) 

1 

n = 0, ... ,35 (long window) 

n = 0, ... ,11 (short window) 

n =0, ... ,17 

n = 18, ... ,23 w[n] = (start window) 

SinC~ (n -18+±)) n = 24, ... ,29 

° n = 30, ... ,35 

° n =0, ... ,5 

w[n]= 
SinC~ (n -6+±)) 

1 

n = 6, ... ,11 

n = 12, ... ,17 
(stop window) 

Sin( 3~ ( n + ±) ) n = 18, ... ,35 

It should be noted that the Layer III filter bank allows for a mixed block 
mode. In this mode, the two lower frequency PQMF sub-bands are always 
processed with long blocks, while the remaining sub-bands are processed 
with short blocks during transients. This mode ensures high frequency 
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resolution at low frequencies where it IS most needed and high time 
resolution at high frequencies. 

1.2 
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0 
0 16 32 48 64 80 96 

n 

1.2 

0.8 

0.6 

0.4 

0.2 

0 
0 16 32 48 64 80 96 

n 

Figure 7. Typical Layer III window sequence: top for steady state signal, bottom for 
transients occurring in the time region between n = 45 and n = 60 

4.1.2 Hybrid Filter Bank Versus PQMF Characteristics 

The Layer III hybrid filter bank provides much higher frequency 
resolution than the Layers I and II PQMF. The time resolution, however, is 
decreased. At 48 kHz sampling rate, the time resolution for Layers I and II 
is 0.66 ms, for Layer III is 4 ms. The decreased time resolution renders 
Layer III more prone to pre-echo. A number of measures to reduce pre-echo 
are incorporated in Layer III including a detection mechanism in the 



278 Introduction to Digital Audio Coding and Standards 

psychoacoustic model and the ability to "borrow" bits from the bit reservoir 
(see also next sections) in addition to block switching. The inherent filter 
bank structure with long impulse response of 384 + 512 = 896 samples even 
in the short block mode, however, makes the encoding of transients a 
challenge for Layer III. 

In summary, the Layer III hybrid filter bank approach offers advantages 
such as high frequency resolution, a dynamic, adaptive trade-off between 
time and frequency resolution, and full compatibility with Layers I and II. 
The shortcomings include potential aliasing effects exposed by the MDCT 
stage and long impulse response filters. Both shortcomings are reduced in 
the standard specifications by adopting procedures to mitigate them. The 
complexity of the Layer III filter bank is increased with respect to the 
complexity of Layers I and II. In addition to the PQMF, the MDCT stage 
contributes to its complexity. In general, fast implementations of the MDCT 
exploit the use of FFTs. It should be noted that the size of the MDCT is 
non-power of two, therefore the implementation via FFT requires a 
decomposition to a power-of-two length sequence if a radix-2 FFT is 
utilized. Considering the different stages of the filter bank implementation 
and assuming that the MDCT is implemented via an FFT, the complexity for 
a long window is given by (18 + 9 + 18) additional complex multiplications 
and additions per sub-band block with respect to the PQMF alone, or 
equivalently a little over 1 additional multiplication and addition per sub
band sample. 

5. MPEG AUDIO PSYCHOACOUSTIC MODELS 

The goal of MPEG Audio is to provide perceptually lossless quality. In 
other words, the output of the MPEG coder should be a signal statistically 
indistinguishable from its input. In order to achieve this objective at 
relatively low data rates, MPEG Audio exploits the psychoacoustic 
principles and models we discussed in Chapter 7. During the encoding 
process, the input signal is analyzed on a frame-by-frame basis and the 
masking ability of the signal components is determined. For each frame, 
based on the computed masked thresholds, the bits available are distributed 
through the signal spectrum in order to best represent the signal. Although 
the encoder process is not a mandatory part of the MPEG standard, two 
psychoacoustic models are described in the informative part of its 
specifications. Either model works for all layers, but typically Model 1 is 
applied to Layers I and II and Model 2 to Layer III. There is a large degree 
of freedom in the psychoacoustic model implementation. At high data rates, 
the psychoacoustic model can be completely bypassed, leaving the task of 
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assigning the available resource to the iterative process in the allocation 
routines simply based on the strength of the signal spectral components. 

5.1 Psychoacoustic Models Analysis Stage 

The input to the psychoacoustic model is the time representation of the 
audio signal over a certain time interval and the corresponding outputs are 
the signal to mask ratios (SMRs) for the coder's frequency partitions. Based 
on this information, the bit (Layers I and II) and noise (Layer III) allocation 
is determined for each block of input data (see Chapter 8 for a discussion on 
perceptual bit allocation). In order to provide accurate frequency 
representation of the input signal, a discrete Fourier transform is computed 
in parallel to the main audio path time to frequency mapping stage. One 
might argue that the output of the PQMF or the hybrid filter bank could be 
utilized for this purpose in order to simplify the structure of the algorithm. 
In the case of the evaluation of the masking thresholds, the aim is to have 
maximum accuracy in the signal representation. While issues like critical 
sampling etc. playa fundamental role in the design of the time to frequency 
mapping in the main audio path, they are irrelevant in the frequency 
representation of the audio signal for analysis only purposes. On the other 
hand, inadequate frequency resolution and potential aliasing can 
irremediably confound the evaluations of the psychoacoustic model. It 
should be noted that different approaches are found in the literature. For 
example, in Dolby AC-3 [Fielder et al. 96] and PAC [Sinha, Johnston, 
Dorward and Quackenbush 98] the output of the MDCT is employed for the 
psychoacoustic analysis; in the advanced PEAQ version the DFT analysis is 
employed along with a filter bank that mirrors the auditory peripheral filter 
bank [Thiede et al. 00]. 

The first step in both MPEG psychoacoustic models is to time-align the 
audio data used by the psychoacoustic model stage with the main path audio 
data. This process must take into account the delay through the filter bank 
and the time offset needed so that the psychoacoustic analysis window is 
centered on the current block of data to be coded. For example, in Layer I 
the delay through the filter bank is 256 samples and the block of data to be 
coded is 384 samples long (see also next section). The analysis window 
applied to Layer I data in Psychoacoustic Modell is 512 samples long. The 
offset to be applied for time alignment is therefore 256 + (512 - 384)/2 = 
320 samples. 
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5.2 Psychoacoustic Modell 

The block diagram for Psychoacoustic Model I is shown in Figure 8. 
The first stage, the analysis stage, windows the input data and performs an 
FFf. The analysis window is a Hanning window of length N equal to 512 
samples for Layer I and 1024 for Layers II and III. The overlapping between 
adjacent windows is N/16. Since Layers II and III utilize a 1152 sample 
frame, the 1024 sample analysis window does not cover the entirety of the 
audio data in a frame. If, for example, a transient occurs at the tail end of the 
main path audio frame, the relative sudden energy change would be 
undetected in the Psychoacoustic Model 1 analysis window. In general, 
however, the 1024 sample analysis window proved to be a reasonable 
compromise. 

5.2.1 SPL Computation 

After applying the FFf, the signal level is computed for each spectral 
line k, Lk as follows 

where X[k] represents the FFf output of the time-aligned, windowed input 
signal and N equals 512 for Layer I and 1024 for Layers II and III. The 
signal level is normalized so that the level of an input sine wave that just 
overloads the quantizers, here defined as being at x[n] = ±1.0, has a level of 
96 dB when integrated over the peak. In this equation, the factor of IIN2 
comes from Parseval's theorem, one factor of 2 comes from only working 
with positive frequency components, another factor of 2 comes from the 
power of a unit amplitude sinusoid being equal to Y2, and the factor of 8/3 
comes from the reduction in gain from the Hanning window (see also 
Chapter 9). Since the description of Model 1 in the standard absorbs the 
factor of 8/3 into the Hanning window definition, a natural way to take the 
other factors into account is to include a factor of 2IN in the forward 
transform of the FFf. 

The sound pressure level in each sub-band m, Lsb[m] is then computed as 
the greater of the SPL of the maximum amplitude FFf spectral line in sub
band m and the lowest level that can be described with the maximum scale 
factor for that frame in sub-band m as follows: 
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where Lk represents the level of the kth line of the FFr in sub-band m with 
the maximum amplitude and scfmax is the maximum of the scale factors for 
sub-band m (see the next section for a discussion on MPEG Layers I and II 
"scale factors" which differ somewhat from the scale factors discussed in 
Chapter 2 in that these "scale factors" represent the actual factor that the 
signal is scaled by as opposed to the number of factors of 2 in the scaling). 
In Layers I and II coders, the scale factors range from a very small number 
up to 2.0 so the multiplication by 32,768 just normalizes the power of the 
scale factor so that the largest possible scale factor corresponds to a level of 
96 dB. The -10 dB term is an adjustment to take into consideration the 
difference between peak and average levels. The reason for taking the scale 
factor into account in the above expression can be explained by closely 
examining the block floating quantization process, since block floating point 
quantization cannot scale the signal to lower amplitudes than can be 
represented by the scale factors themselves. This implies that for low 
amplitude frequency lines the quantization noise is of a size determined by 
the maximum scale factor. 

5.2.2 Separation of Tonal and Non-Tonal Components 

Having found the sound pressure level in the sub-band, we next compute 
the masking threshold in order to calculate the signal to mask ratio (SMR) 
for the sub-band. Since noise is a better masker than tones, a search for tonal 
maskers in the signal is performed in Modell. This evaluation is based 
upon the assumption that local maxima within a critical band represent the 
tonal components of the signal. A local maximum Lb is included in the list 
of tonal components if Lk - Lk+j ;? 7 dB where the index j varies with the 
center frequency of the critical band examined. If Lk represents a tonal 
component, then the index k, the sound pressure level derived from the sum 
of three adjacent spectral components centered at k, LT, and a tonal flag 
define the tonal masker. 



282 Introduction to Digital Audio Coding and Standards 

Input Signal 

To Bit Allocation 

Figure 8. Block diagram of MPEG Psychoacoustic Modell 

The noise maskers in the signal are derived from the remaining spectral 
lines. Within a critical band, the power of the spectral components 
remaining after the tonal components are removed is summed to form the 
sound pressure level of the noise masker, LN, for that critical band. The 
noise masker components for each critical band are centered at the geometric 
mean of the FFf spectral line indices for each critical band. 
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5.2.3 Maskers Decimation 

Having defined the tonal and noise maskers in the signal, the number of 
maskers is then reduced prior to computing the global masked threshold. 
First, tonal and non-tonal maskers are eliminated if their levels do not exceed 
the threshold in quiet. Second, maskers extremely close to stronger maskers 
are eliminated. If two or more components are separated in frequency by 
less than 0.5 bark, only the component with the highest power is retained. 
The masking thresholds are then computed for the remaining maskers by 
applying a spreading function and shifting the curves down by a certain 
amount of dB which depends on whether the masker is tonal or noise-like 
and the frequency position of the masker. To keep the calculation time 
manageable, the masking thresholds are evaluated at only a sub-sampling of 
the frequency lines. The number of sub-sample lines depends on which 
layer is being implemented and on the sampling rate, ranging from 102 to 
108 sub-sample lines in Layer I and ranging from 126 to 132 sub-sample 
lines in Layer II. 

5.2.4 Model 1 Spreading Function and Excitation Patterns 

The spreading function used in Model I is defined as follows: 

B(dz, L) = -17 dz + O.ISL (dz -I) 8(dz - 1) for dz ~ 0 

B(dz, L) = -(6 + OAL) Idzl- (11 - OAL) (Idzl-I) 8(ldzl- 1) for dz < 0 

where 8(x) = 1 for x ~ 0 and 0 otherwise; L represents the sound pressure 
level of the masker; dz represents the distance in bark between the maskee 
and the masker. Notice that dz assumes positive values when the masker is 
located at a lower frequency than the maskee and negative values when the 
masker is located at a higher frequency than the maskee. The two-piece 
linear spreading function for upper and lower frequencies in Model 1 seems 
to be consistent with the masking data for tones masking tones (see also 
Chapter 6). The excitation patterns for a signal positioned at 8 bark with 
different sound pressure levels, L = 20, 40, 60, 80, 100 dB, is shown in 
Figure 9. As shown in Figure 9 the excitation patterns are level dependent, 
being nearly symmetrical for levels below 40 dB and increasingly spreading 
towards high frequencies at higher levels. 
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MPEG Psychoacoustic Modell 
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Figure 9. MPEG Psychoacoustic Model I excitation patterns for different SPLs 

5.2.5 Masking Thresholds 

In order to derive the masking threshold relative to the masker of level L, 
one needs to shift the excitation pattern relative to the masker by an 
appropriate amount. This shift depends on the tonal versus noise-like 
characteristics of the masker, since we know from experimental data that 
noise is a better masker than tones. In Model 1 the shift 11 is defined as 
follows: 

dr(Z) = -6.025 - 0.275 Z dB 

dN(Z) = -2.025 - 0.175 Z dB 

where l1T represents the shift for tonal maskers and l1N represents the shift for 
noise-like maskers, and z is the frequency index of the masker in the bark 
scale. The masking threshold M relative to a masker of level L at a 
frequency equal to bark z can be expressed as: 

Where Zj is the bark index of the masker and Zi is the bark index of the 
maskee, 11 = l1T for tonal maskers and 11 = l1N for noise-like maskers. In 
Figure 10 the masking curve relative to a 70 dB noise-like masker centered 
at bark 8 is shown. 
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Model 1 Noise Masking Curve 
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Figure 10. MPEG Psychoacoustic Model I masking curve for a noise-like masker centered at 
8 Bark with a sound pressure level of 70 dB 

5.2.6 Masked Threshold 

The global masked threshold MG(Zj) at the bark location Zj of each sub
sampled frequency line is then computed in Model I by summing the power 
of the individual masking thresholds and the threshold in quiet as follows: 

~~ m MTj(Lj,Zi,Zj) n MNk(Lk'Zi'Zk) 

MG(zi)=lOlog\O[lO \0 +~)O 10 +~)O 10 

j=1 k=1 

where Mq represents the threshold in quiet at the bark location Zj, MTj the 
masking threshold from the lh tonal masker, MNk the masking threshold from 
the kth noise-like masker, m is the total number of tonal maskers, and n is the 
total number of noise-like maskers. 

5.2.7 SMR Computation 

Since at low frequency some of the main path PQMF sub-bands span 
more than one critical band, the masking level MGmin(sb) in each sub-band, 
sb, is determined based on the minimum masking level at the sub-sampled 
lines in that sub-band and used to determine the signal to mask ratio 
SMR(sb) to be transmitted to the bit allocation routine: 

SMR(sb) = L(sb) - MGmin(sb) 
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where L( sb) is the signal level for sub-band sb. 

5.2.8 An Example 

To help clarify the Model I calculations, Figure 11 through Figure 13 
give an example taken from [Pan 95]. Figure 11 shows the frequency 
spectrum of an input signal consisting of a single tonal component 
overlaying a shaped noise spectrum. The top part of Figure 12 shows the 
signal level of each masker identified in the signal and its associated 
frequency location (measured in terms of the k index in the N = 1024 FFf). 
The tonal masker is clearly visible as are the noise maskers from each 
critical band. The middle part of Figure 12 shows the maskers remaining 
after eliminating maskers below the threshold in quiet or too close to 
stronger maskers. The bottom part of Figure 12 shows the resulting global 
masked threshold at each of the sub-sampled frequency locations. The top 
of Figure 13 shows the resulting SMRs calculated for each of the 32 critical 
bands from the input signal spectrum and the masked curve. The bottom of 
Figure 13 shows the resulting decoded data after being quantized using bit 
allocations determined by the SMRs in the top of the figure at a data rate of 
64 kb/s. 

140 

120 

Figure 11. Low-pass filtered noise plus 11.250 kHz sine wave at a sampling rate of 48kHz; 
the abscissa represents the FFf frequency line indices, the ordinate the strength of the signal 

in dB. (From [Pan 95] © 1995 IEEE.) 
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Figure 12. MPEG Psychoacoustic Model I processing from [Pan 95] © 1995 IEEE. 
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Figure 13. MPEG Psychoacoustic Model I SMRs (top) and coded audio data (bottom) at 64 
kb/s. (From [Pan 95] © 1995 IEEE.) 

5.3 Psychoacoustic Model 2 

Model 2's process and calculations differ substantially from those of 
Model 1. A block diagram of Model 2 is shown in Figure 14. Notice that 
there are now two parallel calculation paths: that of the masking energy and 
that of the tonality index. In addition, Model 2 does not have a masker 
decimation stage. 

5.3.1 Model 2 Analysis Stage 

As discussed in Model 1, Model 2 also applies a Hanning-windowed FFT 
to the time-aligned signal samples. The size of the FFT window is now 1024 
for all Layers, however for Layers II and III this model computes two FFTs 
for each frame. The centers of the FFT input blocks are aligned with the 
center of the first and second half of the main data path input block. Model 
2 uses the output of the FFT analysis to calculate the masking curves and 
their associated signal to mask ratios for the coder sub-bands. The higher of 
the two resulting signal to mask ratios, or the lower of the two masked 
thresholds, are then selected per each sub-band. 
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5.3.2 SPL Computation 

In Model 2 the frequency-lines are grouped into "threshold calculation 
partitions" whose widths are roughly 113 of a critical band or one FFf line, 
whichever is wider at that frequency location. For each partition, one single 
masker SPL is derived from the sum of energy densities in the partition. 

The total masking energy for the signal frame is computed by first 
convolving a spreading function with each of the maskers in the signal. This 
process is equivalent to spreading in frequency the energy of each masker 
and adding up the relative energies. The spreading function used in Model 2 
differs from that used in Modell and is a variant of the Schroeder spreading 
function we discussed in Chapter 7. 

Unpredictability 
Levels 

Spread 
Unpredictability 

Levels 

Input Signal 

To Bit Allocation 

Figure 14. Block diagram of MPEG Psychoacoustic Model 2 
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5.3.3 Model 2 Spreading Function and Excitation Patterns 

The basic spreading function B(dz) measured in dB used by Model 2 is 
(see also Figure 15): 

B(dz) = 15.81 I 1389 + 7.5 * (1.05 * dz + 0.474) - 17.5 * ~1.0 + (1.05 * dz + 0.474)2 

+ 8 * MIN(O, (1.05 * dz - 0.5)2 - 2 * (1.05 * dz - 0.5)) 

where dz is the bark distance between the maskee and the masker. Notice 
that dz < 0 has the masker at a higher frequency than the maskee. Notice 
also that, other than a minor factor of 1.05, the first line is exactly equalt to 
Schroeder's spreading function. The second line lowers the curve for values 
of dz between 0.5 and 2.5, causing somewhat of a two-sloped shape for 
positive dz (see Figure 15). Furthermore, notice that this spreading function 
is not level dependent in contrast with the clear level dependence seen in 
experimental data (see also Chapter 6). 

In Model 2 the spreading function is modified by a normalization that 
preserves power near zero frequency and the upper frequency limit. 
Namely, a flat spectrum over the positive frequency range of the FFT is 
convolved with B(dz). The power of the convolved flat spectrum drops at 
the edges of the positive frequency range due to a lack of spectrum energy 
outside this range. The spreading function B(dz) is adjusted to remove this 
drop by dividing the convolved signal power by the power of the convolved 
flat spectrum. Given the behavior of the threshold in quiet at the boundaries 
of the human audible range (see Chapter 6), this normalization may not be 
essential. In order to derive the global masked threshold, this convolved, 
normalized signal energy is then lowered in each partition by an amount that 
depends on the tonality of the spectrum in that partition. 
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Figure 15. Basic spreading function used by MPEG Psychoacoustic Model 2 compared with 
the Schroeder spreading function and with the modified version utilized in Layer III. 

5.3.4 Tonality Index 

The tonality index in each partitIon is calculated based on how 
predictable the signal is from the frequency lines in the two prior frames, see 
also [Brandenburg and Johnston 90]. For each frame m and for each 
frequency line k, the signal amplitude, Am[k], and phase, <j>m[k], are predicted 
by linear extrapolation from the two prior values as follows: 

A ~ [k] = A m_1 [k] + {A m_1 [k] - A m-2 [k]} 

q>~ [k] = q>m-l [k] + {q>m-l [k] - q>m-2 [k]} 

where A'm[k], and <j>'m[k] represent the predicted values. The predicted 
values are then mapped into an "unpredictability measure" defined as: 

where em[k] is equal to zero when the current value is exactly predicted and 
equal to 1 when the power of either the predicted or actual signal is 
dramatically higher than the other. 

The unpredictability measure is first weighted with the energy in each 
partition, deriving a partition unpredictability measure. This partition 
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unpredictability measure is then convolved with the spreading function. 
The result of this convolution is normalized using the signal energy 
convolved with the spreading function and then mapped onto a tonality 
index which is a function of the partition number and whose values vary 
between zero and one. The tonality index has the property that high 
unpredictability goes towards zero and low unpredictability goes towards 
one. Notice that, since the unpredictability measure is convolved using the 
spreading function that determines the masking energy at a certain frequency 
location, the resulting tonality index at a frequency location reflects the 
tonality of the dominant maskers at that frequency location. 

5.3.5 Masking Thresholds 

The tonality indices for each partition created by this calculation process 
are utilized to determine the shift Ll(z) in dB of the re-normalized convolved 
signal energy that converts it into the global masking level. The values for 
Ll(z) are linearly interpolated based on the tonality index from the value of 
5.5 dB for zero tonality (a noise masker) to a frequency-dependent value 
defined in the standard for tonality index equal to one (a tonal masker). The 
interpolated Ll(z) is then compared with a frequency-dependent minimum 
value, also defined in the standard, that controls stereo unmasking effects 
(see also Section 8 later in this chapter) and the larger value is used for the 
shift. 

5.3.6 SMR Computation 

The masking levels in each threshold calculation partition are compared 
with the threshold in quiet for that partition and the larger is used. Note that 
this differs from the addition of masking power from the threshold in quiet to 
that of the maskers in Modell. This curve represents the masked threshold. 
For each partition, the masking energy is evenly mapped to each frequency 
line by dividing the partition masking threshold values by the number of 
frequency lines in that partition. Finally, the masked threshold and the 
corresponding power spectral densities are mapped onto the coder scale 
factors sub-bands (see next section) to calculate the signal to mask ratios 
(SMRs) for each sub-band. These SMRs are then sent to the allocation 
routine to determine the number of bits allocated to each sub-band. 

5.3.7 An Example 

In Figure 16 and Figure 17, an example of Model 2 processing for the 
signal shown in Figure 11 is illustrated from [Pan 95]. In Figure 16, the 
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signal level and its spread level (top) and the tonality index (bottom) are 
shown versus the 62, approximately one-third critical-band frequency 
partitions. The masked threshold is plotted in Figure 17 (top) as derived 
from the convolved energy and the tonality index versus the FFf frequency 
lines. Figure 17 (center) shows the SMR values for each coder scale factor 
band. Finally, in Figure 17 (bottom) the coded audio data at 64 kb/s is 
shown. Note that the dB values shown differ by roughly 50 dB from those 
in the Model 1 example due to a different choice of normalization in the SPL 
calculations. This can be most easily seen by comparing the level of the 
tonal peak in both cases. 
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Figure 16. MPEG Psychoacoustic Model 2 processing: the abscissa represents the partition 
index and the ordinate the signal energy and spread energy in dB (top) and the tonality index 

(bottom). (From [Pan 95] © 1995 IEEE.) 
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Figure 17. MPEG Psychoacoustic Model 2 processing: original signal and computed masking 
thresholds (top); SMRs (center); coded signal at 64 kb/s. (From [Pan 95] © 1995 IEEE.) 

5.3.8 Model 2 Applied to Layer III 

Model 2 is slightly altered when applied to Layer III to take into account 
the different nature of the Layer III algorithm including the hybrid filter 
bank and the block-switching capability of Layer III. The main changes are: 
- The model is calculated twice in parallel - once for using a long block 

FFf and once using a short block FFf, where the short block consists of 
256 samples. 

- The results of both FFfs are combined in calculating the unpredictability 
measures. 

- The spreading function (see Figure 15) is changed to drop off faster. 
Terms of 1.05*dz in the spreading function are replaced with terms of 
l.5*dz for negative dz (masker frequency location lower than maskee 
frequency location) and 3.0*dz for positive dz (masker frequency 
location higher than maskee frequency location). 
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- The noise-masking-tone drop has been changed from 5.5 dB to 6.0 dB 
and the tone-masking-noise drop has been changed from a frequency
dependent table lookup to a constant 29.0 dB. 
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- Pre-echoes are reduced by comparing the masking threshold with scaled 
versions of the last 2 frames' thresholds and setting the current masking 
threshold to the smallest of these before comparing it with the threshold 
in quiet. (Twice the previous frame's value is used and 16 times the 
value of the frame before that.) This serves to reduce the masking 
thresholds following very quiet signals. 
Attacks are detected based on a "psychoacoustic entropy" or perceptual 

entropy, PE (see also Chapter 7), calculation [Johnston 88] equal to the 
logarithm of a geometric mean of the threshold-weighted energy across the 
block. The exact formula as described in the informative section of the 
standard is 

PE = 2> b log 2 (1. + Jenergy b I threshold b ) 

partition b 

where nb is the number of frequency lines in partition b, energYb is the 
aggregate signal energy in partition band thresholdb is the energy relative to 
the masked threshold in partition b. The PE as described above measures the 
minimum number of bits per block required to achieve transparency in a 
signal given a masking curve. Psychoacoustic entropy above a certain 
trigger (PE > 1800 bits from [lSO/IEC 11172]) signals an attack. The PE is 
effectively a measure of the perceptual flatness of the frequency spectrum 
since it effectively measures the geometric mean of the spectral energy 
(normalized by the masking threshold). Recall from Chapter 8 that a high 
geometric mean signifies a flat spectrum. A flat spectrum is associated with 
a sharp attack in this model since sudden changes lead to broad frequency 
content. Detection of an attack determines which window-type is used 
according to Figure J 8. Signal-to-mask ratios are computed for each scale 
factor partition, rather than for each PQMF sub-band, corresponding to the 
chosen window-type. 
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Figure 18. Block switching state diagram for Layer JII from [ISO/lEe 11172-3] 

6. MPEG-l AUDIO SYNTAX 

The MPEG Audio bitstream provides periodically spaced frame headers 
to identify the coded data. In Figure 19 the· audio data frame structure is 
shown for all Layers. For Layer I the frame size consists of 12 * 32 = 384 
samples. For Layers II and III, three granules of 12 samples per sub-band 
are grouped into a frame for a total of 1152 samples. The 32-bit MPEG 
Audio header is shown in Figure 20. After a 12-bit string of 1 which 
represents the synch word, there is an MPEG ID bit (= 1 implies an MPEG-l 
Audio bitstream) and the layer identification (two bits). The error protection 
bit, the bitrate index (four bits), the sampling frequency bits (two), padding 
and private bit and mode (stereo, joint stereo, dual channel, single channel), 
mode extension, etc., follow. The frame format of the three layers is shown 
in Figure 21. In order to understand the underlying structure of the MPEG 
Audio layers syntax, we now examine the details of different coding options 
adopted by the layers. 
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Figure 19. Data frame structure for MPEG-I Audio Layers r, n, and III 
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Figure 20. MPEG- I Audio Header 
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Figure 21. MPEG-l Audio frame format 
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6.1 Layer I 

Layer I encodes the audio samples in groups of 384 samples. The audio 
data in each frame represent 8 ms of audio at a 48 kHz sampling rate. The 
encoded audio data is described in terms of bit allocation information, scale 
factors, and quantized samples. In addition to the header and the audio data, 
each Layer I frame contains (see top part of Figure 21) a 16-bit optional 
cyclic redundancy code (eRC) error check word, and optional ancillary data. 

Code scale fa::tors 

\ 
Format bitstream 

Coded Bitstream 

Figure 22. Basic structure of the encoding process for MPEG-l Audio Layers I and II from 
[ISOlIEe 11172-3] 

6.1.1 Scale Factors Computation 

The Layer I (and Layer II) encoding process is shown in Figure 22. The 
analysis PQMF stage is followed by the computation of scale factors for 
each sub-band. One scale factor is computed for each 12 sub-band 
frequency samples (called a "granule") and it is represented using 6 bits. 
The maximum absolute value of the 12-sample granule is determined and 
mapped to a scale factor value via a look up table defined in the standard and 
shown in Table I. The samples in the granule are divided by the scale factor 
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prior to the quantization stage. The dynamic range covered by the scale 
factors is 120 dB. 

The scale factor is transmitted only if the bit allocation for that band is 
non-zero. The maximum number of bits used in a Layer I frame to transmit 
scale factors (in the case the where the bit allocation for each sub-band is 
non-zero) is 6*32*2 = 384 bits for stereo mode and 6*32 = 192 bits for 
mono mode. 

Table 1. MPEG Audio La~ers I and II Scale Factors [ISO/lEe 11172-3] 
Scale Factor Scale Factor Value Scale Factor Scale Factor Value 
Index Index 
0 2.00000000000000 32 0.00123039165029 

1.58740105196820 33 0.00097656250000 
2 1.25992104989487 34 0.00077509816991 
3 1.00000000000000 35 0.00061519582514 
4 0.79370052598410 36 0.00048828125000 
5 0.62996052494744 37 0.00038754908495 
6 0.50000000000000 38 0.00030759791257 
7 0.39685026299205 39 0.00024414062500 
8 0.31498026247372 40 0.00019377454248 
9 0.25000000000000 41 0.00015379895629 
10 0.19842513149602 42 0.00012207031250 
11 0.15749013123686 43 0.00009688727124 
12 0.12500000000000 44 0.00007689947814 
13 0.09921256574801 45 0.00006103515625 
14 0.07874506561843 46 0.00004844363562 
15 0.06250000000000 47 0.00003844973907 
16 0.04960628287401 48 0.00003051757813 
17 0.03937253280921 49 0.00002422181781 
18 0.03125000000000 50 0.0000 1922486954 
19 0.02480314143700 51 0.00001525878906 
20 0.01968626640461 52 0.00001211090890 
21 0.01562500000000 53 0.00000961243477 
22 0.01240157071850 54 0.00000762939453 
23 0.00984313320230 55 0.00000605545445 
24 0.00781250000000 56 0.00000480621738 
25 0.00620078535925 57 0.00000381469727 
26 0.00492156660115 58 0.00000302772723 
27 0.00390625000000 59 0.00000240310869 
28 0.00310039267963 60 0.00000190734863 
29 0.00246078330058 61 0.00000151386361 
30 0.00195312500000 62 0.00000120155435 
31 0.00155019633981 
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6.1.2 Bit Allocation and Quantization 

The number of bits available to quantize audio samples in each frame is 
determined by the data rate less the bits needed to transmit the header, CRC, 
bit allocations, scale factors, and any ancillary data. 

The number of bits that can be used to quantize sub-band samples in 
Layer I ranges between zero and 15, excluding the allocation of 1 bit 
because of the nature of the midtread quantizer (see also Chapter 2). The bit 
allocation for each sub-band of each channel is communicated through a 
four-bit code where, other than a code of zero representing zero bits, the 
value of the four-bit code is equal to one less than the number of allocated 
bits. For example, a code of 5 indicates six bits for that sub-band. A code 
value of 15 is forbidden. The number of bits used to transmit bit allocation 
information is equal to 4*32 = 128 bits for single channel mode and 4*32*2 
= 256 bits for stereo mode. 

The bit allocation routine is an iterative process where, after initializing 
the process by setting all bit allocation codes to zero and assuming no bits 
are needed to transmit scale factors, in each iteration additional bits are 
allocated to the sub-band with the highest noise-to-mask ratio (NMR) until 
there are not enough additional bits left for the next iteration pass. 

The NMR for each sub-band is calculated as the difference between the 
signal-to-mask ratio (calculated in the psychoacoustic model) and the signal
to-noise ratio (estimated from a table lookup based on the number of bits 
allocated to the sub-band). In each iteration, an additional quantization bit is 
allocated to the sub-band with the highest NMR that can still accept an 
additional bit (i.e. has less than 15 bits already). If a sub-band that has not 
already been given any bits is the one with the highest NMR, that sub-band 
is given two bits and bits are also set aside to transmit the scale factor for 
that sub-band. 

Once the bit allocations are determined, each sub-band sample is divided 
by its scale factor and quantized using a midtread uniform quantizer having a 
number of steps determined by the bit allocation for that sub-band. 

6.2 Layer II 

The Layer II algorithm builds on the basic structure of Layer I (see 
Figure 22). The frame size is increased for Layer II to 3 granules of 12 sub
band samples corresponding to a total of 12*3*32 = 1152 input samples per 
frame so that one can take advantage of commonality between consecutive 
granules. The audio encoded data in each frame represent 24 ms of data at a 
48 kHz sampling rate. 
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6.2.1 Scale Factors and Scale Factors Select Information 

The scale factors in Layer II can be shared among the three consecuti ve 
granules. The scale factors are computed in the same manner as in Layer I 
(see Table 1). When the values of the scale factors for the consecutive 
granules are sufficiently close or when temporal post-masking can hide 
distortion, only one or two scale factors need to be transmitted. 

The scale factor select information, SCFSI (see mid portion of Figure 
22), is coded with two bits and determines whether one, two, or three scale 
factors will be transmitted for the three consecutive granules in the frame. A 
SCSFI equal to zero corresponds to three scale factors, a SCSFI equal to one 
corresponds to transmitting two scale factors (the first for the first two 
granules and the second for the third granule), a SCSFI equal to two 
corresponds to transmitting a single scale factor to be used for all granules, 
and a SCSFI equal to three corresponds to transmitting two scale factors 
(where the first is used for the first granule and the second is used for the last 
two granules). 

Both SCFSI and scale factors are transmitted only if the bit allocation is 
different from zero for that sub-band. The bits used for SCFSI vary between 
zero and 30 * 2 * 2 = 120 bits for each frame and the bits used for scale 
factors vary between zero and 6 * 3 * 30 * 2 = 1080 bits per frame. (Note: 
Layer II does not allow any bits to be allocated to the two highest sub-bands 
so there are at most only 30 sub-bands that are allocated bits. See [ISO/IEC 
11172-3].) 

6.2.2 Bit Allocation and Quantization 

The psychoacoustic model and bit allocation process are computed in a 
similar manner for Layer II as for Layer I, but they are now computed 
relative to a frame of 36 sub-band samples. Also, bit allocation tables are 
now specified in the standard that determine the possible quantization levels 
that can be used to quantize the samples in any sub-band. As in Layer I, 
quantization is carried out by dividing each sub-band sample by its scale 
factor and then using a uniform mid-tread quantizer with the prescribed 
number of steps. 

Bit allocations are coded based on tables specified in the standard that 
depend on the sample rate and the target data rate. Bit allocation codes 
range from zero to four bits per sub-band, where a greater number of bits are 
used to code the bit allocations of lower frequency sub-bands. In all cases, 
no bits are allocated to the two highest frequency sub-bands in Layer II. In 
other sub-bands, the number of quantization levels can reach that of 16-bit 
quantization. The total number of bits employed to describe the bit 
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allocation for one frame of the stereo signal varies between 26 and 188 
depending on which table is applicable. 

An example of a Layer II bit aIlocation table is shown in Table 2. This 
particular table is valid for sample rates of 44.1 and 48 kHz when they are 
running at data rates of 32 or 48 kb/s per channel. The first column 
represents the sub-band number and the second column represents the 
number of bits used to transmit that sub-band's bit aIlocation. The 
successive columns in each row represent the possible number of 
quantization levels that can be used to quantize the 36 samples in that 
frame's sub-band. The numbers in the top row indicate the bit allocation 
code corresponding to that number of quantization steps. Notice that four 
bits are used to encode the bit alIocation for the first two sub-bands, three 
bits are used to encode the bit alIocation for the next six sub-bands, and no 
bits are allocated to any higher frequency sub-bands in this particular bit 
allocation table. For this bit allocation table, the total number of bits 
employed to describe the bit allocation is equal to 26. 

Table 2. Example of MPEG Audio Layer II bit allocation table [ISOIIEe 11172-3] 
B N 0 2 3 4 10 II 12 13 14 15 

3 5 9 15 31 63 127 255 511 1023 2047 4095 8191 16383 32767 

3 5 9 15 31 63 127 255 511 1023 2047 4095 8191 16383 32767 

3 5 9 15 31 63 127 

3 5 9 15 31 63 127 

3 5 9 15 31 63 127 

3 5 9 15 31 63 127 

3 5 9 15 31 63 127 

3 5 9 15 31 63 127 

10 

II 

12 

13 

14 0 

15 

16 0 

17 0 

18 

19 0 

20 0 

21 0 

22 

23 0 

24 

25 0 

26 0 
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B NOl234 10 II 12 13 14 15 

27 0 

28 0 

29 

30 

31 

Notice also that the bit allocation table shown in Table 2 has entries with 
numbers of levels not usually seen in midtread quantizers. Recall that an N
bit mid-tread quantizer usually has 2N -1 levels. For example, a 4-bit 
quantizer would have 15 levels. In contrast, this table has cases with 5 and 9 
levels. A 5-step midtread quantizer needs 3 bits to encode its values (2 bits 
can only count up to 4 levels) while a 9-step quantizer needs 4 bits to encode 
its values (3 bits can only count up to 8 levels). At first blush, it seems quite 
wasteful of bits to allow such quantizers, however, grouping of consecutive 
samples allows for quite efficient packing of the quantized data. 

In the cases of 3, 5, and 9-step quantization, three consecutive samples 
are (vector) coded with one single code word, v, consisting of 5, 7, 10 bits 
respectively as follows: 

V3 = 9z + 3y + X 

V5 = 25z + 5y + X 

V9 = 81z + 9y + x 

where x, y, z, are the quantization levels corresponding to three consecutive 
sub-band samples (counting from zero up to Nevels-I). The result of this 
vector coding is that quantization can be carried out with few quantizer 
levels without wasting too many bits. 

This vector coding approach saves bits by allocating bits to enumerate 
possible triplets of coded values rather than allocating bits to each quantized 
value individually. For example, 3 consecutive samples using a 3-step 
quantizer would require 3*2 = 6 bits but are here encoded using only 5 bits. 
This packing can be achieved since there are only 3*3*3 = 27 possible code 
triplets for 3 samples - a number of possibilities that easily can be 
enumerated with a 5-bit code (which can enumerate up to 32 items). 
Similarly, 3 consecutive 5-step quantized values would require 3*3 = 9 bits 
but the 5*5*5 = 125 possible code triplets can be enumerated with a 7-bit 
code (which can enumerate up to 128 items). Finally, 3 consecutive 9-step 
quantized values could require 3*4 = 12 bits while the 9*9*9 = 729 possible 
triplets can be enumerated with a lO-bit code (which can enumerate up to 
1024 items). 

In general Layer II represents bit allocation, scale factors, and quantized 
samples in a more compact way than Layer I, so that more bits are available 
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to represent the coded audio data. In general, Layer II provides higher 
quality than Layer I at any given data rate. 

6.3 Layer III 

In addition to the differences in the filter bank and psychoacoustic model 
computation (see previous sections), Layer III core allocation/quantization 
routines are more complex. Moreover, a locally variable data rate is 
employed in Layer III to respond to the demand of difficult signals. The 
mechanism employed to dynamically provide additional bits is defined in the 
standard as a bit reservoir mechanism. The frame size for Layer III is 1152 
samples as in Layer II, but the coded audio data may expand beyond the 
current frame, their starting point being identified by a backwards pointer in 
the bitstream. 

6.3.1 Scale Factors 

The basic Layer III algorithm (in the single channel mode) feeds the 
output of the hybrid filter bank to the quantization and coding stage (see also 
Figure 4). The spectrum is subdivided in 21 or 12 scale factor bands (rather 
than the 32 PQMF sub-bands as in Layers I and II) for long blocks and short 
block respectively, where the width of these bands loosely follows the 
critical bandwidth rate and is specified in look-up tables in the standard. In 
Table 3 and Table 4 an example of Layer III scale factors partition at 48 kHz 
for long and short blocks is shown. 

Table 3. MPEG Audio Layer III scale factors partition for long blocks, Fs = 48 kHz [ISOIIEC 
l1172-3) 
Scale factor band Width Start End 
0 4 0 3 

4 4 7 
2 4 8 11 
3 4 12 15 
4 4 16 19 
5 4 20 23 
6 6 24 29 
7 6 30 35 
8 6 36 41 
9 8 42 49 
10 10 50 59 
11 12 60 71 
12 16 72 87 
13 18 88 105 
14 22 106 127 
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Scale factor band Width Start End 
15 28 128 155 
16 34 156 189 
17 40 190 229 
18 46 230 275 
19 54 276 329 
20 54 330 383 

Table 4. MPEG Audio Layer III scale factors partition for short blocks, Fs = 48 kHz 
[ISO/lEe 11172-3] 
Scale factor band Width Start End 
0 4 0 3 
1 4 4 7 
2 4 8 11 
3 4 12 15 
4 6 16 21 
5 6 22 27 
6 10 28 37 
7 12 38 49 
8 14 50 63 
9 16 64 79 
10 20 80 99 
11 26 100 125 

The scale factors in Layer III are employed to modify the quantization 
step size to ensure that the resulting quantization noise level falls below the 
computed masked threshold [Brandenburg 87 and Johnston 89], see also 
next section. Layer III scale factors differ from Layers I and II scale factors 
in that they are not the result of a normalization process. A set of scale 
factor select information is coded every two granules, where for Layer III a 
granule is defined as 576 frequency lines. The SCFSI in Layer III is 
represented by one bit for each sub-band, which is set to 0 if different scale 
factors are transmitted for each granule, or to 1 if the scale factor transmitted 
for the first granule is valid also for the second. If the coder operates in short 
block mode, then different scale factors are always transmitted for each 
granule. In addition to the sub-band scale factors, a global gain scale factor 
for the entire granule determines the overall quantization step size. 

6.3.2 Non-Uniform Quantization and Huffman Coding 

A non-uniform midtread quantizer is used in Layer III. The quantizer 
raises its input to the 3/4 power before applying a midtread quantizer (see 
also Chapter 2). In the decoder before inverse quantizing, the quantized 
values are re-linearized by raising them to the 4/3 power. In this fashion, 
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bigger values are quantized with less accuracy than smaller values, 
increasing the signal to noise ratio at low level input. 

In addition, in Layer III static Huffman coding is also employed. The 
encoder subdivides the quantized spectral values into three regions and each 
region is coded with a different set of Huffman code tables tuned for the 
statistics of that region. At high frequencies, the encoder identifies a region 
of "all zeros'. The size of this region can be deduced from the size of the 
other two regions and does not need to be coded, the only restriction being 
that it must contain an even number of zeros since the other two regions 
group their values in even numbered sequences. The second region, called 
"count I" region, contains a series of contiguous values consisting only of -
1, 0, + 1. In this region, four consecutive values are Huffman encoded at the 
same time and the size of this region is a multiple of four. Finally the third 
and last region, the "big values" region, covers the remaining spectral values 
which are encoded in pairs. This region is further subdivided in three parts 
each covered by a separate Huffman table. A set of 16 different Huffman 
code tables is utilized. For each partition, the Huffamn table which best 
matches the signal statistics is selected during the encoder process. This 
dynamic search allows for both an increased coding efficiency and a 
decreased error sensitivity. The largest Huffman table carries 16 by 16 
entries. Larger values are accommodated by using an escape mechanism. 

The encoder iteratively quantizes the spectral values based on the data 
rate available, computes the number of Huffman codes needed to represent 
the quantized spectral values, and derives the distortion noise. If the 
distortion noise in certain scale factor bands is above the masked threshold 
values estimated in the psychoacoustic model, it varies the quantizer step 
size for each scale factor band by amplifying the relative scale factor. The 
quantization process is repeated until none of the scale factor bands have 
more than the allowed distortion, or the amplification for any band exceeds 
the maximum allowed value. 

6.3.3 Bit Reservoir 

The mechanism put in place in Layer III bitstream formatting routine 
allows for donating bits to the bit reservoir when the signal analyzed at a 
certain time requires less than the average number of bits to code a frame or 
utilizing bits from the reservoir for peak demands. In this fashion, the 
bitstream formatting routine is designed to support a locally-variable data 
rate. This mechanism not only allows to respond to local variations in the bit 
demand, but also is utilized to mitigate possible pre-echo effects. Although 
the number of bits employed to code a frame of audio data is no longer 
constant, its long term average is. The deviation from the target data rate is 



Chapter 11: MPEG-I Audio 307 

always negative, i.e. the channel capacity is never exceeded. The maximum 
deviation from the target bit rate is fixed by the size of the maximum 
allowed delay in the decoder. This value is fixed in the standard by defining 
a code buffer limited to 7680 bits. For the data rate of 320 kb/s at 48 kHz 
sampling rate the average number of bits per frame is 

Number of bits per frame = 1152* 320/48 = 7680 

In this case, no variation is allowed. The first element in the Layer III 
audio data bitstream is a 9-bit pointer (main_data_begin) which indicates the 
location of the starting byte of the audio data for that frame. In Figure 23 an 
example of the Layer III frame structure is shown. 

Frame 1 Frame 2 

main_dala_begin 
for Frame I 

main_data_begin 
for Frame 2 

LEGEND: 

Frame I Data !~~~ 
Frame 2 Data ~ 
Frame 3 Data t?il&!~~\!~n;m 

main_data_begin 
for Frame 3 

Figure 23. Example of Layer III frame structure from [ISOIIEC 11172-3] 

7. STEREO CODING 

Spatial redundancies and irrelevancies are exploited in joint stereo coding 
in order to further reduce the audio coding system data rates. While for most 
stereo signals there is little correlation between the time representation of the 
left and the right channels, typically for the signal power spectra strong 
correlations exist [Brandenburg 98]. Regarding stereo irrelevancies, we 
know that at high frequencies the ability of the human auditory system to 
discriminate the exact source location is decreased [Blauert 83]. Above 
about 2 kHz, for each critical band the human auditory system bases its 
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perception of stereo imaging from power maxima in space rather than the 
signal fine temporal structure. 

In general, jointly coding the left and right channel provides higher 
coding gains. There are instances, however, in which stereo coding data 
rates may exceed twice the rate needed to transparently code one mono 
signal. In other words, the artifacts masked in single channel coding may 
become audible when presented as a stereo signal encoded as a dual mono. 
This effect is related to differences between the masked threshold recorded 
when the signal is presented as a single channel signal and the masked 
threshold under binaural conditions. This difference is called the binaural 
masking level difference (BMLD) [Blauert 83] and it is most pronounced at 
low frequencies. An example of this effect is related to "the cocktail party 
effect", where a listener is capable to focus on a conversation in spite of the 
louder background noise. If the listener plugs one ear, suddenly the same 
level conversation becomes more difficult to understand. The conversation 
is less effectively masked when the subject listens to it binaurally than when 
the subject listens to it monaurally. Applying these findings to stereo 
coding, one may find that coding artifacts that are masked in single channel 
mode can become unmasked when presented simultaneously in two 
channels, i.e. in a dual mono system. 

The basic idea in joint stereo coding is to appropriately rotate the stereo 
plane for each critical band into the main axis direction of the input stereo 
signal. Applying this idea in audio coding means transmitting side 
information to convey the direction parameters. This sometimes translates 
into a large amount of additional side information with no net coding gain. 
Simplified approaches can be found in literature such as mid/sum, MIS, and 
intensity stereo coding [Johnston and Ferreira 92 and van der Waal and 
Veldhuis 91]. While these approaches have some overlapping, their main 
focus is very different. 

MIS stereo coding focuses mainly on redundancies removal and it is a 
transparent process in absence of quantization and coding. In MIS stereo 
coding only two directions are considered. Instead of transmitting separately 
the left and the right signal, the normalized sum and difference signals are 
transmitted. These signals are also referred to as the middle or mid (sum) 
and side (difference) signals. The coding gain achieved by utilizing MIS 
stereo coding is signal dependent. The maximum gain is reached when the 
left and right signals are equal or phase shifted by 1t. MIS stereo processing 
can be applied to the full signal spectrum since it is a lossless process and, in 
particular, it preserves the spatial attributes of the signal. In some cases, 
however, stereo irrelevancy effects can also be utilized in this approach. 

Intensity stereo coding focuses mainly on irrelevancy removal, where at 
high frequencies the signal is coded with reduced spatial resolution. This 
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approach is based on the fact that the human auditory system detects 
direction at high frequency primarily based upon relative intensity in each 
ear rather than using phase cues. In intensity stereo coding, only one 
channel resulting from the combination of the right and left channel is 
transmitted for each critical band. The directional information is conveyed 
with independent scale factors for the left and the right channels. While the 
main spatial cues are retained in this method, some details may be missing. 
Intensity stereo coding preserves the energy of the stereo signal, but some of 
the signal components may not be properly transmitted, resulting in a 
potential loss of spatial information. In general, the loss of spatial 
information is considered less annoying than coding artifacts from bit 
starvation. For this reason, intensity stereo coding is employed mainly at 
low data rates. It is important to emphasize that intensity stereo coding is 
applied for high frequency only. Extending this approach to low frequencies 
may cause severe distortion such as a major loss in spatial information. 
Assuming that intensity coding is applied to half of the signal spectrum, a 
saving of about 20% in the system data rate can be achieved [Brandenburg 
98]. Finally it should be mentioned that extensions to multichannel of the 
general intensity coding technique were developed in more recent years and 
different flavors are known as coupling channels [Davis 93], dynamic 
crosstalk [Stoll et al. 94] or generalized intensity coding (see also next 
chapter for more details). 

7.1 MPEG Audio Stereo Coding 

In MPEG-I audio coding mid/sum, MS, stereo coding and intensity 
stereo coding techniques are applied. MIS stereo coding is employed in 
Layer III only, while intensity stereo coding is employed in all MPEG-I 
Audio layers. In the joint stereo mode (bits 24 and 25 in the MPEG Audio 
header) the sum of the left and right sub-band samples is transmitted with 
scale factors for the left and the right channels for selected sub-bands. First 
an estimate of the required data rate for the left and right channels is 
performed. If the data rate exceeds the target data rate, a number of sub
bands are set to intensity stereo mode. Depending on the data rate, the 
allowed set of sub-bands for intensity coding is specified in the standard 
(bits 26 and 27 in the MPEG Audio header). For the quantization of the 
combined sub-bands, the higher of the bit allocation for the left and right 
channel is used. The combined sub-bands are coded in the same fashion as 
the independent sub-bands. In addition to the common scale factors, 
directional scale factors are unique to the sub-bands coded in the joint stereo 
mode and they are transmitted in the bitstream. 
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7.1.1 MIS Stereo Coding 

MIS stereo coding is applied in Layer III when in joint stereo mode 
when: 

51 I 51 I 

I(l~ -r~)<O.8I(l~ +r~) 
k=O k=O 

Where lk and rk correspond to the FFT spectral line amplitudes computed in 
the psychoacoustic model. The values M j and Sj are transmitted, instead of 
the left and right channel values Lj and Rj , where Lj and Rj correspond to the 
hybrid filter bank spectral line amplitudes as follows: 

M. = Rj +Lj 
1 .fi 

and S = L j -R j 

1 .fi 

In order to code the MIS signals, specially tuned thresholds are computed in 
the psychoacoustic model and utilized in the allocation routines. 

8. SUMMARY 

In this chapter we reviewed the main features of MPEG-I Audio. 
MPEG-I is the first international standard of high quality audio and opened 
the door to a variety of applications from digital audio broadcasting to 
internet distribution of music. Organized in three layers of increasing 
sophistication and complexity design, the basic building blocks consist of a 
time to frequency mapping stage, psychoacoustic model, quantization and 
coding and bitstream formatting. MPEG-I allows for audio coding between 
32 and 448 kb/s per channel targeting perceptually lossless quality. In the 
next chapters, we discuss further developments in MPEG Audio including 
MPEG-2 and MPEG-4. 
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Chapter 12 

MPEG-2 Audio 

1. INTRODUCTION 

This chapter describes the MPEG-2 Audio coding family which was 
developed to extend the MPEG-l Audio functionality to lower data rate and 
multichannel applications. First we will discuss MPEG-2 LSF and "MPEG-
2.5" systems in which lower sampling frequencies were used as a means to 
reduce data rate in MPEG-l audio coding. (The MP3 audio format as 
usually implemented as the MPEG-2.5 extension of Layer III.) Next we will 
discuss the MPEG-2 BC system which extended the MPEG-l Audio coders 
to multichannel operation while preserving backwards compatibility so that 
MPEG-2 BC data streams would be playable on existing MPEG-I players. 
In the next chapter, we will discuss the MPEG-2 AAC system which made 
use of all of the advanced audio coding techniques available at the time to 
reach higher quality in a multichannel system than was achievable while 
maintaining compatibility with MPEG-l players. 

2. MPEG-2 LSF, "MPEG-2.S" AND MP3 

Motivated by the increase of low data rate applications over the Internet, 
the goal of MPEG-2 LSF was to achieve MPEG-I or better audio quality at 
lower data rates [ISO/IEC 13818-3]. One way to achieve this goal without 
requiring major modifications in the MPEG-l system was to decrease the 
sampling rate of the audio signals which is the approach taken by MPEG-2 
LSF. Instead of the 48, 44.1, and 32 kHz sampling rates seen in MPEG-I, 

M. Bosi et al., Introduction  to  Digital Audio  Coding  and Standards
© Kluwer Academic Publishers 2003
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the sampling rates for MPEG-2 LSF are 24,22.05, and 16 kHz. Of course, 
reducing the sampling rate by a factor of 2 also reduces the audio bandwidth 
by a factor of 2. This loss in high frequency content was deemed an 
acceptable compromise for some target applications in order to reduce the 
data rate by a factor of 2. 

The MPEG-2 LSF coder and its bitstream have a very similar structure to 
that of MPEG-I Audio. The three audio "layers" of increasing complexity 
are again defined almost identically to the layers of MPEG-I Audio. Single, 
dual channel, stereo, and joint stereo modes are again supported in MPEG-2 
LSF. The bitstream header for MPEG-2 LSF differs from that of MPEG-I 
Audio solely in the settings of a single bit (see Figure 1). The 13th bit (called 
the "ID bit") is set equal to zero for MPEG-2 LSF while it was equal to one 
for MPEG-l. The bit setting for MPEG-2 LSF signals the use of different 
tables for sampling rates and target data rates. 

The main difference in the MPEG-2 LSF implementation is the set of 
allowed sampling rate and data rate pairings in its operation. An additional 
difference is the adaptation of the psychoacoustic parameters for the lower 
sampling frequencies. The frame size is reduced from 1152 samples to 576 
samples in Layer III to make the audio frame more manageable for 
packetizing in internet applications. (Table I lists the duration of the audio 
frame for the different sampling rates and layers of MPEG-2 LSF.) 

The resulting data rates in MPEG-2 LSF are lower than the data rates for 
MPEG-l. The nominal operating rates for MPEG-l are from 32 kb/s up to 
224 kb/s but good quality is usually found around 128 kb/s per channel. In 
contrast, MPEG-2 LSF typically produces adequate quality for various 
applications throughout its operating range from 32 to 128 kb/s per channel 
for Layer I, and from 8 to 80 kb/s per channel for Layers II and III. 

padding_bit emp~asis 

synchword layer bitrate_index I mode copyright I 

[J['['['['['['['I'['['I'~ [ II rn:tj:Qrn:PJ 
I errocprotection 

10 (O=LSF) 
I private_bit I original/copy 

mode_extension 
sampling_frequency 

Figure 1. MPEG-2 Audio LSF header 
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Table 1. MPEG-2 LSF audio frame duration [ISO/fEe 13818-3) 

Layer Sampling Frequency in kHz 
16 22.05 24 

24ms 17.41 ms 16 ms 
II 72 ms 52.24 ms 48 ms 
III 36 ms 26.12 ms 24 ms 

The decrease in data rates, especially for Layer III, made MPEG-2 LSF 
useful for low bandwidth Internet applications. This led the audio group at 
the Fraunhofer Institute to create an even lower sampling rate modification 
of Layer III that they named "MPEG-2.5" (see also [Brandenburg 99]). 
"MPEG-2.5" reduced the sampling rates by another factor of 2 from MPEG-
2 LSF Layer III. In "MPEG-2.5" the allowed sampling rates are 12 kHz, 
11.025 kHz, and 8 kHz. The addition of these extensions allow Layer III 
coders to range from samples rates of 8 kHz ("MPEG-2.5") up to 32 kHz 
(MPEG-I). 

To allow "MPEG-2.5" decoders to work with the same bitstream format 
as used in MPEG-l Audio and MPEG-2 LSF, they removed the final bit 
from header synchword and merged it with the ID bit into a 2-bit ID code. 
The result was that "MPEG-2.5" decoders work with an II bit synchword 
(rather than 12 bit) but have 2 bits to identify the bitstream format. The 
"MPEG-2.5" ID codes are [00] for "MPEG-2.5", [I I] for MPEG-I, [10] for 
MPEG-2 LSF, and [01] reserved for future extensions. Notice that using a 
[1] as the first bit of the two-bit ID code bit for the prior formats leads to 
compatibility with the MPEG-I and MPEG-2 formats. Hence, the "MPEG-
2.5" bitstream is identical to that of MPEG-I Audio and MPEG-2 LSF when 
those formats are being encoded. 

The high quality of the Layer III encoder coupled with the wide range of 
sample rates and data rates that can be encoded using the MPEG-2 LSF and 
"MPEG-2.5" extensions made Layer III a natural choice for Internet 
applications. The so-called "MP3" file format is typically implemented as 
MPEG-l Layer III with both of these extensions supported. Low bandwidth 
users typically use the 16 kHz sampling rate (for a bandwidth of roughly 8 
kHz) and encode stereo sound at 32 kb/s. Compared with the CD format 
(44.1 kHz stereo at 16 bits/sample), this represents a data rate reduction of 
over a factor of 40 and allows for an entire CD's worth of music (about 800 
MB) to be stored in under 20 MB. Higher bandwidth users are more likely 
to operate with the full CD 44.1 kHz sample rate at 128 kb/s for "near CD
quality" sound at a data rate reduced by more than a factor of ten from the 
CD format. 

The use of MP3 files for sharing audio over the Internet has spread so 
widely that it has become the de facto standard for Internet audio. In 
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addition, MP3 players and portable devices are in widespread use for 
listening to audio and home audio digital components (e.g. CD players, 
DVD players) increasingly tout MP3 format playback as one of their 
features. 

3. INTRODUCTION TO MULTICHANNEL AUDIO 

Since the main focus of the MPEG-2 Audio work evolved around 
multichannel audio, a brief introduction on the evolution of spatial 
representation of sound is presented in this section. Starting with 
monophonic technology, and partially pushed by the progress in the film 
industry, the art of multichannel sound developed towards stereophonic, 
quadraphonic, and more. 

3.1 History and Channel Configurations 

The cinema industry embraced multichannel formats [Holman 91] 
because of their flexibility and the greater enveloping experience they 
provided. In the eighties, with the introduction of the CD format, 
stereophonic sound became well established, while a few artists were 
mastering in quadraphonic and a very small audience had access to 
reproduction systems with more than two channelsat home. During the 
nineties when the migration from the cinema halls to the living rooms started 
to take place, the pace was set for standards like that of high definition 
television in North America [ATSC A/S21l0] and the DVD [DVD-Video] 
standards. In the early nineties the focus of the audio standardization efforts 
shifted from mono and stereo audio signals to multichannel audio signals. 
Today, the general evolution of digital technology and a steady growth in 
transmission bandwidth and storage capacity have made multichannel audio 
a more realistic option for widespread audio reproduction. 

MPEG-2 Audio was one of the first audio coding standards embracing 
the S.I-channel audio configuration. This now widely adopted multichannel 
configuration encompasses five full-bandwidth (20 kHz) channels and a low 
frequency enhancement channel, LFE, covering frequencies below 200 Hz 
(hence the .1 denomination since the LFE channel covers less than 10% of a 
20-kHz bandwidth signal). The 5.1 configuration was first introduced by 
SMPTE in 1987 [Holman 91] and later adopted by a number of 
standardization bodies including ITU-R, MPEG, the North American 
HDTV,DVD. 
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Reference loudspeaker arrangement with 
loudspeakers UGRand LS/RS 

Screen I HDTV - Reference distance = 3 H (2P, = 33° 

Screen 2 = 2 H (2P 2 = 48° 

H: height of screen 

B: loudspeaker base width 

Loudspeaker Horizontal angle from Height Inclination 
centre (degrees) (m) (degrees) 

C 0 1.2 0 

L, R 30 1.2 0 

LS, RS 100 ... 120 ;>: 1.2 0 .. 15 down 

Figure 2. 3/2 multichannel configuration from [ITU-R BS.77S-1] 
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The 5.1-channel audio configuration is often referred to as the 3/2/.1 
configuration, since three loudspeakers are typically placed in front of the 
listener, and two in the sidelrear (see Figure 2). This arrangement is 
described in detail in the ITU-R recommendation BS.775-1 [ITU-R BS.775-
1]. According to the ITU-R specifications, the five full-bandwidth 
loudspeakers are placed on the circumference of a circle centered on the 
reference listening position(see Figure 2). Three front loudspeakers are 
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placed at angles from the listener axis of _300 (left channel, L), +300 (right 
channel, R), and 0° (center channel, C); the two surround loudspeakers are 
placed at angles between -1000 and -120° (left surround channel, LS) and 
+ 100° and + 1200 (right surround channel, RS). The LFE speaker is typically 
placed in the front, although its exact location is not specified in the ITU-R 
layout, since the human auditory system does not take strong localization 
cues from one single low frequency sound channel. The purpose of the LFE 
channel is to enable high-level sounds at frequencies below 200 Hz without 
overloading the main channels. In the cinema practice, this channel has 10 
dB more headroom than the main channels. 

In the following sections of this book, we will be generally referring to 
the 5.1-channel configuration unless otherwise specified. If more than 5.1 
channels are employed, the basic ideas and main principles we present still 
hold true, but even greater compression requirements for the coding 
technology should be adopted. 

3.2 System Demands 

Going from stereophonic to multichannel sound reproduction adds to the 
demands on storage and delivery media. If we consider the CD format, that 
is PCM sampled at a frequency of 44.1 kHz and quantized using uniform 
quantization with of 16 bits per sample, the total data rate for the 5.1 
multichannel configuration is 3.598 Mb/s. An hour of multichannel music in 
the CD format requires 1.62 GB, way above the CD storage capacity of 
about 800 MB per disk. If we consider current multichannel applications 
such as digital broadcasting, internet audio and electronic music distribution, 
in each case bandwidth/capacity are serious challenges. 

As in the monophonic and stereo case, the challenge of multichannel 
audio coding is to minimize the data rate without sacrificing audio quality. 
While PCM is a well-understood and well-established coding method that 
offers very low-complexity implementations, it requires very high 
capacitylbandwidth to provide high-quality audio signals. One should also 
notice that CD format audio signals may suffer from some degradation. It 
was shown in [Fielder 87] by comparing the hearing threshold with the CD 
signal resolution levels and typical 16-bit converters, that audible 
quantization noise can be introduced in the mid-range frequencies. The 
implication is that, expensive as it may be, one may need to increase the 
PCM sample precision, going for example from R=16 to R=24. 

In addition to the augmented sample precision, we are witnessing a new 
trend to adopt higher sampling rates, going from Fs = 44.1 kHz or Fs = 48 
kHz to Fs = 96 kHz, and Fs = 192 kHz. While there is no scientific evidence 
or published experimental results to the authors' knowledge that 
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unequivocally prove the advantages of adopting higher sampling 
frequencies, many recording engineers and industry "golden ears" feel that 
adopting sampling frequencies of 96 kHz or higher and the equivalent audio 
sample word length of 24 bits, and multichannel audio are essential in 
providing the end user with high quality audio and a truly enveloping 
experience. This leads to different choices as how to balance the emerging 
market desire for high resolution audio with current delivery media 
restrictions. Table 2 shows examples of different approaches in the 
marketplace to multichannel high-resolution audio. 

At high sampling rates media restrictions become even more binding, 
prohibiting multichannel audio even for emerging new high-capacity 
technologies like, for example, DVD-Audio applications [DVD-Audio]. If 
we consider 5 full-bandwidth channels sampled at 96 kHz with 24-bit 
precision, the total throughput is 11.52 Mb/s, which exceeds the maximum 
9.6 Mb/s throughput of DVD-Audio. 

Table 2. Different al2l2roaches to multichannel in the marketl2lace 
MPEG-2 BC AC-3 MPEG-2AAC DVD-Audio 

Audio Channels 1-5.1 1-5.1 1-48 1-6 

Fs (kHz) 32,44.1,48 32,44.1,48 8-96 
44.1,48,88.2, 
96, 176.4, 192 

R (bits/sample) 16-24 16-24 16-24 16-20-24 

I (kb/s) 32-1,130 32-640 
Up to 576 per 

9600 
channel 

Frame (samples) 384-1152 1536 1024 

4. MPEG-2 MULTICHANNEL BC 

MPEG-2 multichannel BC audio coding provides a multichannel 
extension to MPEG-l Audio which is backwards compatible with the 
MPEG-l bitstream, where backwards compatibility implies that an MPEG-l 
decoder is able to decode MPEG-2 encoded bitstreams. The audio sampling 
rates in MPEG-2 BC for the main channels are the same as in MPEG-l, 
however, the channel configuration supports up to five full-bandwidth main 
audio channels plus a low frequency enhancement, LFE, channel whose 
bandwidth is less than 125 Hz. The sampling frequency of the LFE channel 
corresponds to the sampling frequency of the main channels divided by 96. 

There are different strategies for achieving backward compatibility with 
monophonic and two-channel systems. One procedure is to provide both 
monophonic and two-channel information concurrently with the 
multichannel data stream (simulcast). The advantage of this situation is that 
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no constraints are imposed in the multichannel technology, and the 
monophonic/two-channel services can simply be discontinued at a given 
time. The disadvantage of this scenario is an increase in the data capacity 
required (at least initially). Another approach is to embrace backward 
compatible matrixing techniques. In this approach, the left and right 
channels contain the down-mixed multichannel information. The MPEG-2 
BC audio coding standard follows this second approach. In general, the 
advantage of this approach is that little additional data capacity is required 
for the multichannel service. The disadvantage is that this approach greatly 
constrains the design of the multichannel coder, which in turns limits quality 
of the multichannel reproduction for certain classes of signals ata given data 
rate. In particular, this approach may lead to unmasking of quantization 
noise in the decoder after the de-matrixing stage [Bosi, Todd and Holman 
93]. As we discussed in the introduction to this chapter, the backwards 
compatibility with the MPEG-I bitstream requirement plays a very 
important role in the design of the MPEG-2 BC system [ISO/IEC 13818-3]. 
In this section we discuss this approach in detail. 

Since the MPEG-l equivalent left and right channels need to carry a 
complete description of the MPEG-2 main multichannel signal, the five
channel information is down-mixed into two channels as follows, see also 
[Ten Kate 92]: 

Lo = c (L + aC + bLs) 

Ro = c (R + aC + bRs) 

Where L represents the left channel, R the right channel, C the center 
channel, and Ls and Rs the left and right surround channels respectively. Lo 
and Ro represent the MPEG-I compatible left and right channels (see Figure 
3). The down-mix coefficients are specified in the standard. For example, 
commonly used values for the down-mix coefficients are given by: 

1 
a=b=-

J2 
and 1 

c=--
1+J2 

While the basic MPEG-2 BC bitstream structure is essentially the same 
as in MPEG-I (see also Figure 4 and Figure 5), additional channels (see 
Figure 3), T3, T4, Ts (corresponding to C, L" and Rs respectively) and LFE 
channels are stored along with the multichannel header as an optional 
extension bitstream in the ancillary data field. 
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Figure 3. MPEG-2 multichannel Be configuration from [Stoll 96] 

For Layers I and II the LFE channel is coded using block floating point. 
For Layer III the LFE channel is coded following a simplified MPEG-I 
Layer III encoding process which includes Huffman coding and operates 
only in the MDCT short block mode (see also Chapter 11). The audio 
sample precision adopted in MPEG-2 BC is higher than the precision 
adopted in MPEG-I with an equivalent word precision of up to 24 bits per 
sample. The overall data rate may be increased above that specified by the 
MPEG-I standard by using the extension bitstream field so that the MPEG-2 
encoded data are still compatible with the MPEG-I data specifications. The 
maximum data rates at 48 kHz sampling rate are 1.13 Mb/s for Layer I, 
1.066 Mb/s for Layer II, 1.002 Mb/s for Layer III. Notice that for Layers II 
and III the multichannel extension is encoded as a Layer II or III extension 
respectively; for Layer I, however, only Layer II extensions are allowed. 

In the decoder, the corresponding de-matrixing process takes place as 
follows: 

L = LJe - aC - bLs 

R = Role - aC - bRs 

During the de-matrixing process quantization noise that was masked in 
certain channels in the encoder stage may appear as audible quantization 
noise in different channels in the decoder stage. An example that illustrates 
this point is given when a signal in a particular channel is derived from two 
channels with signals out of phase, i.e. canceling each other. If the 
corresponding quantization noise is not out of phase, then it becomes audible 
since the masking portion of the signal is canceled out. This is obviously an 
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extreme case, but, in general, partial unmasking of quantization noise may 
occur frequently after the de-matrixing process. To compensate for this 
effect an increase in the coding margin (and therefore in the global data rate) 
is required to maintain perceptual lossless coding. 

In addition to the 5.1 or 3/2/.1 configuration, other channel 
configurations supported in MPEG-2 include the 311, 3/0, 2/2, 211, 2/0, 1/0 
configurations, where the number before the slash symbol indicates the 
number of channels in the frontal plane, and the number after the slash 
symbol indicates the number of channels in the rear plane (see also [ITU-R 
BS.775-1]). Different combination of audio input channels are encoded and 
transmitted. The first two channels represent always the two basic channels 
compatible with the MPEG-l specifications. In general the up to three 
additional channels or their combination can be dynamically selected to be 
conveyed in the transmission channels of the ancillary data field. 

4.1 Bitstream Format 

MPEG-2 Be uses the ancillary data field in the MPEG-l format to store 
the additional multichannel information. Figure 4 shows the structure of an 
MPEG-2 audio frame. The first section of the frame is identical to the 
MPEG-l audio frame. The second section, the multichannel field, is stored 
in the ancillary data portion of the MPEG-l bitstream, along with the 
ancillary data. After the MPEG-l header, eRe, and audio data, in the 
MPEG-l ancillary data field, the multichannel (MC) header (see also Figure 
6), Me eRe, Me composite status information (see also Figure 8), Me 
audio data, multilingual (see next section) and ancillary data follow. If the 
multichannel data rate exceeds the MPEG-l data rates, the extension bit in 
the Me header is set. In this case, in addition to the MPEG-l compatible 
part of the audio frame, an extension part (see Figure 5) consisting of the 
extension (Ext) header, (see also Figure 7, namely Ext synchronization 
word, Ext eRe, Ext length, and Ext ID bit), Ext Me audio data, and 
multilingual and Me ancillary data are also present. 
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Figure 4. MPEG-2 multichannel bitstream backwards compatible with MPEG-I Layer II 
from [ISO/lEC 13818-3] 
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Figure 5. MPEG-2 multichannel extension from [ISO/IEC 13818-3] 

As described above, the extension bitstream is utilized when the 
multichannel and the multilingual information does not fit in one basic 
MPEG-I frame. The first bit in the multichannel header indicates whether or 
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not the extension field in the MPEG-2 frame exists. If the extension 
bitstream exists, then an eight-bit unsigned value describes the length in 
bytes of the ancillary data field. The other bits in the multichannel header 
convey information on the multichannel channels, de-matrix procedure, and 
multilingual channels (see next section), etc. For example, the center bits 
indicate whether or not the center channel is present and if its bandwidth is 
limited, i.e. phantom coding of the center channel is applied. The number of 
multilingual channels, their sampling rate and the multilingual layer is also 
specified in the multichannel header. 

In the composite status information field, the multichannel coding 
employed such as transmission channel allocation, crosstalk, and prediction 
are specified. For Layer III the MDCT block size and the beginning of the 
multichannel data is also indicated in this field via an 11 bits value, since 
Layer III maintains a locally variable data rate structure. 
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Center 
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LFE De-matrix 
.--- .---
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Surround # ML C~annels Copyright ID start 
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Figure 6. MPEG-2 multichannel header 
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Figure 7. MPEG-2 multichannel extension header 
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Figure 8. MPEG-2 Layers I and II multichannel composite status information 

4.2 Multilingual Channels 

In addition to the main audio channels, MPEG-2 Be supports 
multilingual audio. Up to seven multilingual channels can be transmitted 
along with the main audio channels (see Figure 9). The sampling frequency 
of the multilingual channels can be the same as or half the sampling 
frequency of the main channels. When the main channels are coded with 
Layer I the multilingual extension is always coded with the Layer II 
algorithm. When the main channels are coded with Layers II and III, the 
multilingual extension can be coded either with Layer II or Layer III by 
appropriately setting the multilingual layer bit in the multichannel header. 
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Figure 9. MPEG-2 multichannel Be with multilingual channels from [Stoll 96] 
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4.3 Encoding Process 

In Figure 10 a block diagram of the MPEG-2 multichannel Layer II 
coding scheme is shown. If we compare it with the coding scheme of the 
encoding process for MPEG-I shown in Figure 3 and Figure 22 of Chapter 
11, we notice that the basic structure, i.e. the sub-band filter analysis, scale 
factors computation, psychoacoustic modeling, basic quantization and 
coding stays the same. The main difference is that instead of a single or 
stereo channel in MPEG-2 multiple channels are considered and composite 
channel coding techniques are applied. 

Each channel of input signal is first fed to the PQMF sub-band filter and 
then matrixed. The scale factors calculation, transmission channel 
allocation, dynamic crosstalk and multichannel prediction stages follow next 
(see below). In parallel, Psychoacoustic Model I (see Chapter II) is 
computed. The corresponding SMR values are then modified to take into 
consideration the prediction values for the sub-band samples. The prediction 
coefficients are quantized and the prediction error signals are then computed. 
Finally, the quantized sub-band samples, scale factors, bit allocation values, 
multichannel control parameters, etc., are multiplexed and formatted into the 
MPEG-2 bitstream. 

MPEG-2 BC adopts composite channel coding techniques such as 
dynamic crosstalk, adaptive multichannel prediction, and the phantom 
coding of the center channel, see also [Stoll 96]. The dynamic crosstalk 
technique exploits the same principles utilized in intensity stereo coding 
wherein the high frequency content of a stereo signal is transmitted as a 
single audio signal along with scaling information describing how the 
intensity is split between the two channels. Similarly, in dynamic crosstalk 
mode only one audio signal is sent in the high frequency region and scaling 
coefficients define how to split it between each channel. Dynamic crosstalk 
encoding can be done independently for several different frequency regions. 
Adaptive multichannel prediction reduces redundancies by exploiting 
statistical correlations between channels. Rather than of transmitting the 
actual signal in each channel, only the prediction error from an adaptive 
predictor is sent for the center and surround channels. In MPEG-2 BC a 
predictor of up to the 2nd order with delay compensation is employed [Fuchs 
93]. Finally, above a certain frequency, the center channel signal can be 
split and added to the left and right main channels creating a phantom image 
of the center signal being anchored in the center by the two side speakers. 
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Multichannel PCM Audio Input 

ISOllEe 13818-3 Multichannel Bitstream 

Figure 10. MPEG-2 Layer II multichannel encoding process block diagram 

The multilingual section of the MPEG-2 bitstream is encoded as an 
MPEG-I bitstream if the sampling frequency employed is the same as for 
the main channels. In this case, however, no intensity coding mode is 
allowed. If the sampling rate is half the sampling rate employed for the main 
channels, the encoding of the multilingual channel is done according to the 
MPEG-2 LSF specifications allowing a significant gain in coding efficiency 
to be achieved at the expense of a reduction in the channel bandwidth. Since 
in speech signals usually have bandwidth below 10kHz, this limitation does 
not typically cause a strong degradation in quality. 



330 Introduction to Digital Audio Coding and Standards 

4.4 Applications and Quality Evaluation 

MPEG-2 multichannel BC applications involve mostly Layer II 
implementations. MPEG-2 Layer II was selected as a standard 
recommendation by ITU-R for digital broadcasting applications including 
digital radio and digital television. It is currently in use in the digital audio 
broadcasting, DAB, standard [ETS 300 401 v2] and the digital video 
broadcasting, DVB, standard [ETS 300421] worldwide. Layer II was also 
adopted for DVD-Video applications in selected countries. 

A number of subjective tests were carried out according to the ITU-R 
BS.ll16 specifications (see also Chapter 13) to evaluate MPEG-2 Layer II 
performance [ISO/IEC MPEG N1229]. For MPEG-2 Layer II very good 
quality is achieved for data rate in average of 640 kb/s in the 5.1 
multichannel configuration. 

5. SUMMARY 

In this chapter we reviewed the main features of the MPEG-2 Audio 
standard. Initially the goals of MPEG-2 were to address low sampling 
frequencies and multichannel extensions to MPEG-l. MPEG-2 LSF, 
motivated by the demands of very low data rates applications, found 
widespread penetration with one of its derivate, the MP3 format. MPEG-2 
multichannel BC was deployed to secure compatibility with an installed base 
of mono/stereo systems. Based on this requirement, constraints on the 
multichannel design lead to further investigation on non backwards 
compatible multichannel systems and the development of MPEG-2 
Advanced Audio Coding, AAC. In the next chapter we discuss the main 
features of MPEG-2 AAC. 
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Chapter 13 

MPEG-2AAC 

1. INTRODUCTION 

This chapter describes the MPEG-2 Advanced Audio Coding, AAC, 
system.s Started in 1994, another effort of the MPEG-2 Audio committee 
was to define a higher quality multichannel standard than achievable while 
requiring MPEG-l backwards compatibility. The so called MPEG-2 non
backwards compatible audio standard, later renamed MPEG-2 Advanced 
Audio Coding (MPEG-2 AAC) [ISOIIEC 13818-7] was finalized in 1997. 
AAC made use of all of the advanced audio coding techniques available at 
the time of its development to provide very high quality multichannel audio. 

2. OVERVIEW 

The aim of the MPEG-2 AAC development was to reach 
"indistinguishable" audio quality as specified by the ITU-R TG 10-2 [lTU-R 
TG 10-2/3] at data rates of 384 kb/s (or lower) for five full-bandwidth 
channel audio signals. Tests carried out in the fall of 1996 at BBC, UK, and 
NHK, Japan, showed that MPEG-2 AAC satisfies the ITU-R quality 
requirements at 320 kb/s per five full-bandwidth channels (or lower 

S The material in this chapter has significant overlap with that of [Bosi et. al. 1997] and the 
authors gratefully acknowledge the contribution of MB's co-authors K. Brandenburg, S. 
Quackenbush, L. Fielder, K. Akagiri, H. Fuchs, M. Dietz, J. Herre, G. Davidson and Y. 
Oikawa to the material presented here. 

M. Bosi et al., Introduction  to  Digital Audio  Coding  and Standards
© Kluwer Academic Publishers 2003
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according to the NHK data) [ISO/IEC MPEG NI420]. (The MPEG-2 AAC 
tools also constitute the kernel of the MPEG-4 main, scalable, high quality 
audio, low delay, natural audio and mobile audio internetworking profiles, 
see also Chapter 15 [ISO/IEC 14496-3].) The MPEG-2 AAC specifications 
are the result of a collaborative effort among companies around the world 
each of which contributed advanced audio coding technology. AAC 
combines the coding efficiency of a high-resolution filter bank, prediction 
techniques, and Huffman coding to achieve very good quality audio at low 
data rates. The AAC specifications have undergone a number of revisions 
since the first submission of proposals (November 1994). In order to define 
the AAC system, the audio committee selected a modular approach in which 
the full system is broken down into a series of self-contained modules or 
tools, where a tool is defined as a coding module that can be used as a 
separate component of the overall system. The AAC reference model (RM) 
described the characteristics of each tool and how they fit together. Each 
aspect of the RM has been evaluated via core experiments, consisting of 
informal listening tests that followed the ITU-R BS.1116 (see also Chapter 
10) guidelines that were carried out between January '95 and July '96. 

The following AAC tools (see Figure I and Figure 2) are described in 
this chapter: 
• Gain Control (included in Figure I in the pre-processing stage) 
• Filter Bank 
• Prediction 
• Quantization and Coding 
• Noiseless Coding 
• Bitstream Multiplexing 
• Temporal Noise Shaping (TNS) 
• Mid/Side (MIS) Stereo Coding 
• Intensity Stereo Coding. 

In order to allow a tradeoff between quality and memory/processing 
power requirements, the AAC system offers three profiles: Main Profile, 
Low Complexity (LC) Profile, and Scaleable Sampling Rate (SSR) Profile. 
In the Main Profile configuration, the AAC system provides the best audio 
quality at any given data rate. With exception of the preprocessing tool, all 
parts of the AAC tools may be used. Memory and processing power 
required in this configuration are higher than the memory and processing 
power required in the LC Profile configuration (see also next sections). It 
should be noted that a Main Profile AAC decoder can decode an LC Profile 
encoded bitstream. 
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Figure 1. MPEG-2 AAC encoder block diagram from [Bosi et al. 97] 

In the LC Profile configuration, the prediction and preprocessing tools 
are not employed and the TNS order is limited. While quality performance 
of the LC Profile is very high (see also next sections), the memory and 
processing power requirements are considerably reduced in this 
configuration. 

In the SSR configuration, the gain control tool is required. The 
preprocessing performed by the gain control tool consists of a CQF (see also 
Chapter 4), gain detectors and gain modifiers. The prediction tool is not 
used in this profile, and TNS order and bandwidth are limited. The SSR 
Profile has lower complexity than the Main and LC Profiles and it can 
provide a frequency scaleable signal. 
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Figure 2. MPEG-2 AAC decoder block diagram from [Bosi et al. 97] 

The AAC encoder process can be described as follows (see also Figure 
I). First, an MDCT-based filter bank (see also Chapter 5) is used to 
decompose the input signal into sub-sampled spectral components (time
frequency domain). At 48 kHz, the AAC filter bank allows for a frequency 
resolution of 23 Hz and time resolution of 2.6 ms. Based on the input signal, 
an estimate of the time dependent masking thresholds are computed (see also 
Chapter 7). A perceptual model similar to the MPEG Psychoacoustic Model 
2 (see also Chapter 11) is used for the AAC system. SMR values are utilized 
in the quantization stage in order to minimize the audible distortion of the 
quantized signal at any given data rate. 

After the analysis filter bank, the TNS performs an in-place filtering 
operation on the spectral values, i.e. replaces the spectral coefficients with 
their prediction residuals. The TNS technique permits the encoder to 
exercise a control over the temporal fine structure of the quantization noise 
even within a single filter-bank time-window. 

For multichannel signals, intensity stereo coding (see also Chapter 11) 
can also be applied; in this operation, only the energy envelope is 
transmitted. Intensity stereo coding allows for a reduction in the spatial 
information transmitted and it most effective at low data rates. 
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The time-domain prediction tool can employed in order to take advantage 
of correlations between sub-sampled spectral components of subsequent 
frames resulting in an increased redundancy reduction for stationary signals. 

Instead of transmitting the left and right signal, the normalized sum (M as 
in Mid) and difference signals (S as in Side) only can be transmitted. 
Enhanced MIS stereo coding is used in the multichannel AAC encoder at 
low data rates. 

The spectral components are quantized and coded with the aim of 
keeping the quantization noise below the masked threshold. This step is 
done by employing an analysis-by-synthesis stage and using additional 
noiseless compression tools. A mechanism called "bit reservoir" similar to 
the one adopted in MPEG Layer III (see also Chapter 11) allows for a 
locally-variable data rate in order to satisfy the signal demands on a frame
by-frame basis. Finally, a bitstream formatter is used to assemble the 
bitstream, which consists of the quantized and coded spectral coefficients 
and control parameters. 

The MPEG-2 AAC system supports up to 48 audio channels. Default 
configurations include monophonic, two-channel and five-channel plus LFE 
channel configurations. In the default five-channel plus LFE configuration, 
the 3/2-loudspeaker arrangement is adopted as per [lTU-R BS. 775]. In 
addition to the default configurations, sixteen possible program 
configurations can be defined in the encoder. Downmix capabilities are also 
supported [lSO/IEC MPEG NI623]. 

The sampling rates supported by the AAC system vary from 8 kHz to 96 
kHz as shown in Table 1. In Table 1 the maximum data rate per channel, 
which depends on the sampling rate and the bit reservoir buffer size of 6144 
bits per channel, is also shown. 

Table 1. MPEG-2 AAC sampling frequencies and data rates [Bosi et al. 97] 
Sampling Frequency Maximum Bit Rate per Channel (kb/s) 
(Hz) 

96000 
88200 
64000 
48000 
44100 
32000 
24000 
22050 
16000 
12000 
11025 
8000 

576 
329.2 
384 
288 
264.6 
192 
144 
132.3 
96 
72 
66.25 
48 
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3. GAIN CONTROL 

In the SSR Profile, the gain control block is added in the input stage of 
the encoder. The gain control module consists of a PQMF filter bank (see 
also Chapter 4), gain detectors and gain modifiers. The PQMF filter bank 
splits each audio channel's input signal into four frequency bands of equal 
width, which are critically sampled. Each filter bank's output has gain 
modification as necessary and is processed by the MDCT tool to produce 
256 spectral coefficients, for a total of 1024 coefficients. Gain control can be 
applied to each of the four bands independently. 

SSR gain control in the decoder has the same components as does in the 
encoder, but in an inverse arrangement. The distinctive feature of the SSR 
Profile is that lower bandwidth output signals, and hence lower sampling 
rate output signals, can be obtained by neglecting the signal from the upper 
bands of the PQMF. This leads to output bandwidths of 18 kHz, 12 kHz and 
6 kHz when one, two or three PQMF outputs are ignored, respectively. The 
advantage of this signal scalability is that decoder complexity can be reduced 
as output signal bandwidth is reduced. The gain control module in the 
encoder receives as input the time-domain signals and produces as outputs 
the gain control data and a gain modified signal whose length is equal to the 
length of the MDCT window (see also next section). The block diagram of 
the gain control tool is shown in Figure 3. 

windOw-:====] ____ JTI~~~~~~~g gain_ sequence control_ 
data 

_-+-tlPQMF 

~~~ 

L-_____ =======-______ ~ time 

Pre-processing signal 

Figure 3. MPEG-2 AAC gain control module from [Bosi et al. 97] 
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The PQMF analysis and synthesis filters are given by: 

h dnJ = tQ[nJcos( (k +t)(n +f)~) 

gdnJ = Q[n] cos( (k +t)(n -t) ~) 
o S n S 95, 0 S k S 3 
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where the coefficients of the 96-tap prototype filter Q[n] are specified in 
[ISO/IEC 13818-7], The PQMF stage is followed by the gain detector and 
modifier stages. The gain detector produces gain control data that identify 
the bands receiving gain modification, the number of modified signal 
segments, and indices indicating location and level of gain modification for 
each segment. Note that the output gain control data is for the signal of the 
previous frame, so that the gain detector has a one-frame delay. The time 
resolution of the gain control is approximately 0.7 ms at 48 kHz sampling 
rate. The step size of gain control is 2n where n is an integer between -4 and 
11, allowing the signal to be amplified or attenuated by the gain control tool. 
The gain modifier applies gain control to the signal in each PQMF band by 
applying the gain control function to the signal. 

In the decoder the gain control module is placed at the end of the 
decoding process in the SSR Profile. Post-processing performed by the gain 
control tool consists of applying gain compensation to the sequences 
produced by each of the four IMDCT stages, overlapping and adding 
successive sequences with appropriate time alignment and combining these 
sequences in the inverse PQMF, IPQMF. The block diagram of the decoder 
gain control is shown in Figure 4. Gain compensation in the decoder 
requires the following three steps for each of the PQMF bands: 

(1) Decoding of gain control data 
(2) Calculation of the gain control function 
(3) Windowing and overlap-adding. 

In decoding the gain control data, the gain modification elements are 
extracted from the bitstream elements. From this information the gain 
control function is calculated, and is used to multiply the output of the 
IMDCT. Consecutive sequences are overlapped and added with appropriate 
time alignment. Finally, the IPQMF combines the separate four frequency 
bands to synthesize the output signal. 
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Figure 4. MPEG-2 AAC decoder gain control module from [Bosi et al. 97] 

4. FILTER BANK 

A fundamental component of the MPEG-2 AAC system is the conversion 
of the time domain signals at the input of the encoder into an internal time
frequency representation and the reverse process in the decoder. This 
conversion is done by applying a time-variant MDCT and a IMDCT (see 
also Chapter 5). The transform block length N can be set to either 2048 or 
256 time samples. Since the window function has a significant effect on the 
filter-bank frequency response, the MPEG-2 AAC filter bank has been 
designed to allow a change in window shape to best adapt to input signal 
conditions. The shape of the window is determined in the encoder and 
transmitted to the decoder. 

The use of 2048 time-domain samples transform allows for high coding 
efficiency for signals with complex spectra, but it may create problems for 
transient signals. We know from Chapter 7 that quantization errors 
extending more than a few milliseconds before a transient event are not 
effectively masked by the transient itself. This leads to a phenomenon called 
pre-echo in which quantization error from one transform block is spread in 
time and becomes audible (see also Chapter 7). The MPEG-2 AAC system 
addresses this problem by allowing the block length of the transform to vary 
as a function of the signal conditions, with a block switching mechanism 
based on [Edler 89], see also Chapter 5. Signals that are quasi-stationary are 
best accommodated by the long transform, while transient signals are 
generally reproduced more accurately by short transforms. The transition 



Chapter 13: MPEG-2 AAC 341 

between long and short transforms is seamless in the sense that aliasing is 
completely cancelled in the absence of transform coefficient quantization. 

4.1.1 Filter Bank Resolution and Window Design 

As discussed in Chapter 5, the frequency resolution of an MDCT filter 
bank depends on the window function. A natural choice that satisfies the 
MDCT perfect reconstruction requirements is the sine window. This 
window produces a filter bank with good resolution for the signal spectral 
components, improving coding efficiency for signals with a dense harmonic 
content. For other types of signals, however, a window with better ultimate 
rejection may provide better coding efficiency. The KED window (see 
[Fielder et al. 96] and also Chapter 5) better satisfies this requirement. In 
AAC the window shape can be varied dynamically as a function of the 
signal. The AAC system allows seamless switching between KBD and sine 
windows while perfect reconstruction and critical sampling are preserved 
(see also Chapter 5) as shown in Figure 5. A single bit per frame is 
transmitted in the bitstream to indicate the window shape. The window 
shape is variable for the 2048-length transform blocks only. Window shape 
decisions made by the encoder are applicable to the second half of the 
window function only since the first half is constrained by the window shape 
from the preceding frame. 

Gain 
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Figure 5. MPEG-2 AAC window shape switching process from [Basi et al. 97] 
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The adaptation of the time-frequency resolution of the filter bank to the 
characteristics of the input signal is done by shifting between transforms 
whose input lengths are either 2048 or 256 samples. The 256 sample length 
for transient signal coding was selected as the best compromise between 
frequency resolution and pre-echo suppression at a data rate of around 64 
kb/s per channel. Transform block switching is an effective tool for adapting 
the time/frequency resolution of the filter bank but potentially creates a 
problem of block synchrony between the different channels being coded. If 
one channel uses a 2048 transform length and during the same time interval 
another channel uses three 256 transforms, the long blocks following the 
block switch interval will no longer be time aligned. This lack of alignment 
between channels is undesirable since it creates problems in combining 
channels during encoding and bitstream formatting/de-formatting. This 
problem of maintaining block alignment between each channel of the 
MPEG-2 AAC system has been solved as follows. During transitions 
between long and short transforms a start and stop bridge window is used 
that preserves the time domain aliasing cancellation properties of the MDCT 
and IMDCT transforms and maintains block alignment. These bridge 
transforms are designated the "Start" and "Stop" sequences, respectively. 
The conventional long transform with the 2048 sample length is termed a 
"Long" sequence, while the short transforms occur in groups called the 
"Short" sequence. The "Short" sequence is composed of eight short block 
transforms arranged to overlap 50 % with each other and have the half 
transforms at the sequence boundaries to overlap with the "Start" and "Stop" 
window shapes. This overlap sequence and grouping of transform blocks 
into Start, Stop, Long and Short sequences is shown in Figure 6. 
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Figure 6. MPEG-2 AAC block switching process from [Basi et al. 97] 
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Figure 6 displays the window-overlap process appropriate for both 
steady state and transient conditions. Curves A, B, and C represent this 
process when block switching is not employed and all transforms have a 
2048 samples and are composed of "Long" sequences only. The windowed 
transform blocks A, B, Care 50 % overlapped with each other, and 
assembled in sequential order. The lower part of the figure shows the use of 
block switching to smoothly transition to and from the shorter N = 256 time 
sample transforms that are present in the region between sample numbers 
1600 to 2496. The figure shows that short length transforms (#2 - #9) are 
grouped into a sequence of eight 50% overlapped transforms of length 256 
samples each and employing a sine function window of the appropriate 
length. The Start (#1) and Stop (#10) sequences allow a smooth transition 
between short and long transforms. The first half of the window function for 
the Start sequence, i.e. time-domain samples numbered 0 - 1023, is the either 
the first half of the KBD or sine window that matches the previous Long 
sequence window type. The next section of the window has a value of unity 
between sample numbers 1024 to 1471, then followed by a sine window. 
The sine window portion is given by the following formula: 

w[n] = Sin[~* (n -1343.5)] 
256 

where 1472 ~ n < 1600 

This region is followed by a final region with zero valued samples to 
sample number 2047. The "Stop" sequence window is the time-reversed 
version of the "Start" window and both are designed to ensure a smooth 
transition between transforms of both lengths and the proper time domain 
aliasing cancellation properties for the transforms used. For transients which 
are closely spaced, a single sequence of eight short windows can be 
extended by adding more consecutive short windows, subject to the 
restriction that short windows must be added in groups of eight. 

5. PREDICTION 

Prediction can be used in the AAC coding scheme for improved 
redundancy reduction. Prediction is especially effective in the case of 
signals presenting strong stationary components and very demanding in 
terms of data rate. Because the use of a short window in the filter bank 
indicates signal changes, i.e., non-stationary signal characteristic, prediction 
is only used for long windows. 
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For each channel, prediction is applied to the spectral components 
resulting from the spectral decomposition of the filter bank. For each 
spectral component up to 16 kHz, there is one corresponding predictor, 
resulting in a bank of predictors, where each predictor exploits the auto
correlation between the spectral component values of consecutive frames. If 
prediction is activated, the quantizer is fed with a prediction error instead of 
the original spectral component, resulting in a higher coding efficiency. 
Figure 7 shows the block diagram of the prediction unit for one single 
predictor of the predictor bank. The predictor control operates on all 
predictors of one scale factor band. In Figure 7 the REC box indicates the 
reconstruction process of the last quantized value and Q indicates the 
quantizer. (Note that the complete prediction process is shown only for 
predictor PD. 
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PREDICTOR CONTROL 
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IF (P_ON) 
Yin) = e/n) 

= xi n) . Xj.'''( n) 

IF (P_OFF) 
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'---------l _______ ~ y,(n) 

Predictor 
Side Info 

Figure 7. MPEG-2 AAC prediction unit for one scale factor band from [Basi et al. 97] 

In each predictor an estimate xest[n] of the current value of the spectral 
component x[n] is calculated from preceding reconstructed values xrec[n-l] 
and xrec[n-2]. This estimate is then subtracted from the actual spectral 
component x[n] resulting in a prediction error ern] which is quantized and 
transmitted. In the decoder, xest[n] is recreated and added to the dequantized 
prediction error that was transmitted data to create the reconstructed value 
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x,ec[n] of the current spectral component x[n]. The predictor coefficients are 
calculated from preceding recovered spectral components in the encoder as 
well as in the decoder. In this backward-adaptive approach, no additional 
side information is needed for the transmission of predictor coefficients - as 
would be required if forward adaptive predictors were to be used. 
The predictor is implemented using a lattice structure wherein two so-called 
basic elements are cascaded. The predictor parameters are adapted to the 
current signal statistics on a frame-by-frame basis, using an LMS-based 
(least mean square) adaptation algorithm. A more detailed description of the 
principles can be found in [Fuchs 95] and the implementation equations can 
be found in the standard [ISOIIEe 13818-7]. 

In order to guarantee that prediction is only used if this results in an 
increase in coding gain, an appropriate predictor control is required and a 
small amount of predictor control information has to be transmitted to the 
decoder. For the predictor control, the predictors are grouped into scale 
factor bands. The predictor control information for each frame is determined 
in two steps. First, for each scale factor band one determines whether or not 
prediction gives a coding gain and all predictors belonging to a scale factor 
band are switched on/off accordingly. Then, one determines whether 
prediction in the current frame creates enough additional coding gain to 
justify the additional bits needed for the predictor side information. Only if 
it does is prediction is activated and the side information transmitted. 
Otherwise, prediction is not used in the current frame and only one bit of 
side information is transmitted to communicate that decision. 

In order to increase the stability of the predictors and to allow defined 
entry points in the bitstream, a cyclic reset mechanism is applied in the 
encoder and decoder, in which all predictors are initialized again during a 
certain time interval in an interleaved way. The whole set of predictors is 
subdivided into 30 reset groups (Group 1: Ph P3h P6h ••• ; Group 2: P2, P32, 

P62, ••• ; ••• ; Group 30: P30, P60, ••. ) which are then periodically reset, one after 
the other with a certain spacing. For example, if one group is reset every 
eighth frame, then all predictors are reset within an interval of 8 x 30 = 240 
frames. The reset mechanism is controlled by a reset on/off bit, which 
always has to be transmitted as soon as prediction is enabled and a 
conditional five bit index specifying the group of predictors to be reset. In 
case of short windows prediction is always disabled and a full reset, i.e. all 
predictors at once, is carried out. 

The various listening tests during the development phase of the standard 
have shown that significant improvement in sound quality up to 1 grade on 
the ITU-R five-grade impairment-scale is achieved by prediction for 
stationary signals, like for example "Pitch Pipe", "Harpsichord". 
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6. QUANTIZATION AND CODING 

The primary goal of the quantization and coding stage is to quantize the 
spectral data in such a way that the quantization noise satisfies the demands 
of the psychoacoustic model. At the same time, the number of bits needed to 
code the quantized signal must be below a certain limit, normally the 
average number of bits available for a block of audio data. This value 
depends on the sampling frequency and, of course, on the desired data rate. 
In AAC, a bit reservoir gives the possibility of influencing the bit 
distribution between consecutive audio blocks on a short-time basis. These 
two constraints, fulfilling the demands of the psychoacoustic model on the 
one hand and keeping the number of allocated bits below a certain number 
on the other, are linked to the main challenges of the quantization process. 
What can be done when the psychoacoustic model demands cannot be 
fulfilled with the available number of bits? What should be done if not all 
bits are needed to meet the requirements? 

There is no standardized strategy for optimum quantization, the only 
requirement is that the bitstream produced be AAC-compliant. One possible 
strategy is using two nested iteration loops as described later in this section. 
This technique was used for the formal AAC test (see also test description 
later in this chapter). Other strategies are also possible. One important issue, 
however, is the fine-tuning between the psychoacoustic model and the 
quantization process, which may be regarded as one of the 'secrets of audio 
coding', since it requires a lot of experience and know-how. 

The main features of the AAC quantization process are: 
• Non-uniform quantization. 
• Huffman coding of the spectral values using different tables. 
• Noise shaping by amplification of groups of spectral values (so-called 

scale factor bands). The information about the amplification is stored in 
the scale factors values. 

• Huffman Coding of differential scale factors. 
The non-uniform quantizer used in AAC is described as follows (see also 

MPEG Layer III description in Chapter 11): 

ix(i) = sign(xr(i»). nint([ jxr(i)j. ]0.75 -0.0946] 
V2quant,zer _ slepslze 

The main advantage of the non-uniform quantizer is the built-in noise 
shaping depending on coefficient amplitude. The signal to noise ratio 
remains constant with a wider range of signal energy values when compared 
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to a uniform quantizer. The range of quantized values is limited to +/- 8191. 
In the above expression, quantizer_stepsize represents the global quantizer 
step size. Thus the quantizer may be changed in steps of 1.5 dB. The 
quantized coefficients are then encoded using Huffman coding. A highly 
flexible coding method allows the use of several Huffman tables for a given 
set of spectral data. Two and four-dimensional tables (signed or unsigned) 
are available. The Huffman coding process is described in detail in the next 
sections. To calculate the number of bits needed to encode the quantized 
data, the coding process has to be performed and the number of bits needed 
for the spectral data and the side information has to be computed. 

The use of a non-uniform quantizer is, of course, not sufficient to fulfill 
psychoacoustic demands. In order to fulfill the requirements as efficiently as 
possible, it is desirable to be able to shape the quantization noise in units 
similar to the critical bands of the human auditory system. Since the AAC 
system offers a relatively high frequency resolution for long blocks of 23.43 
Hz/line at 48 kHz sampling frequency, it is possible to build groups of 
spectral values which very closely reflect the bandwidth of the critical bands. 
Figure 8 shows the width of the scale factor bands for long blocks (for 
several reasons the width of the scale factor bands is limited to 32 
coefficients except for the last scale factor band). The total number of scale 
factor bands for long blocks at a sampling frequency of 48 kHz is 49. 
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Figure 8. The number of MDCT coefficients in each MPEG-2 AAC scale factor band for long 
blocks at 48 kHz sampling rate from [Bosi et al. 97) 

The inverse scale factor amplification has to be applied in the decoder. 
For this reason the amplification information, stored in the scale factors in 
units of 1.5 dB steps is transmitted to the decoder. The first scale factor 
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represents the global quantizer step size and is encoded in a PCM value 
called global_gain. All following scale factors are differentially encoded 
using a special Huffman code. This will be described in detail in the next 
sections. 

The decision as to which scale factor band has to be amplified is, within 
certain limits, left up to the encoder. The thresholds calculated by the 
psychoacoustic model are the most important criteria, but not the only ones, 
since only a limited number of bits may be used. As mentioned above, the 
iteration process described here is only one method for performing the noise 
shaping. This method is however known to produce very good audio quality. 
Two nested loops, an inner and an outer iteration loop are used for 
determining optimum quantization. The description given here is simplified 
to facilitate understanding of the process. The task of the inner iteration loop 
is to change the quantizer step size until the given spectral data can be 
encoded with the number of available bits. For that purpose an initial 
quantizer step size is chosen, the spectral data are quantized and the number 
of bits necessary to encode the quantized data is counted. If this number is 
higher than the number of available bits, the quantizer step size is increased 
and the whole process is repeated. The inner iteration loop is shown in 
Figure 9. 

Nonuniform 
quantizer 

#used bits less than 
#available bits? 

increase quantizer 
stepsize 

Figure 9. MPEG-2 AAC block diagram of the inner iteration loop from [Bosi et al. 97] 
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The task of the outer iteration loop is to amplify the scale factor bands 
(sfbs) in such a way that the demands of the psychoacoustic model are 
fulfilled as much as possible. 
1. At the beginning, no scale factor band is amplified. 
2. The inner loop is called. 
3. For each scale factor band, the distortion caused by the quantization is 

calculated (analysis by synthesis). 
4. The actual distortion is compared with the permitted distortion calculated 

via the psychoacoustic model. 
5. If this result is the best result so far, it is stored. This is important, since 

the iteration process does not necessarily converge. 
6. Scale factor bands with an actual distortion higher than the permitted 

distortion are amplified. At this point, different methods for determining 
the scale factor bands that are to be amplified can be applied. 

7. If all scale factor bands were amplified, the iteration process stops. The 
best result is restored. 

8. If there is no scale factor band with an actual distortion above the 
permitted distortion, the iteration process will stop as well. 

9. Otherwise the process will be repeated with the new amplification values. 
There are some other conditions not mentioned above which cause a 

termination of the outer iteration loop. Since the amplified parts of the 
spectrum need more bits for encoding, but the number of available bits is 
constant, the quantizer step size has to be changed in the inner iteration loop 
to decrease the number of used bits. This mechanism shifts bits from spectral 
regions where they are not required to those where they are required. For the 
same reason the result after an amplification in the outer loop may be worse 
than before, so that the best result has to be restored after termination of the 
iteration process. The outer iteration loop is shown in Figure 10. The 
quantization and encoding process for short blocks is similar to that for long 
blocks, but grouping and interleaving must be taken into account. Both 
mechanisms will be described in more detail in the next section. 
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all sfbs amplified? 

no 
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distortion? 

yes 

store best result 

G 
Figure 10. MPEG-2 AAC block diagram of the outer iteration loop from [Bosi et al. 97] 

7. NOISELESS CODING 

The input to the noiseless coding module is the set of 1024 quantized 
spectral coefficients. As a first step a method of noiseless dynamic range 
compression may be applied to the spectrum. Up to four coefficients can be 
coded separately as magnitudes in excess of one, with a value of ±1 left in 
the quantized coefficient array to carry the sign. The "clipped" coefficients 
are coded as integer magnitudes and an offset from the base of the 
coefficient array to mark their location. Since the side information for 
carrying the clipped coefficients costs some bits, this noiseless compression 
is applied only if it results in a net saving of bits. 

Noiseless coding segments the set of 1024 quantized spectral coefficients 
into sections, such that a single Huffman codebook is used to code each 
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section (the method of Huffman coding is explained in a later section). For 
reasons of coding efficiency, section boundaries can only be at scale factor 
band boundaries so that for each section of the spectrum one must transmit 
the length of the section, in terms of the number of scale factor bands it 
comprises, and the Huffman codebook number used for the section. 

Sectioning is dynamic and typically varies from block to block, so that 
the number of bits needed to represent the full set of quantized spectral 
coefficients is minimized. This is done using a greedy merge algorithm 
starting with the maximum possible number of sections each of which uses 
the Huffman codebook with the smallest possible index. Sections are 
merged if the resulting merged section results in a lower total bit count, with 
merges that yield the greatest bit count reduction done first. If the sections 
to be merged do not use the same Huffman codebook then the codebook 
with the higher index must be used. 

Sections often contain only coefficients whose value is zero. For 
example, if the audio input is band limited to 20 kHz or lower, then the 
highest coefficients are zero. Such sections are coded with Huffman 
codebook zero, which is an escape mechanism that indicates that all 
coefficients are zero and it does not require that any Huffman code words be 
sent for that section. 

If the window sequence is eight short windows then the set of 1024 
coefficients is actually a matrix of 8 by 128 frequency coefficients 
representing the time-frequency evolution of the signal over the duration of 
the eight short windows. Although the sectioning mechanism is flexible 
enough to efficiently represent the 8 zero sections, grouping and interleaving 
provide for greater coding efficiency. As explained earlier, the coefficients 
associated with contiguous short windows can be grouped so that they share 
scale factors amongst all scale factor bands within the group. In addition, 
the coefficients within a group are interleaved by interchanging the order of 
scale factor bands and windows. To be specific, assume that before 
interleaving the set of 1024 coefficients c are indexed as 

c[g][w][b][k] 

where 
g is the index on groups 
w is the index on windows within a group 
b is the index on scale factor bands within a window 
k is the index on coefficients within a scale factor band 
and the right-most index varies most rapidly. 

After interleaving the coefficients are indexed as 
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c[g][b][w][kJ 

This has the advantage of combining all zero sections due to band limiting 
within each group. 

The coded spectrum uses one quantizer per scale factor band. The step 
size of each of these quantizers is specified as a set of scale factors and a 
global gain that normalizes these scale factors. In order to increase 
compression, scale factors associated with scale factor bands that have only 
zero-valued coefficients are not transmitted. Both the global gain and scale 
factors are quantized in 1.5 dB steps. The global gain is coded as an 8-bit 
unsigned integer and the scale factors are differentially encoded relative to 
the previous frequency band scale factor value (or global gain for the first 
scale factor) and then Huffman coded. The dynamic range of the global gain 
is sufficient to represent full-scale values from a 24-bit PCM audio source. 

Huffman coding is used to represent n-tuples of quantized coefficients, 
with the Huffman code drawn from one of 12 codebooks. The spectral 
coefficients within n-tuples are ordered from low to high and the n-tuple size 
is two or four coefficients. The maximum absolute value of the quantized 
coefficients that can be represented by each Huffman codebook and the 
number of coefficients in each n-tuple for each codebook is shown in Table 
2. There are two codebooks for each maximum absolute value, with each 
representing a distinct probability distribution function. The best fit is 
always chosen. In order to save on codebook storage (an important 
consideration in a mass-produced decoder), most codebooks represent 
unsigned values. For these codebooks the magnitude of the coefficients is 
Huffman coded and the sign bit of each non-zero coefficient is appended to 
the codeword. 

Table 2. MPEG-2 AAC Huffman codebooks [Bosi et al. 97] 
Codebook Index n-Tuple size Maximum Absolute Signed Values 

Value 
0 0 
1 4 yes 
2 4 yes 
3 4 2 no 
4 4 2 no 
5 2 4 yes 
6 2 4 yes 
7 2 7 no 
8 2 7 no 
9 2 12 no 
10 2 12 no 
II 2 16 (ESC) no 
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Two codebooks require special note: codebook 0 and codebook II. As 
mentioned previously, codebook 0 indicates that all coefficients within a 
section are zero. Codebook 11 can represent quantized coefficients that have 
an absolute value greater than or equal to 16. If the magnitude of one or 
both coefficients is greater than or equal to 16, a special escape coding 
mechanism is used to represent those values. The magnitude of the 
coefficients is limited to no greater than 16 and the corresponding 2-tuple is 
Huffman coded. The sign bits, as needed, are appended to the codeword. 
For each coefficient magnitude greater or equal to 16, an escape code is also 
appended, as follows: 

escape code = <escape_prefix><escape_separator><escape_word> 

where 
<escape_prefix> is a sequence of N binary" 1 's" 
<escape_separator> is a binary "0" 
<escape_word> is an N+4 bit unsigned integer, msb first 

and N is a count that is just large enough so that the magnitude of the 
quantized coefficient is equal to 

8. BITSTREAM MULTIPLEXING 

The MPEG-2 AAC system has a very flexible bitstream syntax. Two 
layers are defined: the lower specifies the "raw" audio information while the 
higher specifies a specific audio transport mechanism. Since anyone 
transport cannot be appropriate for all applications, the raw data layer is 
designed to be parsable on its own, and in fact is entirely sufficient for 
applications such as compression for computer storage devices. The 
composition of a bitstream is shown in Table 3. 

Table 3. General structure of the MPEG-2 AAC bitstream [Bosi et al. 97) 
<stream> «transport> } <block> ( <transport> } <block> ... 
<block> [<pro!Lconfi!Lele>]<audio_ele>[ <audio_ele>][ <couplin!Lele>] [<data_ele>] 

[<fill eie>]<term ele> 

The tokens in the bitstream are indicated by angle brackets «». The 
bitstream is indicated by the token <stream> and is a series of <block> 
tokens each containing all information necessary to decode 1024 audio 
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frequency samples. Furthermore each <block> token begins on a byte 
boundary relative to the start of the first <block> in the bitstream. Between 
<block> tokens there may be transport information, indicated by 
<transport>, such as would be needed for synchronization on break-in or for 
error control. Brackets ( {} ) indicate an optional token and brackets ( [] ) 
indicate that the token may appear zero or more times. 

Since the AAC system has a data buffer that permits its instantaneous 
data rate to vary as required by the audio signal, the length of each <block> 
is not constant. In this respect the AAC bitstream uses variable-rate headers 
(header being the <transport> token). These headers are byte-aligned so as 
to permit editing of bitstreams at any block boundary. 

An example of tokens within a <block> is shown in Table 4. 

Table 4. Example of tokens within an MPEG-2 AAC <block> [Bosi et al. 97] 
Token 
pro&-config_ele 
audio_ele 

single_channel_ele 
channel_paicele 
low _freq_effects_ele 

coupling_ele 
data_ele 
fill_ele 

term ele 

Meaning 
program configuration element 
audio element, one of: 

single channel 
stereo pair 
low frequency effects channel 

multichannel coupling 
data element, segment of data stream 
fill element, adjusts data rate for constant rate 
channels 
terminator, signals end of block 

The pro~config_ele is a configuration element that maps audio channels 
to an output speaker assignment so that multichannel coding can be as 
flexible as possible. It can specify the correct voice tracks for multi-lingual 
programming and specifies the analog sampling rate. 

There are three possible audio elements: single_channel_ele is a 
monophonic audio channel, channel_paicele is a stereo pair and 
low _freq_effects_ele is a sub-woofer channel. Each of the audio elements is 
named with a 4-bit tag such that up to 16 of anyone element can be 
represented in the bitstream and assigned to a specific output channel. At 
least one audio element must be present. 

The couplin~ele is a mechanism to code signal components common to 
two or more audio channels (see also next section). 

The data_ele is a tagged data stream that can continue over an arbitrary 
number of blocks. Unlike other elements, the data element contains a length 
count such that an audio decoder can strip it from the bitstream without 
knowledge of its meaning. As with the audio elements, up to 16 distinct data 
streams are supported. 
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The fill_ele is a bit-stuffing mechanism that enables an encoder to 
increase the instantaneous rate of the compressed audio stream such that it 
fills a constant rate channel. Such mechanisms are required as, first, the 
encoder has a region of convergence for its target bit allocation so that the 
bits used may be less than the bit budget, and second, the encoder's 
representation of a digital zero sequence is so much less than the average 
coding bit budget that it must resort to bit stuffing. 

The term_ele signals the end of a block. It is mandatory as this makes 
the bitstream parsable. Padding bits may follow the term_ele such that the 
next <block> begins on a byte boundary. 

An example of one <block> for a 5.1 channel bitstream, (where the .1 
indicates the LFE channel), is 

<block> <single_channel_ele> <channel_pair_ele> 
<low _freq_effects_ele> <term_ele> 

Although discussion of the syntax of each element is beyond the scope of 
this section, all elements make frequent use of conditional components. This 
increases flexibility while keeping bitstream overhead to a minimum. For 
example, a one-bit field indicates whether prediction is used in an audio 
channel in a given block. If set to one, then the set of bits indicating which 
scale factor bands use prediction follows. Otherwise the bits are not sent. 
For additional information see [ISO/IEC 13818-7]. 

9. TEMPORAL NOISE SHAPING 

A novel concept in perceptual audio coding is represented by the 
temporal noise shaping, TNS, tool of the AAC system [Herre and Johnston 
96]. This tool is motivated by the fact that the handling of transient with 
long temporal input block filter banks presents a major challenge. In 
particular, coding of transients is difficult because of the temporal mismatch 
between masking threshold and quantization noise. 

The TNS technique permits the coder to exercise control over the 
temporal fine structure of the quantization noise even within a filter bank 
block. The concept of TNS uses the duality between time and frequency 
domain to extend predictive coding techniques. Signals with an "un-flat" 
spectrum can be coded efficiently either by directly coding spectral values or 
by applying predictive coding methods to the time signal. Consequently, the 
corresponding dual statement relates to the coding of signals with an "un
flat" time structure, i.e. transient signals. Efficient coding of transient signals 
can thus be achieved by either directly coding time domain values or by 
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applying predictive coding methods to their spectral representation. Such 
predictive coding of spectral coefficients over frequency constitutes the dual 
concept to the intra-channel prediction tool described in the previous section. 
While intra-channel prediction over time increases the coder's spectral 
resolution, prediction over frequency enhances its temporal resolution. 

If forward predictive coding is applied to spectral data over frequency, 
the temporal shape of the quantization error will appear adapted to the 
temporal shape of the input signal at the output of the decoder. This 
effectively localizes the quantization noise in time under the actual signal 
and avoids problems of temporal masking, either in transient or pitched 
signals. This type of predictive coding of spectral data is therefore referred 
to as the TNS method. 

Analysis TNS 
Filterbank ~ Filtering ~ Q 

Figure 11. MPEG-2 AAC encoder TNS from [Bosi et a!. 97] 

TNS Filtering 
Encoder Noise 
Shaping Filter 

Figure 12. MPEG-2 AAC block diagram of the TNS encoder filtering stage from [Bosi et a!. 
97] 

The TNS processing can be applied either for the entire spectrum, or for 
only part of the spectrum. In particular, it is possible to use several 
predictive filters operating on distinct frequency regions. 

The predictive encoding/decoding process over frequency can be realized 
easily by adding one building block to the standard structure of a generic 
perceptual encoder and decoder. This is shown for the encoder in Figure 11 
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and Figure 12. Immediately after the analysis filter bank an additional 
block, "TNS Filtering", is inserted which performs an in-place filtering 
operation on the spectral values, i.e., replaces the target spectral coefficients 
(set of spectral coefficients to which TNS should be applied) with the 
prediction residual. This is symbolized by a rotating switch circuitry in 
Figure 12. Both sliding in the order of increasing and decreasing frequency 
is possible. Similarly, the TNS decoding process is done by inserting an 
additional block, inverse TNS filtering, immediately before the synthesis 
filter bank (see Figure 13 and Figure 14). An inverse in-place filtering 
operation is performed on the residual spectral values so that the spectral 
coefficients are replaced with the decoded spectral coefficients by means of 
the inverse prediction (all-pole) filter. The TNS operation is signaled to the 
decoder via a TNS on/off flag, the number and the frequency range of the 
TNS filters applied in each transform window, the order of the prediction 
filter (max. 12 or 20, depending on the profile) and the filter data itself. 

~ --.... 1NS ~ ~_1 Inverse SynthesE; 

Filtering Filterbank 

Figure 13. MPEG-2 AAC decoder TNS from [Bosi et al. 97] 

Inverse TNS Filtering 

Decoder Noise 
Shaping Filter 

Figure 14. MPEG-2 AAC TNS decoder inverse filtering stage from [Bosi et al. 97] 

The properties of the TNS technique can be described as follows. The 
combination of filter bank and adaptive prediction filter can be interpreted as 
a continuously signal adaptive filter bank. In fact, this type of adaptive filter 
bank dynamically provides a continuum in its behavior between a high
frequency resolution filter bank (for stationary signals) and a low- frequency 



358 Introduction to Digital Audio Coding and Standards 

resolution filter bank (for transient signals). Secondly, the TNS approach 
permits a more efficient use of masking effects by adapting the temporal fine 
structure of the quantization noise to that of the masker signal. In particular, 
it enables a better encoding of "pitch-based" signals such as speech, which 
consist of a pseudo-stationary series of impulse-like events where traditional 
transform block switching schemes do not offer an efficient solution. 
Thirdly, the TNS method reduces the peak bit demand of the coder for 
transient signal segments by exploiting irrelevancy. Finally, the technique 
can be applied in combination with other methods addressing the temporal 
noise shaping problem, such as transform block switching and pre-echo 
control. 

During the standardization process of the MPEG-2 AAC system, the 
TNS tool demonstrated a significant increase in performance for speech 
stimuli. In particular, an improvement in quality of approximately 0.9 in the 
five-grade ITU-R impairment scale for the most critical speech item 
"German Male Speech" was shown during the AAC core experiments. 
Advantages were also shown for other transient signal (for example in the 
"Glockenspiel" item). 

10. JOINT STEREO CODING 

The MPEG AAC system includes two techniques for stereo coding of 
signals: MIS stereo coding and intensity stereo coding. Both stereo coding 
strategies can be combined by selectively applying them to different 
frequency regions. The concept of joint stereo coding in the MPEG-2 AAC 
system is discussed in greater detail in [Johnston et al. 96]. 

10.1 MIS Stereo Coding 

In the MPEG-2 AAC system, MIS stereo coding is applied within each 
channel pair of the multichannel signal, i.e. between a pair of channels that 
are arranged symmetrically on the left / right listener axis. To a large 
degree, MIS processing helps to avoid imaging problems due to spatial 
unmasking. 

MIS stereo coding can be used in a flexible way by selectively switching 
in time on a block-by-block basis, as well as in frequency on a scale factor 
band by scale factor band basis, see [Johnston and Ferreira 92]. The 
switching state (MIS stereo coding "on" or "off") is transmitted to the 
decoder as an array of signaling bits ("ms_used"). This can accommodate 
short time delays between the Land R channels, and still accomplish both 
image control and some signal-processing gain. While the amount of time 



Chapter 13: MPEG-2 AAC 359 

delay that it allows is limited, the time delay is greater than the interaural 
time delay, and allows for control of the most critical imaging issues 
[Johnston and Ferreira 92]. 

10.2 Intensity Stereo Coding 

The MPEG-2 AAC system provides two mechanisms for applying 
intensity stereo coding. The first is based on the "channel pair" concept as 
used for MIS stereo coding and implements an easy-to-use coding concept 
that covers most of the normal needs without introducing noticeable 
overhead into the bitstream. For simplicity, this mechanism is referred to as 
the AAC "intensity stereo coding" tool. While the intensity stereo coding 
tool only implements joint coding within each channel pair, it may be used 
for coding of both 2-channel as well as multichannel signals. 

In addition, a second, more sophisticated mechanism is available that is 
not restricted by the channel pair concept and allows better control over the 
coding parameters. This mechanism is called the AAC "coupling channel" 
element and provides two functionalities. First, coupling channels may be 
used to implement generalized intensity stereo coding where channel spectra 
can be shared across channel boundaries including sharing among different 
channel pairs [Davis 93]. The second functionality of the coupling channel 
element is to perform a down-mix of additional sound objects into the stereo 
image so that, for example, a commentary channel can be added to an 
existing multichannel program ("voice-over"). Depending on the profile, 
certain restrictions apply regarding consistency between coupling channel 
and target channels in terms of window sequence and window shape 
parameters, see [ISO/IEC 13818-7]. In general, the MPEG-2 AAC system 
provides appropriate coding tools for many types of stereophonic program 
material from traditional two channel recordings to 5.1 or more multichannel 
material. 

11. TEST RESULTS 

Since the first submission of AAC proposals in November 1994, a number of 
core experiments were planned and carried out to select the best performing 
tools to be incorporated in the AAC RM. The final MPEG-2 AAC system 
was tested according to the ITU-R BS.1116 specifications in September 
1996 in the five channel, full-bandwidth configuration and compared to the 
MPEG-2 BC Layer II in the same configuration [ISO/IEC MPEG NI420]. 
The formal subjective tests were carried at BBC, UK, and NHK, Japan. A 
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total of 23 reliable6 expert listeners at BBC and 16 reliable expert listeners at 
NHK participated in the listening tests. As specified by ITU-R BS.1116, the 
tests were conducted according to the triple-stimuluslhidden-reference/double
blind method using the ITU-R five-grade impairment scale (see also Chapter 
10). From the 94 submitted critical excerpts, a selection panel selected the 
ten most critical items (see Table 5). 

Table 5. MPEG-2 AAC Subjective Test Critical Items [Bosi et al. 97] 
No. 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Name 
Cast 
Clarinet 
Eliot 
Glock 
Harp 
Manc 
Pipe 
Station 
Thai 
Tria 

Description 
Castanets panned across the front, noise in surround 
Clarinet in front, theatre foyer ambience, rain in surround 
Female and male speech in a restaurant, chamber music 
Glockenspiel and timpani 
Harpsichord 
Orchestra - strings, cymbals, drums, horns 
Pitch Pipe 
Male voice with steam-locomotive effects 
Piano front left, sax in front right, female voice in center 
Triangle 

The test results, in terms of non-overlapping 95% confidence intervals 
for SDG as per ITU - R BS.1116 specifications [lTU - R BS.1116], are shown 
in Figure 15 through Figure 17. These figures show the test results for the 
following MPEG-2 AAC configurations: 
1. MPEG-2 AAC Main Profile at a data rate of 320 kb/s per five full

bandwidth channels 
2. MPEG-2 AAC LC Profile at a data rate of 320 kb/s per five full

bandwidth channels 
3. MPEG-2 Layer II BC at a data rate of 640 kb/s per five full- bandwidth 

channels. 
In Figure 15 and Figure 16 the vertical axis shows the SDG values. In 

Figure 17 the vertical axis shows the MPEG-2 AAC SDGs minus the 
MPEG-2 Layer II BC SDGs. A positive difference indicates that AAC was 
awarded a better grade than Layer II and vice versa. The MPEG-2 AAC 
test results show that the AAC system at a data rate of 320 kb/s per five full
bandwidth channels fulfils the ITU-R requirements for indistinguishable 
quality [ITU-R TG-2/3] in a BS.1116 fully compliant test. 

The AAC multichannel system at a data rate of 320 kb/s overall ranks 
higher than MPEG-2 Layer II BC at 640 kb/s (see Figure 17). In particular, 

6 Due to the very rigorous test method adopted, only statistically reliable expert listeners were 
taken into consideration in the final data analysis. A total of 32 listeners at BSC and 24 
listeners at NHK originally participated in the tests. After post-screening of the subjects, 
nine listeners at SSC and eight listeners at NHK were removed. 
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the difference between the two systems mean scores for the pitch pipe 
excerpt is more than 1.5 point in the ITU-R five-grade impairment scale 
according to the BBC data. It should be noted that the test data for MPEG-2 
Layer II BC at 640 kb/s were consistent with data obtained in previously 
conducted subjective tests [ISO/IEC MPEG N1229]. 

BBC results: AAC at 320 kbitls 
mean and 95% confidence intervals 
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Figure 15. Results of formal listening tests for MPEG-2 AAC Main Profile at 320 kb/s, five 

channel configuration from [ISOIIEC MPEG NI420]; a) BBC results, b)NHK results 
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SSC results: AAC low complexity at 320 kbitls 
mean and 95% confidence intervals 

0.5 I----------l 

-0.5 

-1 

-1.5 

-2 

-2.5 

-3 

-3.5 

-4 

0.5 

-0.5 

-1 

-1.5 

-2 

-2.5 

-3 

-3.5 

-4 

Casl 

-u-
u 

Clarinet Eliot Glock Harp Mane Pipe Station 

(a) 

NHK results: AAC low complexity at 320 kbitls 
mean and 95% confidence intervals 

,......, n n n 11 
H 11 11 .n ~ u 

Cast Clarinet Eliot Glock Harp Mane Pipe Station 

(b) 

Thai Tria 

,., 
11 U-TI 

Thai Tria 

Figure 16. Results of formal listening tests for MPEG-2 AAC LC Profile at 320 kb/s, five
channel configuration, from [ISOllEe MPEG N1420j. 
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Figure 17. Comparison between MPEG-2 AAC at 320 kb/s and MPEG-2 BC Layer II at 640 
kb/s, five-channel configuration, from [ISO/IEC MPEG N1420]; (a) BBC Results, (b) NHK 

results 

12. DECODER COMPLEXITY EVALUATION 

In this section a complexity evaluation of the decoding process in its 
Main and LC Profile configurations is presented. In order to quantify the 
complexity of the MPEG-2 AAC decoder, the number of machine 
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instructions, read/write storage locations (RAM), read-only storage locations 
(ROM) is specified for each module, see also [ISO/IEC MPEG NI712]. For 
simplicity, the assumption is made that the audio signal is sampled at 48 
kHz, 16-bits per sample, the data rate is 64 kbls per channel, and that there 
are 1024 frequency values per block. 

Two categories of the AAC decoder implementation are considered: 
software decoders running on general-purpose processors, and hardware 
decoder running on single-chip ASICs. For these two categories, a summary 
of the AAC decoder complexity is shown in Table 6. 

Table 6. MPEG-2 AAC decoder complexity [Bosi et at. 97] 
MPEG -2 AAC Configuration 
2-channel Main Profile software decoder 
2-channel LC Profile software decoder 
5-channel Main Profile hardware decoder 
5-channel LC Profile hardware decoder 

12.1 Input/Output Buffers 

Complexity 
40 % of 133 MHz Pentium 
25 % of 133 MHz Pentium 
90 sq. nun die, 0.5 micron CMOS 
60 sq. nun die, 0.5 micron CMOS 

Considering the bit reservoir encoder structure and the maximum data 
rate per channel, the minimum decoder input buffer size is 6144 bits. The 
decoder output, assuming a 16-bit PCM double-buffer system, requires a 
1024, 16-bit word buffer. The total number of 16-bit words for the decoder 
input/output buffer (RAM) is: 

384 + 1024 = 1408. 

12.2 Huffman Coding 

In order to decode a Huffman codeword, the decoder must traverse a 
Huffman code tree from root node to leaf node. Approximately 10 
instructions per bit for the Huffman decoding are required. Given the 
average of 1365 bits per blocks, the number of instructions per block is 
13653. Huffman decoding requires the storage of the tree and the value 
corresponding to the codeword. The total buffer required is a 995 16-bit 
word buffer (ROM). 

12.3 Inverse Quantization 

The inverse quantization can be done by table lookup. Assuming that 
only 854 spectral coefficients (20 kHz bandwidth) must be inverse quantized 
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and scaled by a scale factor, the 16-bit word ROM buffer is 256 words and 
the total number of instructions is 1708. 

12.4 Prediction 

Assuming that only the first 672 spectral coefficients will use prediction 
and the predictor used is a second order predictor, the number of instructions 
for predictor is 66 and the total number of instruction per block is 44352. 
Calculations can be done both in IEEE floating point and/or fixed arithmetic 
and variables are truncated to 16 bits prior to storage, see also [ISO/IEC 
MPEG N1628] and [ISO/IEC MPEG NI629]. The required storage buffer is 
4032 16-bit word. 

12.5 TNS 

In the Main Profile configuration, the TNS process employs a filter of 
order 20 operating on 672 spectral coefficients. The number of instruction 
per block is 13630. In the LC Profile configuration, the TNS process 
employs a filter of reduced order 12 with a total number of instructions per 
block of 8130. TNS requires negligible storage buffers. 

12.6 ~S Stereo 

This is a very simple module that performs matrixing on two channels of 
a stereo pair element. Since the computation is done in-place, no additional 
storage is required. Assuming that only a 20 kHz bandwidth needs the MIS 
computation, the total number of instruction for stereo pair is 854. 

12.7 Intensity Stereo 

Intensity stereo coding does not use any additional read-only or read
write storage. The net complexity of intensity stereo coding produces a 
saving of one inverse quantization per intensity stereo coded coefficient. 

12.8 Inverse Filter Bank 

The IMDCT of length 1024 requires about 20000 instructions per block 
while for the 128-point IMDCT, the total number of instructions per 8 short 
blocks is 24576. The total RAM for the filter bank is 1536 words, the total 
ROM, including window coefficients, etc., is 2270 words. The storage 
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requirement employs a word length between 16 and 24 bits depending on the 
stage of the filter bank. 

12.9 Complexity Summary 

Table 7 through Table 9 summarize the complexity of each decoder 
module based on number of instructions per block (Table 7), amount of read
write storage and amount of read-only (Table 8 and Table 9) in 16-bit words. 
The tables list complexity on a per-channel basis and for a 5-channel coder. 
Table 10 shows a complexity comparison between the MPEG-2 AAC Main 
Profile and LC Profile. 

Table 7. MPEG-2 AAC Main Profile number of instruction per block (decoder) [Bosi et al. 
97] 
AAC Tool Single Channel Five Channels 
Huffman Coding 13657 68285 
Inverse Quantization 1708 8540 
Prediction 44352 221760 
TNS 13850 69250 
MIS 1708 
1M OCT 24576 122880 
TOTAL 98143 492423 

Table 8. MPEG-2 AAC Main Profile decoder RAM (I6-bit words) [Bosi et al. 97] 
Single Channel Five Channels 

Input Buffer 384 1920 
Output Buffer 1024 5120 
Working buffer 2048 10240 
Prediction 4032 20160 
IMOCT 1024 5120 
TOTAL 8512 42560 

Table 9. MPEG-2 AAC Main Profile decoder ROM [Bosi et al. 97] 

Huffman Coding 
Inverse Quantization 
TNS 
Prediction 
IMOCT 
TOTAL 

Single Channel Five Channels 
995 
256 
24 
o 
2270 
3545 
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Table 10. MPEG-2 AAC Main Profile and LC Profile (five-channel configuration only) [Bosi 
et al. 97] 

Instructions per Block 
RAM 
ROM 

13. SUMMARY 

Main Profile 
492423 
42560 
3545 

Low Complexity Profile 
242063 
22400 
3545 

In this chapter we reviewed the features of the MPEG-2 AAC standard. 
While initially the main goals of MPEG-2 were to address low sampling 
frequencies and multichannel extensions to MPEG-l (ISO/IEC 13818-3), an 
additional multichannel work item, MPEG-2 AAC, was also developed in its 
framework. The MPEG-2 AAC (ISO/IEC 13818-7) system was designed to 
provide MPEG-2 with the best multichannel audio quality without any 
restrictions due to compatibility requirements. The AAC tools provide high 
coding efficiency through the use of a high-resolution filter bank, prediction 
techniques, noiseless coding and added functionalities. ITU-R BS.1116 
compliant tests have shown that the AAC system achieves indistinguishable 
audio quality at data rates of 320 kb/s for five full-bandwidth channels and 
provides similar or better quality than MPEG-2 Layer II BC at 640 kb/s. We 
anticipate that the MPEG-2 AAC standard will become the audio coding 
system of choice in applications where high performance at the lowest 
possible data rate is critical to the success of the application. While MPEG-
4 audio addresses speech coding and functionalities in addition to broadband 
audio coding, AAC plays an important role in this context. Before 
discussing the main features of MPEG-4 Audio, we complete our review of 
multichannel audio coding systems with the introduction of Dolby AC-3, the 
coding standard used in high definition television and DVD applications. 
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Chapter 14 

Dolby AC-3 

1. INTRODUCTION 

In Chapters 11 through 13 we discussed the goals and the main features 
of ISO/IEC MPEG-I and -2 Audio. Other standards bodies addressed the 
coding of audio based on specific applications. For example, the North 
American HDTV standard [ATSC N52110], the DVD-Video standard 
[DVD-Video] and the DVB [ETS 300421] standard all make use of Dolby 
AC-3, also known as Dolby Digital. 

The AC-3 algorithm is based on perceptual coding principles and it is 
similar in many ways to other perceptual audio coders, such as the MPEG-I 
and 2 audio systems described in previous chapters. AC-3, however, was 
conceived since its very onset as a multichannel system. Originally designed 
to address the cinema industry needs, its initial goal was the storage of 
digital multichannel audio on film. First released in 1991 with the film 
Batman Returns, AC-3 migrated from film applications to consumer 
products, following the general multichannel audio systems expansion from 
the cinema halls to the home theatres systems. Born from the design 
experience of its predecessor AC-2 [Davidson, Fielder and Antill 90.], a 
TDAC-based, single-channel coding scheme, AC-3 went through many 
stages of refinement, improvement and fine-tuning. The resulting algorithm 
is currently in use in a number of standard applications including the North 
American HDTV standard, DVD-Video, and regional DVB. 

This chapter examines the basic functionalities, features, and underlying 
fundamentals of the AC-3 algorithm, and discusses its resultant ranking 
within low bit-rate coding standardization efforts. 

M. Bosi et al., Introduction  to  Digital Audio  Coding  and Standards
© Kluwer Academic Publishers 2003
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2. MAIN FEATURES 

The AC-3 algorithm provides a high degree of flexibility with regard to 
data rate and other operational details [ATSC Al52/1 0]. One of the main 
features of AC-3 is that it processes multiple channels as a single ensemble. 
AC-3 is capable of encoding a number of audio channel configurations into a 
bitstream ranging between 32 and 640 kb/s. The decoder has the ability to 
reproduce various playback configurations from one t05.1 channels from the 
common bitstream (see also Chapter 12). The AC-3 coding schemes 
specifically supports 3/2, 3/1, 3/0, 2/2, 2/1, 2/0, and 110 channel 
configurations with an optional LFE channel [ITU-R BS.775-1]. The 
presence of the LFE channel, although not explicitly included in these 
configurations, is always an option. The sampling rates supported by AC-3 
are 32, 44.1, and 48 kHz. The frame size corresponds to 6 blocks of 512 
time-samples, or, equivalently, 1536 frequency-samples. At 48 kHz a frame 
covers a time interval of 32 ms. 

In Table 1 the different data rates adopted in AC-3 are listed. The six-bit 
bitstream variable frmsizecod conveys the encoded data rate to the decoder. 
Although each data rate is applicable to each channel configuration, in 
practice typical data rates applied for the two-channel and fi ve-channel 
configurations are 192 kbls and 384 kbls respectively. 

Table 1. AC-3 data rates [ATSC A15211 0] 
frmsizecod Data Rate (kb/s) frmsizecod Data Rate (kb/s) 

2 32 20 160 
4 40 22 192 
6 48 24 224 
8 56 26 256 
10 64 28 320 
12 80 30 384 
14 96 32 448 
16 112 34 512 
18 128 36 640 

Table 2. AC-3 channel configurations [ATSC A15211 0] 
acmod Configuration Number of Channels Channel Order 
000 1+1 2 Channel 1, Channel 2 
001 1/0 C 
010 2/0 2 L,R 
011 3/0 3 L,C,R 
100 211 3 L,R,S 
101 311 4 L,C,R,S 
110 2/2 4 L, R, SL, SR 
III 3/2 5 L, C, R, SL, SR 
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In Table 2 the different channel configurations and how they are 
identified by the three-bit variable acmod in the AC-3 bitstream are 
described. For example, acmod equal to 000 implies two independent 
channels (dual mono). For values of acmod ~ 100, the channel configuration 
includes one or more surround channels. The optional LFE channel is 
enabled by a separate variable called Ifeon (Ifeon = I implies the presence of 
the LFE channel). 

AC-3 includes provision for sending of mUltiple auxiliary data streams, 
language identifiers, copyright protection, time stamps and control 
information. Listener features include down-mixing to fewer channels than 
present in the bitstream, dialog normalization, Dolby Surround 
compatibility, visually and hearing impaired bitstreams, dynamic range 
control. 

One of the most interesting user features, the dynamic range control for 
example, allows the program provider to store control parameters that 
specify the dynamic range reduction appropriate for a particular excerpt in 
the AC-3 bitstream. In this fashion, the AC-3 encoded audio bitstream 
always retains full dynamic range, allowing the end user to choose between 
the compressed or the full dynamic range audio excerpt. The dynamic range 
control parameters are used by the decoder to alter the level of the decoded 
audio on a block-by-block basis (every 5.3 ms at a 48 kHz sample rater. 
The control parameters may indicate that the decoder gain be raised or 
lowered and are generated by a dynamic level compression algorithm which 
may be resident in the AC-3 encoder, or in a subsequent bitstream processor. 
The dynamic range control parameters have an amplitude resolution of less 
than 0.25 dB and the block to block gain variations are further smoothed by 
the gentle overlap add process lasting 5.3 ms (see also the filter bank and 
overlap and add process description in the next sections), preventing the 
audibility of gain stepping artifacts. The exact nature of the dynamic range 
control is determined by the algorithm that generates the control parameters. 
In general, however, the sound level headroom is reduced, that is loud 
sounds are brought down towards dialogue level, and quiet sounds are made 
more audible, that is brought up towards dialogue level. If the dynamic 
range compression is turned off, the original signal dynamic range will be 
reproduced. The default for the listener is to reproduce the program with 
compression as specified by the program originator. Full description of the 
AC-3 listener features are beyond the scope of this book and can be found in 
[ATSC Al52110]. 

7 In addition to the fine resolution dynamic range control described above, a coarser dynamic 
range control based on parameters passed on a frame-by-frame basis is also available. 
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3. OVERVIEW OF THE ENCODING PROCESS 

Similarly to the MPEG-I and -2 Audio coding schemes, in AC-3 achieves 
high coding gains with respect to PCM by encoding the audio signal in the 
frequency domain. A block diagram of the encoding process is shown in 
Figure 1. 

Figure 1. Block diagram of the AC-3 encoder process from [ATSC Al521lOl 

The audio input signal is grouped in blocks of 512 PCM time-samples. 
The internal dynamic range of AC-3 allows for up to 24-bit input sample 
precision. The first step in the encoder is to assess whether or not the signal 
under exam presents a transient. Depending on the nature of the input 
signal, an appropriate filter bank resolution is selected by dynamically 
adapting the filter bank block size. In steady state conditions, that is when 
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no transient is detected, 512 time-sample blocks are windowed and then 
mapped into the frequency domain via an MDCT ensuring a frequency 
resolution of 93.75 Hz at 48 kHz sampling rate. In the presence of a 
transient, the MDCT block size is reduced to 256 time-samples in order to 
increase the time resolution of the signal frequency representation. The time 
resolution in this case is 2.67 ms at 48 kHz sampling rate. 

Next, multichannel coding takes place by computing the channel 
coupling strategy, composing the coupling channel, and rematrixing the 
frequency coefficient of the signal (see next sections). 

The individual MDCT frequency coefficients are converted into a 
floating-point representation where each coefficient is described by an 
exponent and a mantissa. Based on the exponent coding strategy, each 
exponent is then encoded. The set of the coded exponents represent the 
spectral envelope of the input signal. After the exponents are encoded, the 
mantissas are quantized according to the bit allocation output. 

The bit allocation routine processes the signal spectral envelope to 
compute hearing masking curves. It applies a parametric model to define the 
appropriate amplitude precision for the mantissas. Based on control 
parameters passed in the encoded bitstream, the mantissas can be decoded 
with dither when they are allocated zero bits for quantization. 

The idea behind the dither strategy is that the reproduced signal energy 
should be maintained even if no bits are allocated. The dither strategy is 
applied on a per-channel basis and can be bypassed depending on the 
exponents accuracy and other considerations. In practice, applying dither 
can result in added audible distortion, therefore a careful monitoring of the 
resulting bitstream is required. 

Finally, the control parameters such as block switching (blksw) flags, 
coupling strategy (cplg strat) , rematrixing (remt) flags, exponent strategy 
(exps strat) , dither flags (dith flags), bit allocation parameters (bitalloc 
params) are multiplexed with the encoded spectral envelope and mantissas to 
compose the AC-3 bitstream, where each AC-3 frame corresponds to 6 
blocks of 256 frequency-samples. 

The block diagram of the decoder is shown in Figure 2. Typically the 
AC-3 bitstream is byte or 16-bit word aligned. After synchronizing the 
encoded bitstream, the decoder checks for errors and de-formats various type 
of data in the bitstream such as control parameters and encoded spectral 
envelope and mantissas. The spectral envelope is decoded to reproduce the 
exponents. 

Based on the exponent values and the bit allocation parameters 
transmitted, the bit allocation re-computes the precision of the mantissas 
representation and these data are employed to unpack and de-quantize the 
mantissas values. 
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The multichannel inverse allocation takes place (de-coupling and 
rematrixing), and the dynamic range control parameters are applied. 

The final values for the frequency coefficients of the signal are then 
inverse transformed via an IMDCT applied to 256 blocks of frequency 
samples. The decoded PCM time-samples are obtained by windowing and 
overlapping and adding the resulting samples. If required, the down-mix 
process takes place before delivering the output PCM samples. 

Main Information 

Packed Manflaaa 

U k Side Information 
Side I~fo~~ation 1-""'=:::"'::;'+"=:':-'" 

Bit AllocaUon 
Pal8meers 

mlc R Words 

Figure 2. Block diagram of the AC-3 decoder from [ATSC Al5211O] 
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4. FILTER BANK 

The filter bank used in AC-3 is based on a 512 time-sample block MDCT 
[Princen, Johnson and Bradley 87]. The input buffer is build by taking 256 
new time-samples and concatenating them to the 256 time-samples from the 
previous block, with the typical TDAC overlapping of 50% block size 
between adjacent blocks for steady state signals as we saw in Chapter 5. 
Next, the PCM samples are windowed with a normalized window derived 
from the Kaiser-Bessel window [Fielder et al. 96]. As a reminder, the KBD 
expression follows: 

n 

L w[p,a] 
p=O 
N/2 

Lw[p,a] 
p=O 

N 
O~n<-

2 

where w (p,Cl) represents the Kaiser-Bessel window kernel of length N/2 + 1 
and N equals 512. Since the KBD window is symmetrical, the remaining 
N/2 window coefficient can be derived from the first N/2 coefficients by 
starting at time N/2 and time-reversing the first N/2 coefficients. As a 
reminder, the Kaiser-Bessel kernel window, also a symmetrical window, is 
given by: 

where 

N 
o=:;o=:;-

2 

and Cl is the kernel Kaiser-Bessel window alpha factor that allows for a trade 
off between close window resolution and ultimate rejection. As we saw in 
Chapter 5, small values for Cl imply a small main lobe width for the window 
(increased close resolution), large values for a imply low side lobe levels 
(increased ultimate rejection). The KBD window is also employed in MPEG 
AAC [Bosi et al. 97] with Cl = 4 for steady state conditions and a = 6 for 
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transients. In AC-3 a is set equal to five (5). The selection of the window 
characteristics was based on the study of the shape of masking template 
curves [Fielder 87]. In particular, the frequency response of the window 
should be below the worst-case combination of all masking templates. If the 
filter bank response is below (or coincides) with the worst-case combination 
of the masking templates, the number of bits necessary to represent the 
signal can be reduced by exploiting the masking curve information. In 
Figure 3 a comparison between a 512-point sine window and the 512-point 
KBD window employed in AC-3 is shown. The target curve represents the 
combination of the worst-case masking curve derived from masking data for 
20 Hz, 50 Hz, and I kHz maskers masking narrow-band noise [Fielder et al. 
96]. While both windows faIl short of satisfying the frequency selectivity 
imposed by the masking templates, the AC-3 window is a considerably 
better match. 
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Figure 3. Filter bank resolution comparison from [Fielder et al. 961 

The MDCT operates on overlapping blocks of 512 time samples (long 
blocks) when the signal is in steady state conditions, or 256 time samples 
when the signal is transient-like (short blocks). The expressions for the 
MDCT and IMDCT, as we saw in Chapter 5, are given by: 
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N-J 

X[k] = Lx[n]w[n]cos(~(n+n()(k+t» for k=O, .. . ,N/2-1 
n~O 

and 

X[k] = -X[N-k-l] for k=N!2, ... ,N-I 

N-J 

x'[n] = ~ LX[k]cos(~ (n + no)(k +t» for n=O, ... ,N-I 
k~O 

where N= 512 in steady-state conditions and no is the phase term that ensures 
time-domain aliasing cancellation. 
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Figure 4. Typical window sequence for AC-3: top for a steady state signal and bottom for a 
transient-like signal occurring in the region between n = 256 and n = 1024 

Time versus frequency resolution trade-offs are achieved by applying 
block switching as in other coding schemes such as for example MPEG 
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Layer III [ISO/IEC 11172-3 and ISO/IEC 13818-3] or AAC [ISO/IEC 
13818-7] (see also Chapters 11 and 13). The AC-3 block-switching scheme, 
however, is closer to the AC-2A block switching-scheme [Bosi e Davidson 
92] rather than the Edler's [Edler 89] block-switching scheme (see also 
Chapter 5). In AC-3 the phase term no is not always equal to (l + N/2)/2 
where N is the current block length, but depends on the overlapping region 
between the current block m and the successive block (m +1). In the case of 
steady state signals where long blocks are utilized, the overlap region equals 
50% of the block length. In the case of transient-like signals where short 
block are utilized, the overlap region equals 50% of the long block or zero, 
that is two consecutive short windows are butted together. The phase term 
no is equal to half the amount of overlapping plus 1;2. 

A typical AC-3 window sequence is shown in Figure 4. For steady state 
conditions and for the second of the short windows, no = 257/2; for the first 
of the short windows Do = 1f2. In the presence of transients, the time 
resolution of the filter bank is increased by selecting the shorter block size. 
The transition form long to short block is achieved by simply adopting an 
asymmetrical window that has the first half equal to the long window and 
then drops to zero. The short window sequence alternates asymmetrical 
windows that have zero overlapping and 256-sample overlapping. While the 
frequency response of these windows is sub-optimal, they achieve increased 
time resolution while keeping the structure of the AC-3 coding algorithm 
very simple. In the case of short windows, exactly two blocks fit in a long 
window, keeping the filter bank, packing routines and the overall coding 
scheme simple. 

In AC-2A, a similar concept of varying the overlapping region between 
adjacent blocks is adopted to dynamically trade-off frequency versus time 
resolution in the signal representation (see also Chapter 5). In this case, 
however, asymmetrical windows always overlapping with each other are 
employed. The frequency response of these window is better than the 
frequency response of the windows used in AC-3, however, the complexity 
of the filter bank, packing and other routines is increased. In Figure 5 a 
window sequence similar to that adopted in AC-2A is shown. The long 
window is 512-point long with ex = 4; the short window is 128-point long 
with ex = 6. Time resolution for AC-2A is sharper than in AC-3 (about 1.33 
ms versus 2.67 ms at 48 kHz sampling rate). The AC-2A method also allows 
for greater flexibility in transient representation. The transition windows 
from long to short (start) and from short to long (stop) are asymmetrical and 
of size equal to 320 time-samples. In AC-2A the evenly-stacked TDAC 
[Princen and Bradley 86] transform is utilized, which alternates series of 
MDCT and modified discrete sine transforms, MDST. The phase factor no 
equals 25712 for the long and stop window, and 65/2 for the short and start 
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window. Both the transition and short AC-2A windows have a better 
frequency response than the AC-3 short windows. The non-power-of-two 
transition window, however, causes an increase in complexity in the filter 
bank as well as in other aspects of the AC-2A algorithm. Furthermore, for 
non-independent channel coding, the multichannel data alignment may cause 
problems. 
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Figure 5. AC-2A window sequence example; top for a steady state signal and bottom for a 
transient-like signal occurring in the region between n = 512 and n = 768 

4.1 Transient Detection 

In the AC-3 encoder a transient detection mechanism is utilized to assess 
the nature of the input signal and, based on this information, whether the 
filter bank and the AC-3 algorithm operate in long or short block. High-pass 
filtered version of the full-bandwidth channels are examined to detect a rapid 
surge in energy. 

Typically, abrupt increases in the signal energy at high frequencies are 
associated with the presence of an attack. If the onset of a transient is 
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detected in the second half of a long block in a certain channel, then that 
channel switches to a short block. The transient detector input is a block of 
512 time samples for each audio block; it processes the time-samples blocks 
in two steps, each operating on 256 samples. The transient detector output is 
a one-bit flag, blksw[n] for each full-bandwidth channel, which, when set to 
one, indicates the presence of a transient in the second half of the 512-point 
block for the corresponding channel. 

The transient detector presents four stages: the high-pass filter, the 
segmentation of the time samples, a peak amplitude detection for each 
segment, and the comparison of the peak values with a threshold set to 
trigger only significant changes in the amplitude values. The high-pass filter 
is implemented as an infinite impulse response filter with cut-off frequency 
equal to 8 kHz. The block of the high-passed 256 samples is then 
decomposed into a hierarchical tree whose shorter segment is 64 samples 
long. The sample with the largest magnitude is then identified for each 
segment and then compared to the threshold if there is significant change in 
level for the current block. First, the overall peak is compared to a silence 
threshold; if the overall peak is below the threshold, then the signal is in 
steady state condition and a long block is used for the AC-3 algorithm. If 
the ratio of peak values for adjacent segments exceeds a pre-defined 
threshold, then the flag is set to indicate the presence of a transient in the 
current 256-point segment. The second step follows exactly the above
mentioned stages for the second 256-point input segment and determines the 
presence of a transient in the second half of the input block. 

5. SPECTRAL ENVELOPE CODING 

Once the audio signal is represented in the frequency domain after being 
processed by the filter bank, the frequency samples or frequency coefficients 
are coded in floating point form, where each coefficient consists of a scale 
factor or exponent and a mantissa. As described in Chapter 2, the exponents 
indicate the number of leading zeros in the binary representation of a 
coefficient. The set of exponents for each audio block conveys an estimate 
of the overall spectral content of the signal. This information is often 
referred to as the spectral envelope of the signal. In coding the spectral 
envelope of the signal, AC-3 allows exponents to be represented by 5-bit 
numbers and their values vary between 0 (for the largest value coefficients 
with no leading zeroes) and 24. The AC-3 bitstream contains coded 
exponents for all independent channels, all coupled channels, and for the 
coupling (see also next section) and LFE channels (when they are enabled). 
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AC-3 spectral envelope coding aIlows for variable resolution in time and 
frequency [Todd et al. 94]. In the time domain, two or more consecutive 
block within one frame can share a common set of exponents. Since audio 
information is not shared across frames in AC-3, block 0 of every frame 
always includes new exponents for every channel. In the frequency domain, 
either one (015 mode), two (025 mode) or four (045 mode) mantissas can 
share the same exponent. The strategy for sharing exponents in the time or 
frequency domain is embedded in the encoder process and is based on the 
signal conditions. For steady state signals, while the maximum frequency 
resolution allowed is preferred (015 mode), the signal spectrum is expected 
not to vary significantly from block to block. In this case, the set of 
exponents is only transmitted for block zero and kept constant for the other 
blocks in a frame. This operation results in a substantial saving in the 
exponent representation therefore freeing up bits for mantissas quantization. 
On the other hand, for transient-like signals the signal spectrum is expected 
to vary significantly from block to block. For transient-like signals AC-3 
typicaIly transmits the set of exponents for all blocks in a frame, aIlowing 
the coded spectral envelope to follow as closely as possible the variations in 
time of the input signal. In this case, however, fine grain frequency 
resolution (for example the 015 mode) for the exponent representation is 
superfluous, therefore a saving in the bit budget can be realized by 
representing the set of exponents in a coarser frequency scale (for example 
the 025 or the 045 mode). For each frame and for any given input signal 
the exponent strategy is based on the minimization of audibility of the 
quantization noise at the target data rate. 

The exponents, with the exception of the first frequency term, are 
differentiaIly coded across frequency. The first exponent of a full-bandwidth 
or LFE channel, representing the DC term of that channel, is always coded 
as a 4-bit absolute number, with values ranging between 0 and 15. The 
differential exponents are combined into groups in the audio block. The 
grouping is done employing one of three modes, 015, 025, or 045, where 
the 015 mode provides the finest frequency resolution, and the 045 mode 
requires the least amount of data. The number of grouped differential 
exponents placed in an audio block representation for a particular channel 
depends on the exponent strategy and on the frequency bandwidth 
information for that channel. The number of exponents in each group 
depends only on the exponent strategy. 

An AC-3 audio block contains two types of fields with exponent 
information. The first type defines the exponent coding strategy for each 
channel, and the second type contains the actual coded exponents for 
channels requiring new exponent information. For independent channels, 
frequency bandwidth information is included along with the exponent 
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strategy fields. For coupled channels and the coupling channel (see also next 
section), the frequency information is found in the coupling strategy fields. 

Each differential exponent can take on one of five values: -2, -1, 0, + 1, 
+2, allowing differences of up to ± 12 dB between exponents. These values 
are then mapped to new values by adding an offset equal to +2 and further 
combined into a 7-bit unsigned integer as follows: 

where Mh Mz, and M3 are three differential, adjacent in frequency, 
exponents mapped values. In this fashion, each exponent requires an 
average of 7/3 = 2.33 bits. 

Table 3. Data rate for different exponent strategies in terms of bits needed per frequency 
coefficient 
Exponent Shared Time Interval in Terms of Number of Audio Blocks 
Strategy 

1 2 3 4 5 6 
DIS 2.33 1.17 0.78 0.58 0.47 0.39 
D25 1.17 0.58 0.39 0.29 0.23 0.19 
D45 0.58 0.29 0.19 0.15 0.12 0.10 

In Table 3 the data rate relative to different exponent strategies is shown. 
Since in the D25 or the D45 mode a single exponent is effectively shared by 
2 or 4 different mantissas, encoders must ensure that the exponent chosen for 
the pair or quad is the minimum absolute value (corresponding to the largest 
exponent) needed to represent all the mantissas. In general, the exponent 
field for a given channel in an AC-3 audio block consists of a single absolute 
exponent followed by a number of these grouped values. 

The coding of the spectral envelope in AC-3 is very different from 
coding of the spectral envelope in its predecessor, AC-2. In AC-2 the 
floating-point representation of the signal spectrum is very close to a group 
linear A-law (see also Chapter 2). First, the spectral coefficients are grouped 
into bands that simulate the auditory critical bandwidths. For each critical 
band the maximum is selected, and the exponent for this coefficient is 
selected as the exponent for the coefficients in that critical band. As a result 
of this operation the signal quantization floor level may be raised depending 
on the value of the local spectral maxima. The difference between the AC-2 
and AC-3 spectral envelope representation is shown in Figure 6 [Fielder et 
al. 96]. 
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Figure 6_ Comparison between AC-2 and AC-3 spectral envelope representation from 
[Fielder et al. 96] 

6. MULTICHANNEL CODING 

385 

As we saw in Chapter 12 and 13, the main goal of multichannel audio 
coding is to reduce the data rate of a multichannel audio signal by exploiting 
redundancy between channels and irrelevancy in the spatial representation of 
the multichannel signal while preserving the basic audio quality and the 
spatial attributes of the original signal. In perceptual audio coding, this goal 
is achieved by preserving the listener cues that influence the directionality of 
hearing [Blauert 83]. In AC-3, two techniques are adopted for multichannel 
coding. One exploits redundancies among pairs of highly correlated channel 
and it is called rematrixing. Rematrixing is based on a similar principle as 
MIS stereo coding (see also Chapter 11): sum and differences of correlated 
channel spectra are coded rather than the original channels [Johnston and 
Ferreira 92]. The other multichannel technique adopted in AC-3 is channel 
coupling (see also Chapters 12 and 13), in which two or more correlated 
channel spectra are combined together and the combined or coupled channel 
is coded and transmitted with additional side information [Davis 93]. 
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6.1 Rematrixing 

In AC-3 rematrixing is applicable only in the 2/0 mode, acmod = 010. In 
this mode, when rematrixing is applied, rather than separately coding two 
highly correlated channels, the left, L, and right, R, channel are combined 
into two new channels, L', and R', which are defined as follows: 

L' = (L+ R)12 

R' = (L - R)/2 

Quantization and packing are then applied to the L' and R' channels. In 
the decoder, the original Land R channel are derived as follows: 

L=L' +R' 

R=L' -R' 

In the case of complete correlation between the two channels, like when, for 
example, the two channels are identical, then L' is the same as Lor R, and 
R' is zero. In this case, no bits are allocated to R', allowing for an increased 
accuracy in the Land R = L' representation. 

Rematrixing is performed independently for different frequency regions. 
There are up to four frequency regions with boundaries dependent on 
coupling information. Rematrixing is never used in the coupling channels. 
If coupling and rematrixing are simultaneously in use, the highest 
rematrixing region ends at the starting of the coupling region. In Table 4 the 
frequency boundaries when coupling is not in use are shown at different 
sampling rates. 

Table 4. AC-3 rematrixing frequency regions boundaries in kHz [ATSC N521l0j 
Frequency Lower Bound Upper Bound Lower Bound Upper Bound 
Region Fs = 48 kHz Fs = 48 kHz Fs = 44.1 kHz Fs = 44.1 kHz 
1 1.17 2.3 1.08 2.11 
2 2.3 3.42 2.11 3.14 
3 3.42 5.67 3.14 5.21 
4 5.67 23.67 5.21 21.75 
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6.2 Coupling 

Channel coupling exploits the experimental findings that sound sources 
localization cues depend mostly on the energy envelope of the signal and not 
its fine temporal structure. Channel coupling can be seen as an extension of 
intensity stereo coding [Van der Waal and Veldhuis 91] as we described in 
Chapter 11, although the two technologies were derived independently. In 
AC-3 two or more correlated channel spectra (coupling channels) are 
combined together in a single channel (coupled channel) above a certain 
frequency (coupling frequency) [Davis 93]. The coupled channel is the 
result of the vector summation of the spectra of all the channels in coupling. 
In addition to the coupled channel, side information is also conveyed to the 
decoder in order to enable the reconstruction of the original channels. The 
set of side information is called coupling coordinates and consists of the 
quantized version of the power spectra ratios between the original signal and 
the coupled channel for each input channel and spectral band. The coupling 
coordinates, floating-point quantized and represented with a set of exponents 
and mantissas, are computed in such manner that they allow for the 
preservation of the original signal short-term energy envelope. 

In Figure 7 an example of channel coupling with three input channels is 
shown. For each input channel an optional phase adjustment is first applied 
to avoid phase cancellation during the summation. Next, the coupled 
channel is computed by summing all frequency coefficients above the 
coupling frequency. The power of the original channels and the coupled 
channel is then derived. In the simplified case of Figure 7 only two 
frequency bands are considered. In general the number of frequency bands 
vary between 1 and 18; typically 14 bands are considered. In Table 5 the 
allowed coupling bands are shown for a sampling rate of 48 kHz. Finally, 
the power ratios are computed to derive the coupling coordinates. As 
mentioned before coupling is only active above the coupling frequency, 
where this frequency may vary from block to block. 
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Figure 7. Example of AC-3 coupling: block diagram for three input channels from [Fielder et 
al. 96] 

Table 5. AC-3 coupling bands at a sampling rate of 48 kHz [ATSC Af52/10] 

Coupling Band Lower Bound (kHz) Upper Bound (kHz) 
o 3.42 4.55 
1 4.55 5.67 
2 5.67 6.80 
3 6.80 7.92 
4 7.92 9.05 
5 9.05 10.17 
6 10.17 11.30 
7 11.30 12.42 
8 12.42 13.55 
9 13.55 14.67 
10 14.67 15.80 
11 15.80 16.92 
12 16.92 18.05 
13 18.05 19.17 
14 19.17 20.30 
15 20.30 21.42 
16 21.42 22.55 
17 22.55 23.67 
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Coupling parameters such as the coupling frequency and which channels 
are in coupling are always transmitted in block 0 of a frame; they may also 
be part of the control information for blocks I through 5. The coupling 
coordinates dynamic range covers a range between - 132 and + 18 dB with a 
resolution varying between 0.28 and 0.53 dB. In the decoder the spectral 
coefficients corresponding to the coupling channels are derived by 
multiplying the coupling coordinates by the received coupled channel 
coefficients as shown in Figure 8. 

It should be noted that coupling is intended for use only when audio 
coding at a certain data rate and desired audio bandwidth would introduce 
audible artifacts due to bit starvation. In these cases, coupling allows for 
maintaining the coding constraints without significantly altering the original 
signal. 
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Figure 8. Example of the AC-3 de-coupling process for three input channels from [Fielder et 
al. 96] 
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7. BIT ALLOCATION 

In AC-3 a parametric bit allocation is employed in order to distribute the 
number of bits available per block to the frequency coefficients mantissas 
given a certain data rate. The AC-3 parametric bit allocation combines 
forward and backwards adaptive strategies [Davidson, Fielder and Link 94]. 
In a forward adaptive bit allocation strategy, as adopted in the MPEG audio 
coders, the allocation is computed in the encoder and then transmitted to the 
decoder. Advantages of this approach include high flexibility in the 
allocation without modifying the decoder structure. The backward adaptive 
strategy calls for a computation of the allocation in both the encoder and the 
decoder. This method was applied in the AC-3 predecessor, AC-2, bit 
allocation strategy. While loosing some flexibility, this method has the 
advantage of saving bits in the representation of the control parameters and 
therefore it frees resources that become available to encode the frequency 
mantissas. 

In AC-3 both encoder and decoder bit allocation include the core 
psychoacoustics model upon which the bit allocation is built and the 
allocation itself, therefore eliminating the need to explicitly transmit the bit 
allocation in its entirety. Only essential psychoacoustics parameters and a 
delta bit allocation, in terms of a parametric adjustment to the masking 
curves, are conveyed to the decoder. This strategy allows for an 
improvement path since these parameters are computed in the encoder only 
and don't affect the decoder structure but also minimizes the amount of 
control data to be transmitted to the decoder. 

Bit allocation parameters are always sent in block 0 and are optional in 
blocks 1 through 5. The main input to the bit allocation routine in the 
encoder and decoder is the set of the fine grain exponents that represent 
spectral envelope of the signal for the current block. Another input in the 
decoder bit allocation is represented by the optional delta bit allocation. The 
main output in the encoder and decoder bit allocation routine is a bit 
allocation array; in the encoder control parameters to be conveyed to the 
decoder are additional outputs. 

In order to compute the bit allocation, the excitation patterns are first 
derived. For each block, the exponent set is mapped to a logarithmic power
spectral density. A logarithmic addition of the power-spectral density over 
frequency bands that follow the critical band rate as defined by Flecther 
[Fletcher 40] and Zwicker [Zwicker 61] is computed (see also Chapter 6). In 
Figure 9 the band sub-division adopted in AC-3 is shown. A comparison 
with the AL2 banding structure is also shown in Figure 9. While AC-2 
banding structure approximates the critical bandwidths, AC-3 offers an 
increased resolution, its banding being closer to half critical bandwidths. 
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The excitation patterns are computed by applying a spreading function to 
the signal energy levels on a critical band by critical band basis. The 
spreading function adopted in AC-3 is derived from masking data of 500 Hz, 
1 kHz, 2kHz, and 4kHz maskers masking narrow-band noise as shown in 
Figure 10 [Fielder et al. 96]. The masking curve towards lower frequencies 
can be approximated by a single linear curve with a slope of 10 dB per band. 
Towards higher frequencies, the masking curve can be approximated by a 
two-piece linear segment curve. The slope and the vertical offset of these 
segments can be varied based on the frequency of the masking components 
to better follow the corresponding masking data. Four parameters are 
transmitted to the decoder to characterize the spreading function shape 
(namely the offset and the slope of the two segments of the spreading 
function). 
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Figure 9. AC-3 and AC-2 bit allocation spectral bandwidths versus critical bandwidths from 
[Fielder et al. 96] 

In order to capture the contribution of all masking components in the 
block of data under examination, the masking components are weighted by 
the spreading function and then combined together. This step is sometimes 
implemented as a convolution (see for example [Schroeder, Atal and Hall 
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79] and MPEG Psychoacoustic Model 2 [ISO/IEC 11172-3]). The 
convolution between the masking components of the signal and the 
spreading function can be computed via a linear recursive filter (or IIR 
filter), since its output is the result of weighed summation of the input 
samples. In this case the filter order and coefficients are determined from 
the spreading function. In AC-3 the linear recursive filter is replaced with an 
equivalent filter that processes logarithmic spectral samples. To implement 
the convolution with the two-slope spreading function, two filters are 
connected in paral\el. The computation of the excitation patterns utilizing 
IIR filters in place of a convolution results in a very efficient 
implementation, drastically reducing the complexity of the algorithm. 

Once the excitation pattern is computed, it is then offset downward by an 
appropriate amount (about 25 dB). The signal masking curve is then 
combined with the threshold in quiet by selecting the greater of the two 
masking levels for each frequency point in order to derive the corresponding 
global masked curve. 

The masking curve computation is present in both encoder and decoder. 
A number of parameters describing the masking models, however, are 
conveyed to the decoder. The shape of the spreading function, for example 
is described in the AC-3 bitstream by four parameters. In addition, optional 
improvements to the masking models can be transmitted to the decoder via 
the delta bit al\ocation. The delta bit allocation is derived from the 
difference between two masking curves calculated in paral\el in the encoder, 
where one masking curve represent the core model and is recomputed in the 
decoder and the other represents an improved version of it. 

The last step in the bit al\ocation routine is the derivation of the number 
of bits to be assigned to each frequency mantissa. The masking curve is 
subtracted to the fine-grain logarithmic spectral envelope. This difference is 
right shifted by 5 and then mapped to a vector of values, baptab, to obtain 
the final bit allocation. In Table 6 the mapping between the shifted 
difference values and the final al\ocation is shown. 

It should be noted that, in general, bit allocation strategies are based on 
the assumption that the quantization noise in a particular band is independent 
of the number of bits al\ocated in neighboring bands. While this assumption 
is reasonably well satisfied when the time-to-frequency mapping of the 
signal is performed with a high frequency-resolution, aliasing-free filter 
bank, this is not always the case. This effect is especially pronounced at low 
frequencies, where the slope of the masking curves can exceed the 
selectivity of the filter bank. For example, in the downward frequency
masking regions for tonal components with frequencies between 500 Hz -
2.5 kHz the computation of the bit allocation based solely on the differences 
between the signal spectrum levels and the masking levels may lead to 
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audible quantization noise. In AC-3, a method sometimes nicknamed "Low 
Comp" is applied in order to compensate for potential audible quantization 
noise at low frequencies due to the limited frequency resolution of the signal 
representation. In this scheme, an iterative process is applied, in which the 
noise contributions from each transform coefficient are examined and an 
appropriate word length adjustment is adopted in order to ensure that the 
quantization noise level lie below the computed masking curve. The 
adoption of the Low Comp scheme often results in the addition of one to 
three bits per frequency sample in the region of high positive slopes of the 
masking curves for low frequency or mid-range tonal maskers. The reader 
interested in a more detailed discussion of the Low Comp method should 
consult [Davidson, Fielder and Link 94]. 
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Figure 10, Comparison between the AC-3 spreading function and masking curves for 500 Hz, 
1 kHz, 2 kHz, 4kHz sinusoidal maskers from [Fielder et at. 96] 
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Table 6. AC-3 bit allocation from shifted SMR values [ATSC A/52110j 
Shifted SMR Baptab Shifted SMR Baptab Shifted SMR Bae.tab 
0 0 22 7 44 13 

23 8 45 13 
2 24 8 46 13 
3 25 8 47 14 
4 26 8 48 14 
5 1 27 9 49 14 
6 2 28 9 50 14 
7 2 29 9 51 14 
8 3 30 9 52 14 
9 3 31 10 53 14 
10 3 32 10 54 14 
11 4 33 10 55 15 
12 4 34 10 56 15 
13 5 35 11 57 15 
14 5 36 11 58 15 
15 6 37 11 59 15 
16 6 38 11 60 15 
17 6 39 12 61 15 
18 6 40 12 62 15 
19 7 41 12 63 15 
20 7 42 12 
21 7 43 13 

8. QUANTIZATION 

The mantissas are quantized according to the number of bits allocated as 
indicated in Table 7. The baptab value corresponds to a bit allocation 
pointer, bap, which describes the number of quantizer levels. Depending on 
the number of levels, the quantizer utilized in AC-3 may be symmetrical or 
asymmetrical. For levels up to 15 the quantizer is a midtread quantizer (see 
also Chapter 2). For levels above 15, i.e. 32, 64, ... , 65536, the quantizer is 
a two's complement quantizer. In addition, some quantized mantissas are 
grouped into a single codeword (see also the MPEG-l Layer II quantization 
description in Chapter 11). In the case of a three and five-level quantizer, 
bap = 1 and bap = 2 respectively, three quantized mantissas are grouped into 
a five and seven-bit codeword respectively as follows: 

bap = 1 codeword = 9 mantissa[a] + 3 mantissa[b] + mantissa[c] 

bap = 2 codeword = 25 mantissa[a] + 5 mantissa[b] + mantissa[c] 
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In the case of an eleven-level quantizer, two quantized values are grouped 
and represented by a seven-bit codeword as follows: 

bap = 4 codeword = II mantissa[a] + mantissa[b] 

Table 7 shows the correspondence between the bap value and the number of 
quantization levels and bits used to represent a single mantissa. 

Table 7. AC-3 quantizer levels [ATSC A/52/1O] 
bap Quantizer levels Mantissa bits 

0 0 0 
3 1.67 (5/3) 

2 5 2.33 (7/3) 
3 7 3 
4 11 3.5 (7/2) 
5 15 4 
6 32 5 
7 64 6 
8 128 7 
9 256 8 
10 512 9 
11 1024 10 
12 2048 11 
13 4096 12 
14 16,384 14 
15 65,536 16 

The AC-3 decoder may employ optionally a dither function when bap = 
0, i.e. the number of mantissa bits is zero. Based on the values of a one-bit 
control parameter transmitted in the AC-3 bitstream, dithflag, the decoder 
may substitute random values for mantissas with bap equal to zero. For 
dithflag equal to zero, true zero values are utilized. 

9. BITSTREAM SYNTAX 

The AC-3 bitstream consists of a sequence of frames (see Figure 11). 
Each frame contains six coded audio blocks, each of which represent 256 
new audio samples for a total of 1536 samples. A synchronization 
information header at the beginning of each frame contains information 
needed to acquire and maintain synchronization. First a synchronization 
word equal to 0000 1011 0111 0111 is transmitted. An optional cyclic 
redundancy code, CRC, word follows. This 16-bit CRC applies to the first 
5/8 of the frame. An 8-bit field synchronization information (SI) conveys 
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the sample rate code (2 bits) and the frame size code (6 bits). The SI is used 
to determine the number of two-byte words before the next synchronization 
word. The length of the above mentioned part of the bitstream (Synch word, 
CRC and SI information) is fixed and it is always transmitted for each frame. 

A bitstream information (BSI) header follows the SI, and contains 
parameters describing the coded audio service. The coded audio blocks may 
be followed by an auxiliary data (Aux) field. At the end of each frame is an 
error check field that includes a CRC word for error detection. With the 
exception of the CRC, these fields may vary from frame to frame depending 
on programming parameters such as the number of encoded channels, the 
audio coding mode, and the number of listener features . 

.__------1S36 PCM sampless---------------------. 

SYNC 
CRC 

SI BSI 
AUDIO AUDIO AUDIO AUDIO AUDIO AUDIO AUX CRC 

#1 BLOCK 0 BLOCK 1 BLOCK 2 BLOCK 3 BLOCK 4 BLOCKS DATA #2 

Figure 11. AC-3 frame structure 

The BSI field is a variable field containing parameters describing the 
coded audio services including bitstream identification and mode, audio 
coding modes, mix levels, dynamic range compression control word, 
language code, time code, etc. 

Within one frame the relative size of each audio block can be adapted to 
the signal bit demands. Audio blocks with higher bit demand can be 
weighted more heavily than other in the distribution of the bit pool available 
per frame. In addition, the rate of the AC-3 frame can be adjusted based on 
the signal demands, by changing the frame size code parameter in the SI 
field. In this fashion, variable bit rate on a short and long-term basis can be 
implemented in AC-3. This feature may prove to be very useful in storage 
applications. 

10. PERFORMANCE 

A number of tests were carried out to measure the performance of AC-3. 
One of the most recent tests and possibly one of the most interesting because 
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of its assessment in conjunction with the subjective evaluation of other state
of-the-art two-channel audio coders took place at the Communication 
Research Centre, CRC, Ottawa, Canada [Soulodre, Grusec, Lavoie and 
Thibault 98] (see Figure 12). Other codecs included in the tests were 
MPEG-2 AAC at 128 kb/s (Main Profile), MPEG Layer II at 192 kb/s and 
MPEG Layer III at 128 kb/s, and Lucent PAC [Sinha, Johnston, Dorward 
and Quackenbush 98] at 160 kb/s. At 192 kb/s AC-3 scored in average 4.5 
in the five-grade ITU-R impairment scale, i.e. the differences between the 
AC-3 coded an the original excerpts was deemed by expert listeners in the 
region of perceptible but not annoying. AC-3 at 192 kb/s together with 
MPEG-2 AAC at 128 kb/s s ranked the best among the codecs tested. 
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Figure 12. Comparison of AC-3 overall quality with MPEG-2 AAC, MPEG-2 Layer II and 
MPEG-2 Layer III from [Soulodre, Grusec, Lavoie and Thibault 98] 

11. SUMMARY 

In this chapter we reviewed the main features of the Dolby AC-3 Audio 
system. AC-3 was developed for encoding multichannel audio on film and 
later migrated to consumer applications. Dolby AC-3 is currently in use in 
the North American HDTV, DVD-Video, and regional DVB standards. 
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AC-3 is a perceptual audio coding system that allows the encoding of 
diverse audio channels format. The AC-3 algorithm presents similarities 
with its predecessor, AC-2, and other perceptual audio coding schemes such 
as MPEG-l and -2 Audio, as well as unique, distinctive approaches to audio 
coding. AC-3 data rates range from 32 kb/s to 640 kb/s, with preferred 
operational data rates at 192 kb/s in the two-channel configuration and 384 
kb/s in the five-channel configuration. User's features include downmixing 
capability, dynamic range control, multilingual services, and hearing and 
visual impaired services. 

AC-3 was tested in the stereo configuration by the CRC, Canada, during 
the subjective evaluation tests of state-of-the-art two-channel audio codecs, 
scoring in average 4.5 in the five-grade ITU-R impairment scale at 192 kb/s 
in the stereo configuration. 
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Chapter 15 

MPEG-4 Audio 

1. INTRODUCTION 

In Chapters 11, 12 and 13 we discussed the goals of the first two phases 
of the MPEG Audio standard, MPEG-I and MPEG-2, and we reviewed the 
main features of the specifications. MPEG-4 is another ISOIIEC standard 
that was proposed as a work item in 1992 [ISOIIEC MPEG N27I]. In 
addition to audiovisual coding at very low bit rates, the MPEG-4 standard 
addresses different functionalities, such as, for example, scalability, 3-D, 
synthetic/natural hybrid coding, etc. MPEG-4 became an ISOIIEC final draft 
international standard, FDIS, in October 1998 (lSO/IEC 14496 version 1), 
see for example [ISOIlEC MPEG N250I, N2506, N2502 and N2503]. The 
second version of ISO/IEC 14496 was finalized in December 1999 [ISOIIEC 
14996]. In order to address the needs of emerging applications, the scope of 
the standard was expanded in later amendments and, even currently, a 
number of new features are under development. These features will be 
incorporated in new extensions to the standard, where the newer versions of 
the standard are compatible with the older ones. 

The MPEG-4 standard targets a wide number of applications including 
wired, wireless, streaming, digital broadcasting, interactive multimedia and 
high quality audio/video. Rather than standardize a full algorithm and a 
bitstream as was done in MPEG-l and 2, MPEG-4 specifies a set of tools, 
where a tool is defined as a coding module that can be used as a component 
in different coding algorithms. Different profiles, that represent a collection 
of tools and refer to a particular application, are defined in the standard. 

MPEG-4 Audio includes, in addition to technology for coding general 
audio as in MPEG-I and 2, speech, synthetic audio and text to speech 
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interface technology. Features like scalability, special effects, sound 
manipulations, and 3-D composition are also included in the standard. 
While MPEG-1 and 2 Audio typically specify the data rate at the time of the 
encoding process, the scalability feature in MPEG-4 allows for a system data 
rate, which is, with some boundaries, dynamically adaptable to the channel 
capacity. This feature provides significant benefits when dealing with 
transmission channels with variable capacity, such as internet and mobile 
channels. 

In this chapter, a high level description of MPEG-4, its goals and 
functionalities are discussed. The development of MPEG-4 Audio is then 
presented followed by a description of the basic tools and profiles of MPEG-
4 Audio. Finally an evaluation of the audio coding tools performance is 
discussed and intellectual property management issues are introduced. 

2. MPEG-4: WHAT IS IT? 

The MPEG-4 standard specifies the coding parameters of elements of 
audio, visual, or audiovisual information, referred to as "media objects". 
These objects can be multidimensional, natural or synthetic, i.e. they can be 
recorded from natural scenes with a microphone and a video recorder or they 
can be computer-generated [Chiariglione 98]. 

For example (see Figure 1), a talking person can be represented as the 
ensemble of basic media objects such as the background image (still image 
object), the talking person without the background (video object) and that 
person's voice plus background noise (audio object). 

In addition, the MPEG-4 standard describes the composition of these 
objects to create groups of media objects that describe an audiovisual scene. 
For example, the audio object representing the person's voice can be 
combined with video object representing the talking person to form a new 
media object containing both the audio and visual components of the talking 
person and then further combined into more complex audiovisual scenes. 

MPEG-4 defines also the multiplexing and synchronization of the data 
associated with media objects, so that they can be transported over media 
channels, and it provides means for interaction with the audiovisual scene 
generated at the receiver's end. It incorporates identification of intellectual 
property and supports controlled access to intellectual property through the 
requirements specified in the "Management and Protection of Intellectual 
Property", IPMP, part of the standard [ISOIlEC 14496-1, ISOIlEC MPEG 
N2614]. 
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Figure 1. An example of an MPEG-4 scene from [ISO/lEe MPEG N4668] 

2.1 MPEG-4 Standard Document Organization 

403 

Similarly to the other MPEG standard documents, the ISO/IEC 14496 
document, "Coding of audio-visual objects", specifies the decoder process 
and bistream format. The main sections, listed below, describe the different 
parts of the standard as follows: 

ISO/IEC 14496-1: Systems 
ISOIIEC 14496-2: Visual 
ISO/IEC 14496-3: Audio 
ISOIIEC 14496-6: Delivery Multimedia Integration Framework 
ISOIIEC 14496-10 (Proposed) Advanced Video Coding 
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Part 1 of the standard describes the MPEG-4 Systems specifications. The 
Systems part of the standard specifies the tools for describing the spatial
temporal relation between the audio-visual objects in a scene. The actual 
scene is created using the binary format for scenes (BIFS) and, at a lower 
level, by defining the relations between audio-visual elementary streams 
using object descriptors. In addition, the Systems part of the standard 
specifies the MPEG-4 file format, MP4 and interfaces to different aspects of 
terminals and networks through Java application engines, MPEG-J. 

Parts 2 and 3 of the standard define a set of advanced compression tools 
for visual and audio objects, respectively. The elementary data streams 
resulting from the coding procedures described in these parts of the standard 
can be transmitted or stored separately, but eventually need to be composed 
to create the final multimedia scene. 

Part 2, Visual, supports the coding of natural images and video together 
with synthetic scenes at data rates ranging from 5 kb/s to more than 1 Gb/s. 
In addition, complexity, quality and spatio-temporal scalability is supported 
together with robustness in error prone environments. Face and body 
animation and coding of 2-D and 3-D polygonal meshes are also addressed. 

Part 3, Audio, addresses the coding of general audio, speech, synthetic 
audio, text to speech, TTS, interface, as well as additional functionalities 
such. as scalability, time/pitch shift, 3-D, and error robustness. The audio 
tools will be discussed further later in this chapter. 

Part 6 of the standard presents the Delivery Multimedia Integration 
Framework (DMIF) tools. The FlexMux tool is used to interleave mUltiple 
elementary streams into a single stream. The TransMux tool is used to map 
elementary streams onto transport streams such as the real time transport 
protocol (RTP) or MPEG-2 transport streams. 

Recently, a new video format, proposed as Part 10 of the MPEG-4 
standard, reached the final committee draft (FCD) status [lSO/IEC MPEG 
N4920]. Part 10, or Advanced Video Coding, A VC, jointly developed with 
ITU-T SG16 by the joint video team, JVT, [ISO/IEC MPEG N4400] 
addresses a new set of visual compression tools. Part 10 FCD holds the 
promise of extremely high quality video at increased complexity with 
respect to Part 2. AVC is expected to be finalized as ISO/IEC 14496-10 by 
the end of 2002. 

New extensions are currently under consideration by the MPEG-4 Audio 
standard committee [lSO/IEC MPEG N4764]: 

• Bandwidth extension - a technology that allows for the 
reconstruction of the high frequency components of an audio 
signal at the receiver side. This method significantly improves 
the compression efficiency of general audio coders [Dietz, 
Liljeryd, Kjoerling and Kunz 02]. 
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• Parametric coding at higher data rates - a tool that extends the 
capability of the harmonic individual lines and noise, HILN, 
parametric coding scheme of the standard [den Brinker, Schuijers 
and Oomen 02]. 

In addition, a call for proposals for lossless audio coding was recently 
issued by the MPEG Committee [ISO/IEC MPEG N5040]. The idea behind 
this calJ is to extend the general audio coding capability of MPEG-4 Audio 
to lossless coding. 

3. MPEG-4 AUDIO GOALS AND 
FUNCTIONALITIES 

The scope of MPEG-4 Audio is broader than the scope of MPEG-I and 2 
Audio. The different types of applications that MPEG-4 is addressing, such 
as telephony and mobile communication, digital broadcasting, internet 
networks, interactive multimedia, etc., require a high degree of coding 
efficiency together with flexible access to coded data, including access to 
subsets of coded data (i.e. scalability of the coded bitstream), and protection 
against transmission errors. Reflecting the needs of these requirements, the 
MPEG-4 Audio goals and functionalities include, in addition to highly 
efficient audio coding, the provision of speech coding to address telephony 
applications, universal access through scalability of the coded data to address 
different transmission channel requirements and robustness in error prone 
environments. Furthermore content-based interactivity through flexible 
access and manipulation of the coded data and support to synthetic audio and 
speech through the structured audio, SA, and ITS interface are addressed by 
the standard functionalities. 

Different technologies described in different parts of the audio standard 
refer to this diverse set of requirements/goals. Figure 2 shows the typical 
data rate requirements for different applications versus the bandwidth of the 
coded signals and which part of the MPEG-4 Audio standard is applicable. 
Namely, MPEG-4 addresses two basic types of audio, synthetic (ITS and 
SA) [Vercoe, Gardner and Scheirer 98, Scheirer, Lee and Yang 00] and 
natural (parametric, code excited linear predictive or CELP, general audio or 
G/A, and scalable coders) [Edler, Purnhagen and Ferekidis 96, Purnhagen 
and Meine 00, Johnston, Quackenbush, Herre and Grill 00]. The 
synchronization and mix of natural with synthetic audio is called 
SyntheticlNatural hybrid coding, SNHC. In addition, the AudioBIFS 
[Scheirer, Vaananen and Huopaniemi 99] part of the Systems BIFS 
framework allows for receiver's mixing and postproduction and 3-D sound 
presentation. 
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The TTS interface part of MPEG-4 Audio standardizes a transmission 
protocol for synthesized speech, where TTS systems translate text 
information into speech so it can be transferred through speech lines such as 
telephone lines. In addition, TTS systems can be used for services for the 
visually impaired, automatic voice response systems, etc. The data rates 
covered by the TTS systems vary between 200 bls and 1.2 kb/s. 

In the SA part of the audio standard, the delivery of synthetic audio is 
described. This capability allows for ultra-low data rates (200 bls as shown 
in Figure 2) and interactivity at the receiver end. The SA bitstream format 
specifies a set of synthesis algorithms that describe how to create the sound, 
and a set of synthesis control parameters that describe which sounds to 
create. The set of synthesis algorithms, which can generate "instruments", 
(such as real-life instruments like the flute, violin, etc., or instruments that 
reflect the sound of ocean waves, or synthetic-hybrid "instruments", etc.) is 
specified in the SA orchestra language, SAOL. The control parameters that 
govern the creation of specific sounds are specified in the SA score 
language, SASL. A format designed to represent banks of wave-tables, the 
SA audio sample bank format, SASBF, is included in the standard and was 
developed in collaboration with the musical instrument digital interface, 
MIDI, manufactures association [MIDI]. Wave-table synthesis is ideal for 
applications that don't need interaction and require low complexity structure, 
such as, for example, karaoke applications. This technology allows for the 
synthesis of a desired sound from look-up tables where particular waveform 
types are stored. In this case, extremely low data rates can be achieved. 
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Figure 2. MPEG-4 Audio data rates and target applications from [Edler 97] 

Speech signals can be coded with the MPEG-4 Audio standard by 
utilizing the parametric speech and CELP tools [Nishiguchi and Edler 02]. 
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The parametric speech coder, called also harmonic vector excitation coding, 
HVXC, achieves good quality at data rates between 2 and 4 kb/s. Lower 
data rates, such as 1.2 kb/s in average, can be achieved when variable rate 
coding is enabled. For data rates between 4 and 24 kb/s the CELP coder is 
utilized. Two sampling rates are supported, 8 and 16 kHz, where the first 
sampling rate is employed for narrow-band coding of speech and the second 
for wide-band coding of speech. 

General audio covers data rates between 6 kb/s for audio signals with 
bandwidth of 4 kHz, and 300 kb/s (or above) per channel for signals with 
bandwidths above 20 kHz for mono to multichannel audio. The work of 
MPEG-4 Audio in this area represents a continuation of the MPEG-I and 
MPEG-2 Audio work with additional tools for addressing natural audio 
source material. 

Data rate scalability allows for the data to be parsed into bitstreams of 
lower data rates that can be still decoded into a meaningful signal. 
Encoder/decoder complexity scalability allows for encoder/decoders of 
lower complexity to generate valid and meaningful bitstreams. Scalability 
works within a single MPEG-4 Audio tool, such as for example HVXC, and 
can also be applied to combinations of tools, such as, for example, with 
CELP as the base coder and other general audio coders such AAC or 
TwinVQ for the enhancement layers. 

In Figure 3 different audio objects and the combination of the elementary 
streams through a compositor are shown. The different elementary audio 
streams can be multiplexed together, and, in addition, encoded video streams 
can also be multiplexed into the same MPEG-4 bitstream. In the decoder 
stage, the bitstream is demultiplexed and each elementary stream is decoded. 
The resulting audio can be played directly or made available for scene 
composition through the AudioBIFS information. The audio composition 
tools are specified in the Systems part of the standard. In the compositor 
multiple audio streams are "mixed" to create a single track. As an example, 
let's assume we have a speaking voice over background music. One way of 
coding this signal with high quality would be to use general audio coding 
tools at 64 kb/s per channel. An alternative approach would be to code the 
speaking voice using the CELP tools at 16 kb/s per channel, and the music 
using SA tools at 2 kb/s per channel and then synchronize these two audio 
objects through the compositor. In the first case a data rate of 64 kb/s per 
channel was adopted, in the second the data rate was reduced to 18 kb/s per 
channel. For this approach to be effective for a large class of signals, the 
encoder should be able to properly separate the different components of the 
input signal. Encoder specifications and, in particular, the mechanism for 
source separation are beyond the scope of the MPEG-4 standard. 
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Theoretical work [Bregman 90] has the potential to carry the foundation to 
practical guidelines in this field. 
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Figure 3. MPEG-4 Audio structure from [Grill 97a] 

4. MPEG-4 AUDIO TOOLS AND PROFILES 

MPEG-4 Audio profiles define subsets of the MPEG-4 Audio 
functionalities appropriate for specific applications. The audio profiles are 
specified in terms of audio "object types" and audio "levels". An audio 
object type is a collection of specific coding tools that can be used together 
for a determined application. An audio level specifies how the coding tools 
can be used in a determined application in terms of the number of supported 
audio channels, the number of simultaneous audio objects in use, maximum 
allowed sampling rates, implementation complexity, and use of error 
protection. In contrast with MPEG-2 AAC where the profiles are organized 
in a hierarchical structure (with the MPEG-2 AAC main profile being a 
superset of MPEG-2 AAC SSR and LC profiles), MPEG-4 is not 
hierarchical and the profiles are defined based on useful groupings of tools 
rather than in any a priori "logical" structure. 

4.1 MPEG-4 Audio Coding Tools 

The tools utilized in MPEG-4 Audio can be grouped into the following 
categories: 
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• Speech Tools 
• General Audio Tools 
• Scalability Tools 
• Synthesis Tools 
• Composition Tools 
• Streaming Tools 
• Error Protection Tools 

The speech tools include coding tools designed specifically for speech 
coding. For example, MPEG-4 supports linear predictive (CELP) and 
parametric speech (HVCX) coding. 

The general audio tools include the basic audio coders such as MPEG-2 
AAC and transform-domain weighted interleave vector quantization, 
TwinVQ. Tools that enhance MPEG-2 AAC efficiency, such as perceptual 
noise substitution (PNS) and long term prediction (LTP) are also included. 
In addition, parametric coding of general audio signal defined in the 
harmonic and individual lines plus noise (HILN) tools are enclosed. 

The scalability tools allow for the creation and manipulation of data 
streams that can be decoded at varying data rates. Such tools let a single 
data stream to be successfully decoded over widely different bandwidths. 
For example the same bitstream can be utilized to convey music to a slow
dialup computer as well as to listeners with broadband access. 

The synthesis tools such as the SA, SASBF and MIDI tools are used in 
the creation of synthetic sounds (as opposed to the reproduction of natural 
sounds as carried out using the general audio tools). 

The composition tools are used in the creation of audio-visual scenes and 
are typically used to control the merging of one or more audio and video 
signals into a single scene. For example, the composition tools could be 
used to layer a vocal track over a background instrumental mix. Streaming 
tools allow a remote user to control the way audio signals are streamed to 
them. Although composition and streaming tools are actually defined in part 
1 of the standard (Systems), they are often referred to in the audio 
specifications. 

Finally, error protection tools permit the addition of higher error 
protection for very susceptible signals or for signals facing particularly noisy 
transmission channels. The error protection EP tool provides unequal error 
protection by applying forward error protection codes, FEC, and/or cyclic 
redundancy codes, CRC, to audio tools [ISOIlEC 14496-3]. 

The tools relevant to defining audio profiles are listed by category in 
Table 1. . 
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Table 1. Key MPEG-4 Audio coding tools 
Category Audio Tools 
Speech Code Excited Linear Prediction (CELP) 

Harmonic Vector Excitation Coding (HVXC) 
Text to Speech Interface (TTS) 

General Audio 

Scalability 
Synthesis 

Error Protection 

4.1.1 Speech 

Variable Bitrate HVXC 
Silence Compression 
MPEG-2 AAC Main 
MPEG-2 AAC Low Complexity (LC) 
MPEG-2 AAC Scalable Sampling Rate (SSR) 
Low Delay (LD) AAC 
Perceptual Noise Substitution (PNS) 
Long Term Prediction (LTP) 
Harmonic and Individual Lines plus Noise (HILN) 
TwinVQ 
Bit-Sliced Arithmetic Coding (BSAC) 
Tools for Large Step Scalability (TLSS) 
Synthetic Audio (SA) Tools 
Structured Audio Sample Bank Format (SASBF) 
MIDI 
Error Robustness Tools 

The CELP-based speech coder (see Figure 4) exploits a source model 
tailored on the vocal mechanism. It distinguishes between voiced and 
unvoiced excitation and employs linear prediction filters to simulate the 
vocal tract. The perceptual model in the CELP coder is very simple. The 
quantization noise is spectrally shaped via spectral weighing filters so that it 
has a similar shape to the input signal. MPEG-4 CELP can operate in the 
wideband or narrowband mode. The sampling rates are comprised between 
8 and 16 kHz and the data rates between 4 and 24 kb/s per channel. The 
coding delay depends on the data rate; the maximum delay for 4 kb/s per 
channel is less than 50 ms; the minimum delay for higher data rates is less 
than 15 ms. The CELP core allows for layered scalable coding and it 
performs best for speech only applications and speech with low background 
noise at low data rates. For speech only applications, the CELP tools 
showed very good results. For example, for data rates above 6 kb/s the 
CELP tools scored above 3.0 in the ITU-R five-grade impairment scale (see 
also Chapter 10) [ISOIIEC MPEG N2424]. In general, MPEG-4 speech 
coding offers great flexibility and added functionalities when compared to 
other speech coding standards such as [ITU-T G.722, G.723.1, and G.729]. 
In version 2 of the standard the CELP silence compression tool was added. 
This tool reduces the average data rate by transmitting a silence insertion 
description, SID, when a region with silence or background noise only is 
detected. 
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Figure 4. MPEG-4 eELP speech coder structure from [Edler 97] 
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The parametric coding core exploits a source model that is based upon 
the decomposition of the audio signals into individual sinusoidal 
components, harmonic sounds and noise (see also Figure 7). HVXC 
consists of parametric coding technology applied to speech signals only. It 
operates at data rates of 1.2-4 kb/s per channel at 8 kHz sampling rate. The 
minimum coding delay is less than 40 ms, and it features a layered scalable 
coding option. As for HILN (see also next section), the speed/pitch change 
functionality is an inherent functionality of this coder. The HVXC coder 
performance at 2 kb/s per channel is good for speech only and speech with 
low background noise [ISO/IEC MPEG N2424]. 

The TIS interface is standardized in MPEG-4. The TTS interface 
component supports features such as speaker age, gender, etc. and can be 
interfaced with the face animation technology. 

4.1.2 General Audio 

The general audio coding tools support data rates ranging from 6 kb/s per 
channel to several hundred of kb/s per channel [Herre and Purnhagen 02]. 
Monophonic and multichannel configurations (similarly defined as in 
MPEG-2 AAC) are supported. High quality general audio coding is 
provided in MPEG-4 Audio by including MPEG-2 AAC as a coding core 
tool and by adding tools such as PNS and LTP which are capable of 
improving the basic AAC performance. 

PNS works in conjunction with MPEG-2 AAC by identifying scale factor 
bands that consist primarily of noise and transmitting the total noise power 
rather than the individual spectral coefficients [Schulz 96, Herre and Schulz 
98]. PNS allows for a parametric description of noise-like signal 
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components. At decoding time the original noise-like spectrum in that scale 
factor band is replaced ("substituted") by pseudo-random noise with the 
appropriate signal power. The PNS tool improves the basic quality of the 
MPEG-2 AAC coder for signal containing noise-like spectral components at 
data rates below 48 kb/s per stereo channel. 

The LTP tool is a lower complexity replacement for the prediction tool 
defined in the MPEG-2 AAC Main Profile that provides comparable 
performance. Typically the LTP tool provides a 50% saving in terms of 
memory and processing utilization with respect to MPEG-2 AAC [Ojanpera 
and Vaananen 99]. 

In addition, the MPEG-4 Audio specifications allow the 
quantization/noiseless coding scheme in the MPEG-2 AAC coder to be 
replaced by either the TwinVQ [Iwakami, Moriya and Miki 95] or the bit
sliced arithmetic coding, BSAC, scheme [Park and Kim 97]. TwinVQ is a 
quantization scheme based on vector quantization that uses the same spectral 
representation as MPEG-2 AAC, yet is more effective at remaining 
intelligible at the lowest supported data rates (below 16 kb/s per channel). 
TwinVQ performs a spectral flattening and then uses two vector quantization 
codebooks to quantize the flattened spectrum based on a perceptual 
distortion measure. AAC with the TwinVQ quantization represents a 
possible core for the MPEG-4 scalable coding. BSAC represents an 
alternative for the noiseless coding stage of MPEG-2 AAC. BSAC makes 
use of an arithmetic coding scheme rather than being based on Huffman 
coding. As discussed below, BSAC allows for fine-step scalability in the 
general audio coder. 

Figure 5 and Figure 6 show block diagrams of the MPEG-4 general 
audio encoder and decoder structures. In comparison with similar block 
diagrams for MPEG-2 AAC (see Chapter 13 Figure 1 and Figure 2), notice 
the inclusion of PNS and LTP in the main coding chain and also the choices 
of using TwinVQ or BSAC instead of the standard MPEG-2 AAC 
quantization and noiseless coding in the final stage of the encode chain (and 
in the first stage of the decode chain). 

In addition to the tools shown in the figures, error robustness tools and a 
low delay (LD) version of AAC [ISO/IEC 14496-3] were included in version 
2 of the standard. The AAC LD goal is to achieve speech quality at low data 
rates and low delay (equal or less than 30 ms). AAC LD is derived from the 
AAC basic structure by reducing the frame length and filter bank delay to 
480 samples (instead of 1024), by eliminating the block switching structure 
so that there is no need for a look-ahead buffer (576 samples for AAC) and 
by reducing the use of the bit reservoir to a minimum so that no delay is 
added (instead of 74.7 ms at 48 kHz). The total algorithmic delay introduced 
by AAC LD at 48 kHz sampling rate is 20 ms (versus 129.4 of AAC). 
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Based on MPEG-4 verification tests AAC LD at data rates of 32 and 64 kb/s 
has a comparable performance to MPEG-2 AAC Main Profile at 24 and 56 
kb/s with a delay of 30 ms (versus over 300 ms) and 20 ms (versus over 140 
ms) respectively [ISOIIEC MPEG N3075]. 
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Figure 5. Block diagram of the GA non-scalable encoder from [ISOIIEC 14996-3] 
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Figure 6. Block diagram of the GA non-scalable decoder from [ISo/lEe 14996-3] 

The HILN tool was also added in the second version of the standard. 
This tool is based on parametric audio coding technology, i.e. the audio 
signals are described by utilizing some chosen model parameters rather than 
approximating the audio waveform representation as previously done in 
MPEG-l and 2. The source model is based upon the assumption of quasi
stationarity and the coexistence of pure tones, transients and noise in the 
signal under exam. The parameters selected to describe the source include 
spectral samples, frequency and amplitude of sinusoids, amplitude envelope 
and noise spectrum. In Figure 7 the basic structure of the parametric audio 
coding tool is shown. The audio signal is first decomposed into individual 



Chapter 15: MPEG-4 Audio 415 

sinusoidal components, harmonic sounds and noise. Perceptual models are 
applied in the quantization of the spectral and harmonic components 
parameters. The parameters quantization is such that the step size covers 
just noticeable differences. In addition, entropy coding is also employed. 
HILN operates at data rates of 4-16 kb/s per channel and it has a layered 
scalable coding option. The speed/pitch change functionality is an inherent 
functionality of this coder. The HILN tools extend natural audio coding at 
very low data rates. The optimal area of application for the HILN tools 
includes monophonic music signals with low content complexity for data 
rates ranging between 4 kb/s and 8 kb/s. An integrated parametric decoder, 
which includes both HILN and HVXC, allows for coding of speech and 
music at very low data rates. For example, speech plus background music 
can be encoded by using a total of 6 kb/s where 2 kb/s are utilized to code 
the speech part of the signal with the HVXC tools and 4 kb/s are utilized to 
code the music with the HILN tools. 

model based 
separation 

parameter 
estimation 

Figure 7. MPEG-4 Audio parametric audio coding (HILN) tool structure from [Edler 97] 

4.1.3 Scalability 

An important new functionality included in MPEG-4 Audio is that of 
scalability [Grill 97]. The scalability tools allow a decoder to parse out a 
subset of the bitstream and decode that into an intelligible audio signal. 
There are 2 types of scalability implemented in MPEG-4: large step 
scalability and fine grain scalability. Large step scalability was implemented 
in version 1 of MPEG-4 Audio and allows for creating an audio bitstream 
that can be grouped into a small number of subsets of differing data rates. 
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Large step scalability is implemented in a cascaded encoding approach 
wherein the audio signal is first encoded at the lowest desired data rate and 
then the differences between the coded signal and the original signal are then 
encoded in subsequent stages using additional bits (see Figure 8). The 
decoder can then decide how many stages it can handle and parse out the 
appropriate portion of the bitstream to decode. The scalable coder structure 
may include AAC only, TwinVQ only or a combination of AAC and 
TwinVQ. Typically the large step scalability size is 8 kb/s or larger. 
Scalable coder combinations such as 6 kb/s per channel CELP or Twin VQ 
combined with 18 kb/s per channel AAC were successfully tested and scored 
slightly below 4.0 versus AAC at 24 kb/s per channel, which scored slightly 
above 4.0 (see also Table 10) [ISO/IEC MPEG N2276]. 

Notice how the scalability is predefined in "large steps" with each step 
corresponding to the use of an additional coding stage - this is in contrast to 
the fine grain scalability approach included with the addition of the BSAC 
tool in version 2 of MPEG-4 Audio. The BSAC tool layers the quantized 
frequency-domain audio samples in order of the significance of the bits in 
their representation, allowing for only subsets of the spectrum sample bits to 
be used in the decode stage for a lower precision copy of the original audio 
signal. In this manner, the BSAC tool allows for scalability changes in steps 
of 1 kb/s per channel as it decides to include or exclude particular layers of 
the quantized spectrum. BSAC performance varies between 4.4 at 96 kb/s 
per stereo channel and 3.0 at 64 kb/s per stereo channel (see also Table 10) 
[ISO/IEC MPEG N3075]. 

Input 
Audio 
Signal 

~ 
;1 Stage I Coder 1 

low Data Rate &'coding .... 
[4 
~ 
I\) 

a 
-""!I Stage 2 Coder : 

Additional Delail 

~ s .... 
~ 

~ I 'YelMore Detail (1) 

Stage 3 Coder I :>< 
(1) 
'"1 

Figure 8. MPEG-4 Audio approach to large step scalable encoding 

r- Output 
Bitstream 



Chapter 15: MPEG-4Audio 417 

4.2 MPEG-4 Audio Object Types 

MPEG-4 Audio is based on groups of pre-defined "object types" that 
define sets of functionality that can be used together. Table 2 shows the 
object types included in the GA coder structure and the tools available to 
those types. 

Table 2. MPEG-4 Audio tools and object types [ISO/IEC 14496-3, ISO/IEC MPEG N4979) 

3: 3: 
'" 3: en '" a '" en en a 

Tools ~ a N N >-

Object Type 

Null 

AAC main 

AACLC 

AAC SSR 

AAC LTP 

SBR 
AAC Scalable 

TwinVQ 

CELP 

HVXC 

TTSI 

Main Synthetic 

Wave table Synth. 

General MIDI 

>- >- ..., C/l 

n >- >- :;: >- C/l n ..., S n :r: >- to 
3: n < :4 -I 3: C/l C/l '" r r en 0 C/l 
e? r C/l Z -I C/l < r X ~ to § >-
" n '" C/l '" C/l 0 '" n ~ "r1 n 

X 

I---i--l-'+-'-~"- ?C.f- f-. _ ~._i t!--j--j~f-I--I 
~r-+-~_~~4-~i~X~-+-+-+-+~--4r-I--r-+-+-~..., 
1---1---1-f-il.......Jf.----1-' ~- -x f .. · .. _.+--.-J .... {--+ .. - .- .. - '''''1-

AlgSynthl AudFX 1--+-+---+-+-++-+---+-+-+: ..:,:X'-+_+-+-+---+-+-+i----l---Cf-1 

E~~~~:, --~--~xx+l I t,-::-:=Ifr~, 
::: ~;~~Q ......... --1["-' _+rt_nj1-
~: ~:~pLD..._. ~?'. X. I...... I.?' ... x ~ 
~: :~~C ...... _.I·-f- X+.+++ /. +X i ....... ~.=ffi=l 
ER Parametric] .................... 1 .. L~, ........... ..L~ X 

The MPEG-4 AAC Main, MPEG-4 AAC Low Complexity (LC), and 
MPEG-4 AAC Scalable Sampling Rate (SSR) object types all include the 
same tools contained in the corresponding MPEG-2 AAC Main, LC and 
SSR profiles with the addition of the PNS tool. The MPEG-4 AAC LTP 
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object type is equivalent to the MPEG-4 AAC LC object type withthe 
addition of the LTP tool. The TwinVQ object type contains the TwinVQ 
and LTP tools. In conjunction with AAC, it operates at lower data rates with 
respect to AAC, supporting mono and stereo sound. 

Error resilient bitstream reordering allows for the use of unequal error 
protection. In addition to object types described above, the following error 
resilient, ER, object types are included in the GA description: ER AAC LC, 
ER AAC LTP, ER BSAC, ER TwinVQ, ER AAC LD. 

The AAC Scalable object type allows a large number of scalable 
combinations including combinations with TwinVQ and CELP coder tools 
as the core coders. It supports only mono or 2-channel stereo sound. It 
contains the AAC LTP object plus TLSS. The ER AAC Scalable object 
type includes error resilient tools. 

The CELP object type supports 8 kHz and 16 kHz sampling rates at bit 
rates from 4 to 24 kb/s. CELP bitstreams can be coded in a scalable way 
using bit rate scalability and bandwidth scalability. ER CELP also includes 
error resilient tools and silence compression tools. 

The HVXC object type provides a parametric representation of 8 kHz, 
mono speech at fixed data rates between 2 and 4 kb/s and below 2 kb/s using 
a variable data rate mode, supporting pitch and speed changes. ER HVXC 
also contains error resilient tools. 

In addition to the HVXC technology for the parametric speech coding, 
the HILN parametric coding tools were added in version 2 of the standard. 
The ER HILN object type includes error resilience tools. The ER 
Parametric object type combines the functionalities of the ER HILN and 
ER HVXC objects. Only monophonic channels and sampling rates of 8 kHz 
are supported in this configuration. 

The TTS interface object type gives an extremely low data rate phonemic 
representation of speech. While the specific TTS technology is not 
specified, the interface is fully defined. Data rates range from 0.2 to 1.2 kb/s. 

Additional object types are specified for synthetic sound. The Main 
Synthetic object type includes all MPEG-4 SA tools, namely SAOL, 
SASBF, etc. Sound can be described without input until it is stopped by an 
explicit command and up to 3-4 kb/s. The Wavetable Synthesis object type 
is a subset of the Main Synthetic object type, making use of the SASBF 
format and MIDI tools. The General MIDI object type provides 
interoperability with existing content. The Algorithmic Synthesis and 
AudioFX object type provides SAOL-based synthesis capabilities for very 
low data rate terminals. 

Finally, the NULL object type provides the possibility to feed raw PCM 
data directly to the MPEG-4 audio compositor in order to allow mixing in of 
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local sound at the decoder. This means that support for this object type is in 
the compositor. 

Although not yet officially included in the standard specifications, the 
spectral band replication, SBR, tool and object type are also shown in Table 
2 [ISO/IEC MPEG N4764]. SBR is based on bandwidth extension 
technology, currently under consideration by the MPEG Audio Committee. 
The bandwidth extension tool, SBR, replicates sequences of harmonics 
contained in the bandwidth-limited encoded signal representation and is 
based on control data obtained from the encoder [Dietz, Liljeryd, Kjoerling, 
Kunz 02]. The ratio between tonal and noise-like components is maintained 
by adaptive inverse filtering as well as addition of noise and sinusoidal 
components. Once formally approved by the standard bodies, the SBR tool 
will be included in AAC Main, LC, SSR, L TP and in ER AAC LC and LTP. 
SBR allows for compatibility with earlier versions of these tools. 

4.3 Profiles 

The following eight MPEG-4 Audio profiles are specified by the standard 
(see Table 3): 

• Main- It encompasses all MPEG-4 Audio natural and synthetic objects, 
with the exception of the error correction objects. 

• Scalable- It includes all the audio objects contained in the main profile 
with the exception of MPEG-2 AAC Main and SSR and SA. It allows 
for scalable coding of speech and music and it addresses transmission 
methods such as internet and digital audio broadcasting. 

• Speech- It includes the CELP, HVXC and TTS interface objects. 
• Synthesis- It contains all SA and TTS interface objects and provides the 

capability to generate audio and speech ay very low data rates. 
• Natural- It encompasses all the natural audio coding objects and 

includes TTS interface and error correction tools. 
• High Quality- It includes the AAC LC object plus LTP, the AAC 

scalable and CELP objects; in this profile, there is the option of 
employing the error resilient tools for the above-mentioned objects. 

• Low Delay- It includes AAC LD plus CELP, HVXC, with the option of 
using the ER tools, and TTS interface objects. 

• Mobile Audio Internetworking (MAUI)- It includes ER AACLC, ER 
AAC scalable, ER Twin VQ, ER BSAC and ER AAC LD. This profile 
is intended to address communication applications using speech coding 
algorithms and high quality audio coding. 

Two additional audio profiles, the Simple Audio Profile, which contains the 
MPEG-4 AAC LC tools but works at sampling rates up to 96 kHz, and the 
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Simple SBR Audio Profile are currently under consideration [ISo/lEe 
MPEG N4764 and N4979]. The Simple SBR Profile is equivalent to the 
Simple Profile with the addition of the SBR object. The conformance 
specifications of the MPEG-4 standard are tailored around the different 
profiles. 

Table 3. MPEG-4 Audio profiles [ISOIIEe 14496-3. ISOllEe MPEG N4979. ISOIIEe 
MPEGN4764] 
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4.3.1 Levels 

Profiles may specify different levels that differ with respect to the 
number of channels, sampling rates, and simultaneous audio objects 
supported; their implementation complexity; and whether or not they make 
use of the error protection (EP) tool. Table 4 through Table 7 show the main 
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characteristics of the level descriptions for the some of the relevant profiles 
associated with general audio coding. In these tables, complexity limits are 
shown both in terms of processing required approximated in pev or 
"processor complexity units", which specify an integer number of MOPS or 
"Millions of Operations per Second" and in memory usage approximated in 
ReV or "RAM complexity units" which specify an integer number of 
kWords. 

Table 4. High Quality Audio Profile Levels [ISO/IEC 14496-3] 
Level Maximum Maximum Maximum Maximum EPTool 

number of Sampling PCU ReU Present 
channels/object Rate (kHz) 

2 22.05 5 8 No 
2 2 48 10 8 No 
3 5.1 48 25 12 No 
4 5.1 48 100 42 No 
5 2 22.05 5 8 Yes 
6 2 48 10 8 Yes 
7 5.1 48 25 12 Yes 
8 5.1 48 100 42 Yes 

Table 5. Low DelayAudio Profile Levels [ISO/IEC 14496-3] 
Level Maximum Maximum Maximum Maximum EPTool 

number of Sampling PCU RCU Present 
channels/object Rate (kHz) 

1 8 2 No 
2 16 3 1 No 
3 1 48 3 2 No 
4 2 48 24 12 No 
5 8 2 Yes 
6 16 3 1 Yes 
7 I 48 3 2 Yes 
8 2 48 24 12 Yes 

Table 6. Natural Audio Profile Levels [ISO/IEC 14496-3] 
Level Maximum Sampling MaximumPCU EP Tool Present 

Rate (kHz) 
1 48 20 No 
2 96 100 No 
3 48 20 Yes 
4 96 100 Yes 
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Table 7. MAUl Audio Profile Levels [ISO/IEC 14496-3] 
Level Maximum Maximum Maximum Maximum Maximum EP Tool 

number of number of Sampling PCV RCV Present 
channels objects Rate (kHz) 

1 1 24 2.5 4 No 
2 2 2 48 10 8 No 
3 5.1 48 25 12 No 
4 1 1 24 2.5 4 Yes 
5 2 2 48 10 8 Yes 
6 5.1 48 25 12 Yes 

In addition, the Simple and Simple SBR profiles levels are shown in 
Table 8 and Table 9. 

Table 8. Sim~le Audio Profile Levels [ISO/IEC MPEG N4764] 
Level Maximum number Maximum MaximumPCU MaximumRCU 

of channels/objects Sampling 
Rate (kHz) 

1 2 24 3 5 
2 2 48 6 5 
3 5 48 19 15 
4 5 96 38 15 

Table 9. Sim~le SBR Audio Profile Levels [ISOIIEC MPEG N4979] 
Level Maximum number MaximumAAC Maximum SBR 

of channels/objects Sampling Rate (kHz) Sampling Rate (kHz) 
1 2 24 24 
2 2 48 48 
3 5 48 48 
4 5 96 48 

s. MPEG-l AND 2 VERSUS MPEG-4 AUDIO 

We saw in Chapters 11-13 how MPEG-I and -2 approach audio coding 
based on the removal of redundancies and irrelevancies in the original audio 
signal. The removal of redundancies is based on the frequency 
representation of the signal, which is in general more efficient than its PCM 
representation given the quasi-stationary nature of audio signals. In 
addition, the removal of redundancies is based on models of human 
perception like, for example, psychoacoustic masking models. In this 
approach, by additionally removing irrelevant parts of the signal, high 
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quality audio at low data rates is typically achieved. General-purpose audio 
codecs such as MPEG-1 and 2 audio codecs provide very high quality output 
for a large class of audio signals at data rates of 128 kb/s or below. 

Before perceptual audio coding reached maturity, a number of coding 
schemes based on removal of redundancies only, such as prediction 
technologies, were developed. These codecs try to model the source as 
precisely as possible in order to extract the largest possible amount 
redundancies. For speech signals, CELP codecs model the vocal tract and 
work well at data rates of 32 kb/s or below. However, they show serious 
problems with signals that don't precisely fit the source models, for example 
music signals. While MPEG-1 and 2 Audio is sub optimal for speech 
signals, CELP coders are unable to properly code music signals. One 
possible solution to this problem is to restrict the class of signals in input to a 
certain type of codec. Another possible solution is to define a useful 
combination of different codec types. Given the wide scope of its 
applications, MPEG-4 adopted the second approach. 

The MPEG-4 Audio encoder structure is shown in Figure 9. As we saw 
in the previous sections, three types of algorithms can be found: 

Coding based on time/frequency mapping (TIF), like MPEG- I, 
MPEG-2 audio, which represents the basic structure of the GA 
tools. The foundation of this type of coding is MPEG-2 AAC. 
As we saw in previous sections, additional tools that enhance the 
codec performance and efficiency at very low data rates are also 
included. 
Coding based on CELP, like for example in the ITU-T G.722, 
G.723.1 and G. 729 coders. The MPEG-4 CELP codec exploits 
a source model based on the vocal tract mechanism like the ITU
T speech codecs, but it also applies a simple perceptual model 
where the quantization noise spectral envelope follows the input 
signal spectral envelope. 
Coding based on parametric representation (PARA). This coding 
technique in addition to allow for added functionalities such as 
pitch/time changes and volume modifications, tends to perform 
better than CELP (HVXC) for very low data rates speech signals 
and the T/F scheme (HILN) for very low data rates music signals 
containing single instruments with a large number of harmonics. 

Separate coding depending on the characteristics of the input signal can 
improve the performance of the overall codec if in the encoder stage an 
appropriate algorithm selection, manual or automatic, takes place. 
Unfortunately the MPEG-4 standard does not specify the encoder operations 
other than in an informative part of the standard. Automatic signal analysis 
and separation possibly allows for future optimization of the encoder stage. 
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Figure 9. MPEG-4 Audio encoder structure from [Edler 97] 

bit 
stream 

The MPEG-4 audio bitstream represents also a departure from the 
MPEG-l or 2 fashion of representing the compressed signal, i.e. there is no 
multiplex, no synch word, etc. MPEG-4 audio only defines setup 
information packets and payload for each coder. MPEG-4 Systems specifies 
"Flex-Mux" to cover multiplex aspects of MPEG-4 functionalities, such as 
for example scalability. An MPEG-4 file (.MP4) format is also described in 
the Systems specifications. 

6. THE PERFORMANCE OF THE MPEG-4 AUDIO 
CODING TOOLS 

The primary goal of the MPEG-4 verification tests was to evaluate the 
subjective performance of specific coding tools operating at a certain data 
rate. To better enable the evaluation of MPEG-4, several coders from 
MPEG-2 and ITU-T were included in the tests. The subjective performance 
of some the MPEG-4 tools is summarized in terms of the ITU-R five-grade 
impairment scale in Table /0 [ISO/IEC MPEG N4668] along with the 
performance of comparable technology such as MPEG-2, ITU-T G.722 and 
G.723. The reader interested in knowing the details of the audio tests 
conditions and results should consult [Contin 02]. 
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Table 10. MPEG-4 Audio coding tools subiective Eerformance [ISO/IEC MPEG N4668] 
Coding Tool Number of Data Rate Grading Scale Typical 

Channels Qualit~ 

AAC 5 320 kb/s Impairment 4.6 
95 MPEG-2 LII BC 5 640 kb/s Impairment 4.6 
AAC 2 128 kb/s Impairment 4.8 
AAC 2 96 kb/s Impairment 4.4 
MPEG-l Lli 2 192 kb/s Impairment 4.3 
MPEG-l LIII 2 128 kb/s Impairment 4.1 
AAC 24 kb/s Quality 4.2 
CELP/AAC scal. 6 kb/s+ 18 kb/s Quality 3.7 
TwinVQ/AAC scal. 6 kb/s+ 18 kb/s Quality 3.6 
AAC 18 kb/s Quality 3.2 
G.723 6.3 kb/s Quality 2.8 
Wideband CELp8 1 18.2 kb/s Quality 2.3 
BSAC 2 96 kb/s Quality 4.4 
BSAC 2 80 kb/s Quality 3.7 
BSAC 2 64 kb/s Quality 3.0 
AAC-LD (20ms) 64 kb/s Quality 4.4 
G.722 32 kb/s Quality 4.2 
AAC-LD (30ms) 32 kb/s Quality 3.4 
Narroband CELP 6 kb/s Quality 2.5 
Twin VQ 6 kb/s Quality 1.8 
H1LN 16 kb/s Quality 2.8 
HILN 6 kb/s Qualit~ 1.8 

7. INTELLECTUAL PROPERTY AND MPEG-4 

Recognizing at an early stage of the development of MPEG-4 that one of 
the biggest potential impediment for a wide adoption of a standard is the 
clearance of the intellectual property implicated, part of the MPEG-4 
Systems specifications are devoted to the identification of intellectual 
property involved in its implementation. In order to identify intellectual 
property in the MPEG-4 media objects, MPEG-4 developed the intellectual 
property management and protection (IPMP) [ISO/lEe MPEG N2614]. 
MPEG-4 target applications range from low data rate internet telephony to 
high fidelity video and audio. Anyone can develop applications based on 
any needed subset of MPEG-4 profiles. The level and type of protection 
may vary dramatically depending on the content, complexity, and associated 
business models. In addition, the traditional business model of paying once 
for hardware devices and then having the associated royalties managed by 
the device manufacturer is less attractive for software implementations of 
MPEG-4 clients. While MPEG-4 does not standardize IPMP systems, it 

8 The data shown reflect test results for both speech and music signals. 
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does standardize the IPMP interface as a simple extension to the MPEG-4 
systems architecture via a set of descriptors and elementary streams (lPMP
D and IMPM-ES). 

In addition to the work of ISO/IEC WG lion MPEG-4, the MPEG-4 
Industry Forum, M4IF, was established in order to "further the adoption of 
the MPEG-4 standard, by establishing MPEG-4 as an accepted and widely 
used standard among application developers, service providers, content 
creators and end users" [M4IF]. Currently licensing schemes for MPEG-4 
AAC are available through Dolby Laboratories [AAC Audio] and for 
MPEG-4 Visual and Systems through MPEG LA, LLC [M4 Visual and 
Systems]. 

8. SUMMARY 

In this chapter we reviewed the main features of the MPEG-4 Audio 
standard. MPEG-4 represents the last phase of work within MPEG that 
deals directly with the coding of audiovisual signals. 

The main goals of MPEG-4 Audio are broader than the goals set for 
MPEG-I and -2. In addition to audio coding, coding of speech, synthetic 
audio, text to speech interfaces, scalability, 3D, and added functionalities 
were also addressed by MPEG-4. To this date the MPEG-4 Audio, first 
finalized at the end 1998, went through two revision stages during which 
added schemes such as HILN for very low data rate audio and additional 
functionalities for MPEG-4 AAC such as low delay and error robustness 
versions, were included in the specifications. MPEG-4 targets wireless, 
digital broadcasting, and interactive multimedia (streaming, internet, 
distribution and access to content, etc.) applications. 

This chapter concludes this book's overview of major audio coding 
standards. Hopefully, the review of the major coding standards has both 
provided further insight into how the principles of audio coding have been 
applied in state-of-the-art coders and also given enough coding details to 
assist the reader in effectively using the standard documentation to 
implement compliant coders. The true goal of the book, however, is to have 
taught some readers enough "coding secrets" to facilitate their personal 
journeys to create the next generation of audio coders. 
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